首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The clinical benefits of oncogenic BRAF inhibitor therapies are limited by the emergence of drug resistance. In this study, we investigated the role of a negative regulator of the MAPK pathway, Spry2, in acquired resistance using BRAF inhibitor-resistant derivatives of the BRAF-V600E melanoma (A375P/Mdr). Real-time RT-PCR analysis indicated that the expression of Spry2 was higher in A375P cells harboring the BRAF V600E mutation compared with wild-type BRAF-bearing cells (SK-MEL-2) that are resistant to BRAF inhibitors. This result suggests the ability of BRAF V600E to evade feedback suppression in cell lines with BRAF V600E mutations despite high Spry2 expression. Most interestingly, Spry2 exhibited strongly reduced expression in A375P/Mdr cells with acquired resistance to BRAF inhibitors. Furthermore, the overexpression of Spry2 partially restored sensitivity to the BRAF inhibitor PLX4720 in two BRAF inhibitor-resistant cells, indicating a positive role for Spry2 in the growth inhibition induced by BRAF inhibitors. On the other hand, long-term treatment with PLX4720 induced pERK reactivation following BRAF inhibition in A375P cells, indicating that negative feedback including Spry2 may be bypassed in BRAF mutant melanoma cells. In addition, the siRNA-mediated knockdown of Raf-1 attenuated the rebound activation of ERK stimulated by PLX4720 in A375P cells, strongly suggesting the positive role of Raf-1 kinase in ERK activation in response to BRAF inhibition. Taken together, these data suggest that RAF signaling may be released from negative feedback inhibition through interacting with Spry2, leading to ERK rebound and, consequently, the induction of acquired resistance to BRAF inhibitors.  相似文献   

2.
Introduction: The clinical activity of BRAF inhibitor (BRAF-I) therapy is a major breakthrough in the treatment of metastatic melanoma carrying BRAF mutations. However, the therapeutic efficacy of BRAF-I therapy is limited due to the onset of intrinsic and acquired drug resistance.

Areas covered: The role of wild-type BRAF in melanocytes and of the mutated BRAF in the pathogenesis of melanoma is described in this article. The results obtained with BRAF-I in patients with mutated BRAF are reviewed. The mechanisms driving the intrinsic and acquired BRAF-I resistance, the development of combinatorial strategies designed to overcome them and their potential limitations are discussed. Lastly, the many questions that have to be addressed to optimize therapy with BRAF-I are listed.

Expert opinion: Melanoma is an aggressive form of skin cancer characterized by poor prognosis and high mortality. The discovery of BRAF mutations which drive melanoma tumorigenesis and the development of agents which selectively inhibit mutant-activated BRAF represent a major breakthrough in the treatment of metastatic melanoma. However, the development of drug resistance underlies the need of more effective and individualized combinatorial treatments to counteract the multiple escape mechanisms utilized by BRAF-mutant melanoma. Although combinatorial strategies using agents which target different protumorigenic signaling pathway components have been shown to increase the clinical efficacy of BRAF-I, novel strategies which utilize different antitumor mechanisms are needed.  相似文献   

3.
BRAF is a member of the RAF kinase family, which acts in the ERK/MAP kinase pathway, a signalling cascade that regulates cellular proliferation, differentiation and survival. Single point mutations can turn BRAF into an oncogene, but there appears to be a cell type/tumour specific relevance for BRAF kinase-activating mutations, since they are found predominantly in cutaneous melanoma. With the success of targeting other oncogenic kinases such as BCR-ABL, KIT or members of the epidermal-growth factor receptor (EGFR) family in other cancers, the expectations were high when the first RAF kinase-targeting drug (sorafenib) reached clinical trials. However, disappointingly the first studies using sorafenib in melanoma patients did not show the anticipated single agent efficacy. More recently, the resolution of the BRAF crystal structure has led to the development of better, more specific BRAF inhibitors such as the Plexxikon compound, PLX4032, which induced a dramatic response rate in phase I trials, validating BRAF as a clinically relevant target. In addition, our understanding of melanoma biology and the role BRAF is playing therein has improved significantly. The complexity in the ERK/MAP kinase pathway including important feedback mechanisms has been dissected, and the relevance of cross-talks with other signalling pathways has been revealed, suggesting strategies for the design of improved, more efficient combinatorial therapies. This review highlights the relevance of BRAF and the ERK/MAP kinase pathway for melanoma cell biology and discusses some of the recent advances in both, the understanding of BRAF function in melanoma and the development of improved BRAF targeting inhibitors.  相似文献   

4.
Introduction: Approximately, 30.4–66.0% of cutaneous melanomas possess a mutation in the BRAF gene that activates downstream signaling through the mitogen-activated protein (MAP) kinase pathway; this provides an attractive target for the treatment of advanced melanoma. Although BRAF inhibitors rapidly suppress melanoma growth, median progression-free survival remains unsatisfactory. Recent clinical trials have investigated drugs that can optimally enhance and prolong the anti-melanoma effects of BRAF inhibitors.

Area covered: This review discusses the development of BRAF inhibitor-based combination therapies for BRAF-mutant advanced melanoma.

Expert opinion: Future strategies for the treatment of advanced melanoma include novel combination therapies using BRAF/MEK inhibitors and immune checkpoints inhibitors or histone deacetylase inhibitors. These combination therapies might enhance antitumor responses against melanoma, prolonging survival in advanced melanoma patients. Further clinical studies are needed to optimize these novel combination therapies.  相似文献   


5.
Melanoma is the most aggressive form of skin cancer. The treatment of patients with advanced melanoma is rapidly evolving due to an improved understanding of molecular drivers of this disease. Somatic mutations in BRAF are the most common genetic alteration found in these tumors. Recently, two different mutant-selective small molecule inhibitors of BRAF, vemurafenib and dabrafenib, have gained regulatory approval based on positive results in randomized phase III trials. While the development of these agents represents a landmark in the treatment of melanoma, the benefit of these agents is limited by the frequent and rapid onset of resistance. The identification of several molecular mechanisms of resistance to BRAF inhibitors is rapidly leading to the clinical testing of combinatorial strategies to improve the clinical benefit of these agents. These mechanisms, and the lessons learned from the initial testing of the BRAF inhibitors, provide multiple insights that may facilitate the development of targeted therapies against other oncogenic mutations in melanoma, as well as in other cancers.  相似文献   

6.
The discovery of activating BRAF V600E mutations in 50% of all cutaneous melanomas has revolutionized the understanding of melanoma biology and provided new strategies for the therapeutic management of this deadly disease. Highly potent small molecule inhibitors of BRAF are now showing great promise as a novel therapeutic strategy for melanomas harboring activating BRAF V600E mutations and are associated with high levels of response. This commentary article discusses the latest data on the role of mutated BRAF in the development and progression of melanoma as the basis for understanding the mechanism of action of BRAF inhibitors in the preclinical and clinical settings. We further address the issue of BRAF inhibitor resistance and outline the latest insights into the mechanisms of therapeutic escape as well as describing approaches to prevent and abrogate the onset of both intrinsic and acquired drug resistance. It is likely that our evolving understanding of melanoma genetics and signaling will allow for the further personalization of melanoma therapy with the goal of improving clinical responses.  相似文献   

7.
Introduction: Primary neuroepithelial brain tumors encompass a wide variety of glial and glioneuronal neoplasms. Malignant tumors, tumors located in surgically inaccessible locations (e.g., eloquent brain areas, deep structures, brain stem) and recurrent or progressive tumors pose considerable treatment challenges and are candidates for novel therapeutics based on molecular insights. Small kinase inhibitors of v-RAF murine sarcoma viral oncogene homologue B1 (BRAF) have shown considerable antineoplastic activity in some tumor types harboring activating BRAF-V600 mutations (e.g., melanoma) and promising data are emerging on BRAF inhibitor therapy of mutation-bearing primary brain tumors.

Areas covered: This review summarizes the available data on BRAF-V600 point mutations and the antineoplastic activity and toxicity profiles of BRAF inhibitors in neuroepithelial brain tumors including diffuse gliomas (glioblastomas, astrocytomas, oligodendrogliomas), pilocytic astrocytomas, pleomorphic xanthoastrocytomas and gangliogliomas.

Expert opinion: Activating BRAF-V600 mutations are recurrently found in several glial and glioneuronal brain tumors and the available data indicate that BRAF inhibitors are active and well-tolerated in such tumors. Thus, BRAF inhibitors represent a novel and promising therapeutic opportunity that may alter the disease course of molecularly selected CNS neoplasms in a clinically meaningful way. However, so far the evidence is anecdotal and prospective clinical studies should be conducted.  相似文献   

8.
目的:探讨BRAF基因突变结直肠癌的临床特点、疗效及预后。方法:回顾性分析中国人民解放军总医院2010年至2015年收治的12例BRAF突变的晚期结直肠癌患者临床资料。结果:12例BRAF突变患者,男性7例(58.3%),女性5例(41.7%),均为40岁以上;右半结肠2例(16.7%),左半结肠及直肠10例(83.3%);腺癌10例,腺癌及黏液腺癌混合型2例;中分化及低分化各6例,无高分化;8例行DNA错配修复基因免疫组化检测,均为微卫星稳定型;一线治疗客观缓解率为27.3%,疾病控制率为72.7%,中位无进展生存期(PFS)仅为16.4周;中位总生存期(OS)32周。结论:BRAF突变多见于中老年、分化较差、左半结肠的肿瘤,作为结直肠癌的一种特殊类型,一线化疗敏感性差,预后不良。  相似文献   

9.
Introduction: BRAF inhibition alone has achieved unprecedented efficacy results in patients affected by BRAF-mutated advanced melanoma. Since these findings, it was postulated that dual inhibition of BRAF and other components of the RAS/RAF/MEK/ERK MAPK pathway (such as MEK) would be superior to BRAF inhibition as monotherapy. A series of recent clinical trials have confirmed this hypothesis.

Areas covered: In this article, the biological rationale for both single and concomitant inhibitions of the MAPK pathway in BRAF mutant melanoma is provided. Moreover, available clinical data on the efficacy and toxicity of BRAF and MEK inhibition as single agents and in combination are extensively reviewed.

Expert opinion: Dual BRAF and MEK inhibition in advanced BRAF-mutated melanoma is superior to single inhibition in terms of efficacy without significant increase in toxicity. Therefore, BRAF plus MEK inhibition is expected to supersede single-agent BRAF inhibition in these patients in the near future.  相似文献   


10.
Objective: Currently, the treatment of BRAF V600-mutated metastatic melanoma with BRAF inhibitors gives a response rate of ~ 50% with a progression-free survival of ~ 6 – 7 months. In order to identify predictive biomarkers capable of stratifying BRAF-mutated patients at high risk of shorter response duration to anti-BRAF therapy, the authors analyzed the expression of 15 microRNAs (miRNAs) targeting crucial genes involved in melanoma biology and drug response.

Research design and methods: A total of 15 miRNAs and target gene expression were investigated in 43 patients (30 BRAF-mutated, and 13 BRAF wild-type). Moreover, 20 BRAF-mutated patients treated with vemurafenib were analyzed for miRNA expression in respect to time-to-progression.

Results: All miRNAs except miR-192 showed low expression in BRAF-mutated as compared with BRAF wild-type patients. In particular, miR-101, miR-221, miR-21, miR-338-3p and miR-191 resulted in significant downregulation in BRAF-mutated patients. Moreover, high expression of miR-192 and miR-193b* and low expression of miR-132 resulted in significant association with shorter progression.

Conclusion: Three miRNAs were significantly associated with clinical outcome in metastatic melanoma patients. An increased understanding of the molecular assessment of BRAF-mutated melanomas could allow development of specific molecular tests able to predict response duration.  相似文献   

11.
BRAF inhibitors are insufficient monotherapies for BRAF-mutated cancer; therefore, we investigated which inhibitory pathway would yield the most effective therapeutic approach when targeted in combination with BRAF inhibition. The oncogenic BRAF inhibitor, PLX4720, increased basal autophagic flux in BRAF-mutated cells compared to wild-type (WT) BRAF cells. Interestingly, early autophagy inhibition improved the effectiveness of PLX4720 regardless of BRAF mutation, whereas late autophagy inhibition did not. Although ATG5 knockout led to PLX4720 resistance in both WT and BRAF-mutated cells, the MEK inhibitor trametinib exhibited a synergistic effect on PLX4720 sensitivity in WT BRAF cells but not in BRAF-mutated cells. Conversely, the prolonged inhibition of endoplasmic reticulum (ER) stress reduced basal autophagy in BRAF-mutated cells, thereby increasing PLX4720 sensitivity. Taken together, our results suggest that the combined inhibition of ER stress and BRAF may simultaneously suppress both pro-survival ER stress and autophagy, and may therefore be suitable for treatment of BRAF-mutated tumors whose autophagy is increased by chronic ER stress. Similarly, for WT BRAF tumors, therapies targeting MEK signaling may be a more effective treatment strategy. Together, this study presents a rational combination treatment strategy to improve the efficacy of BRAF inhibitors depending on BRAF mutation status.  相似文献   

12.
Introduction: Selective inhibition of the MAPK pathway with either BRAF or MEK inhibition has emerged as a key component for the treatment of BRAF-mutant metastatic melanoma. New evidence suggests that the combination of BRAF and MEK inhibitors improves tumor response rate and progression-free survival, while potentially attenuating some of the serious adverse events observed with monotherapy.

Areas covered: This review covers the current data on the efficacy and safety of the selective BRAF (vemurafenib and dabrafenib) and MEK (trametinib) inhibitors as well as the available data on BRAF inhibitor + MEK inhibitor combination therapy (dabrafenib + trametinib and vemurafenib + cobimetinib). The efficacy, safety and toxicity data are discussed from Phase I, Phase II and Phase III trials of these drugs.

Expert opinion: Combination therapy with the BRAF and MEK inhibitors improves response rates and progression-free survival in patients with BRAF-mutant metastatic melanoma. Some of the serious adverse events, in particular, the incidence of cutaneous squamous cell carcinoma, are attenuated with combination therapy, whereas milder side effects such as pyrexia can be more common with combination therapy. Although dose reductions and dose interruptions are slightly more common with combination therapy, overall data supports the notion that combination therapy is safe and improves the outcomes for patients compared to single agent BRAF inhibitors.  相似文献   


13.
The clinical development of selective BRAF inhibitors for metastatic BRAF V600 mutant melanoma patients has been a major breakthrough in targeted therapeutics. Objective response rates of approximately 50% have been observed in the Phase III studies of the BRAF inhibitors vemurafenib and dabrafenib. The side effects can be relatively common, including proliferative skin toxicities. The latter range from hyperkeratosis and keratoacanthomas (KAs) to squamous cell carcinomas (SCCs) and new primary melanomas. In addition, case reports on the emergence of gastric/colonic polyps and RAS mutant malignancies have been described during BRAF inhibitor therapy. These events have been attributed to paradoxical activation of the MAPK pathway in BRAF wild-type cells exposed to selective BRAF inhibitors in addition to increased RAS activity. Combined BRAF and MEK inhibition appears to improve clinical outcomes and reduce cutaneous proliferation events as fewer KAs and SCCs have been observed with combination therapy. Next-generation pan-RAF inhibitors (‘paradox breakers’) and ERK inhibitors may further enhance clinical activity in metastatic BRAF-mutant melanoma patients and mitigate this paradoxical oncogenesis. Further investigation into the potential long-term effects of selective BRAF inhibitors is warranted as expanded use of these agents is expected in patients with BRAF-mutant melanoma and other malignancies.  相似文献   

14.
STAT3 knockdown by small interfering RNA (siRNA) has been described to inhibit carcinogenic growth in various types of tumors. Earlier we have reported delivery of siRNA by oleic acid- and stearic acid-modified-polyethylenimine and enhancement of silencing of STAT3 by small interfering RNA (siRNA) in B16.F10 melanoma cell lines and consequent tumor suppression. Present investigation mainly focused on the downstream events involved in B16.F10 melanoma cell death and consequent tumor suppression following knockdown of p-STAT3 by siRNA. Lipid-substituted polyethylenimine (PEI)-p-STAT3-siRNA were prepared and characterized by measuring its N/P ratio, zeta potential, size, association and dissociation with siRNA. B16.F10 melanoma cells were treated with six different concentrations of PEI-p-STAT3-siRNA (200, 100, 50, 25, 12.5 and 6.25?nM). Downregulation of p-STAT3 and VEGF were studied using western blot and ELISA in association with the melanoma cell death. PEI-p-STAT3-siRNA hydrodynamic diameter ranged from 110 to 270?nm. PEI assisted p-STAT3-siRNA delivery exhibited increased uptake by B16.F10, when analyzed by fluorescent and confocal microscopy along with flowcytometry. It induced concentration-dependent knockdown of the p-STAT3 that also downregulated VEGF expression in similar fashion and induced B16.F10 cell death. Higher concentrations of p-STAT3-siRNA appear to significantly downregulate the VEGF expression via p-STAT3 knockdown. Decreasing survival of B16.F10 cells with the increasing concentration of p-STAT3-siRNA significantly correlated with VEGF downregulation, not with p-STAT3 expression. Data suggest that VEGF downregulation following knockdown of p-STAT3 may be a key event in survival reduction in B16.F10 melanoma cells and.  相似文献   

15.
Background: The past 30 years have seen little improvement in the survival of patients with stage IV melanoma. Following the discovery of activating BRAF mutations in most melanomas, a wealth of preclinical experimentation has validated the BRAF/MAPK pathway as an excellent therapeutic target in melanoma. Despite these encouraging results, early clinical trials on BRAF/MAPK inhibition have been disappointing. Objective: In the current review, we discuss how differences between the preclinical and clinical settings may influence the response of melanoma cells to BRAF/MEK inhibition. As the BRAF/MEK signaling pathway is not solely responsible for the growth and survival of melanoma cells, we further discuss the therapeutic utility of inhibiting the PI3K/AKT and mTOR pathways both alone and in combination with BRAF/MEK. Conclusion: In looking ahead to the future, it is likely that new advances in melanoma biology, such as the identification of melanoma stem cells and a greater understanding of intratumoral heterogeneity, may play a role in the design of any future melanoma targeted therapy.  相似文献   

16.
Malignant melanoma is considered a deadly aggressive form of skin cancer that frequently metastasizes to various distal organs, which harbors mutations of the BRAF or NRAS which occur in 30 to 50% of melanoma patients. The growth factors secreted by melanoma cells contribute to tumor angiogenesis with the acquisition of metastatic potential by epithelial-mesenchymal transition (EMT) and drive melanoma growth toward a more aggressive form. Niclosamide (NCL) is an FDA-approved anthelmintic drug and is reported to have strong anti-cancer properties against various solid and liquid tumors. Its role in BRAF or NRAS mutated cells is unknown. In this context, we uncovered the role of NCL in impeding malignant metastatic melanoma in vitro in SK-MEL-2 and SK-MEL-28 cell lines. We found that NCL induces significant ROS generation and apoptosis through a series of molecular mechanisms, such as depolarization of mitochondrial membrane potential, arresting the cell cycle at the sub G1 phase with a significant increase in the DNA cleavage via topoisomerase II in both cell lines. We also found that NCL potently inhibited metastasis, which was examined by scratch wound assay, Additionally, we found that NCL inhibits the most important markers involved in the EMT signaling cascade that are stimulated by TGF-β such as N-cadherin, Snail, Slug, Vimentin, α-SMA and p-Smad 2/3. This work provides useful insights into the mechanism of NCL in BRAF/NRAF mutant melanoma cells via inhibition of molecular signaling events involved in EMT signaling, and apoptosis induction.  相似文献   

17.
Introduction: Selective inhibition of the MAPK pathway with BRAF and MEK inhibitors has emerged as a key component of the treatment of BRAF-mutant unresectable/locally advanced metastatic melanoma.

Areas covered: Current data are presented on the efficacy and safety of BRAFi + MEKi combination therapy (dabrafenib/trametinib, vemurafenib/cobimetinib, and encorafenib/binimetinib) from phase I, II, and III trials in the unresectable/locally advanced metastatic setting, as well as neoadjuvant and adjuvant applications. The theoretical basis, pre-clinical findings, clinical trial results and current ongoing clinical studies of combined BRAF/MEK inhibition with immunotherapy, also known as ‘triplet therapy,’ are also explored.

Expert opinion: Combination therapy with BRAF and MEK inhibitors dramatically improves response rates, progression-free survival and overall survival in patients with BRAF-mutant metastatic melanoma compared to historical treatments such as chemotherapy. Some serious adverse effects, including cutaneous squamous cell carcinoma, are attenuated with combination therapy, while less severe and reversible effects including pyrexia, left ventricular dysfunction, and ocular events can be more common with combination therapy. Existing data are insufficient to recommend triplet therapy, or a particular treatment sequence, with respect to BRAF and MEK inhibitors and immune therapies, though results from multiple ongoing trials are anticipated.  相似文献   


18.
Introduction: BRAF mutation was initially reported in metastatic melanomas, and more recently in a variety of human cancers. BRAF acts as a down-stream effector of growth factor signaling leading to cell cycle progression, proliferation and survival. Development of selective inhibitors of BRAF has improved the survival of patients with melanoma and offers potential new therapeutic strategy in children with BRAF-mutant glioma.

Areas covered: Mechanisms of resistance to BRAF inhibitors have recently been described as due to the paradoxical activation of the MAPK pathway. Combination therapy with BRAF and MEK inhibition has proved capable of overcoming the resistance with effective results in patients with melanoma. Prospective studies in pediatric glioma are warranted. Combination therapy has a different toxicity profile compared to BRAF inhibitor alone. Herein we review the state-of-the-art of toxicities associated with these agents, with a special focus on children.

Expert opinion: Some toxicities appear more specific to adults, due to a combination of factors, such as patient age and predisposing risk factors. Moreover, it is recommended that the co-administration of BRAF inhibitors and drugs metabolized by the cytochrome P450 system in the liver be avoided, as this can lead to significant complications secondary to pharmacological interactions.  相似文献   

19.
Introduction: Combination treatment with a BRAF inhibitor and MEK inhibitor is the standard of care for patients with advanced BRAFV600 mutation-positive melanoma. With the currently available combinations of dabrafenib plus trametinib and vemurafenib plus cobimetinib, median progression-free survival (PFS) of over 12 months has been achieved. However, treatment resistance and disease recurrence remain a clinical challenge.

Areas covered: Encorafenib in combination with bimetinib offers a new approach that may offer benefits over existing BRAF/MEK inhibitor combinations.

Expert opinion: While other BRAF/MEK inhibitor combinations have achieved a median overall survival (OS) of 22 months, patients with advanced BRAF mutation-positive melanoma treated with encorafenib plus binimetinib achieved a median OS of 33.6 months in the phase III COLUMBUS trial. PFS also appears to be improved with encorafenib plus binimetinib. This improved efficacy may be related to the distinct pharmacokinetics of encorafenib, with prolonged binding to the target molecule providing greater BRAF inhibition and increased potency compared with other drugs in the same class. Increased specificity of encorafenib may also result in better tolerability with less off-target effects, including reduced occurrence of pyrexia and photosensitivity. Encorafenib plus binimetinib seems likely to emerge as a valuable therapeutic alternative to established BRAF/MEK inhibitor combinations.  相似文献   


20.
Objective: Mitogen-activated protein kinases (MAPKs) are involved in the proliferation and survival of endometriotic lesions. Vemurafenib (PLX4032) is a novel protein kinase inhibitor that targets BRAF, a member of the MAPK pathway. The present study tested the in vitro and in vivo effects of PLX4032 on endometriotic cells.

Research design and methods: We conducted a laboratory study in a tertiary-care university hospital from January 2013 to September 2013. We enrolled a cohort of 40 patients: 20 with histologically proven endometriosis and 20 unaffected women. A thorough surgical examination of the abdominopelvic cavity was performed on all of the study participants. Ex vivo stromal and epithelial cells were extracted from endometrial and endometriotic biopsies from both sets of patients. Proliferation, apoptosis, pERK/ERK ratio, cell cycle regulation (Cyclin D1 and CDK4) and inflammation (PTGS2) were explored with and without PLX4032 treatment. Human endometriotic lesions were implanted into 40 nude mice that were separated into two groups according to PLX4032 or vehicle treatment, which they received for four weeks, before sacrifice and histological examination.

Results: Treating endometriotic cells with PLX4032 abrogated the phosphorylation of ERK, significantly reducing the pERK/ERK ratio in both epithelial and stromal cells from endometriotic women compared to the controls (p < 0.05). In addition, treatment with PLX4032 significantly decreased proliferation in both stromal and epithelial cells with a concomitant decrease in Cyclin D1/CDK4 complex and PTGS2 levels. Using a murine model of endometriosis, we observed that PLX4032-treated mice displayed a significant decrease in implant volume compared to the initial size; a slight, but non-significant, increase in size was observed in the vehicle-treated mice.

Conclusion: Our data suggest that MAPKs and BRAF are involved in the pathogenesis of endometriosis. PLX4032-induced inhibition of BRAF controlled endometriotic growth, both in vitro and in vivo, and could constitute a promising target for the treatment of endometriosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号