首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Unlike conventional liposomes, sterically stabilized liposomes, with their smaller volume of distribution and reduced clearance, preferentially convey encapsulated drugs into tumor sites. Despite these improvements, intracellular delivery is hampered by the stable drug retention of the liposomes, which diminishes the efficacy of the liposomal drug. To facilitate uptake of liposomal drugs into cells, two cell-penetrating peptides, penetratin (PEN) and TAT, derived from the HIV-1 TAT protein, were studied. In contrast to control peptides, both TAT and PEN enhanced the translocation efficiency of liposomes in proportion to the number of peptides attached to the liposomal surface. A peptide number of as few as five could enhance the intracellular delivery of liposomes. The kinetics of uptake was peptide- and cell-type dependent. Intracellular accumulation of TAT-liposomes increased with incubation time, but PEN-liposomes peaked at 1 h and then declined gradually. After treatment with 1 microg/ml doxorubicin equivalents of liposome for 2 h, TAT increased the doxorubicin uptake of A431 cells by 12-fold. However, the improvement of uptake of liposomal doxorubicin was not reflected by cytotoxicity in vitro or tumor control in vivo. Our results demonstrated that merely adding CPP to a liposome encapsulating anticancer drug was inadequate in improving its antitumor activity. An additional approach to enhance the intracellular release of the encapsulated drug is obviously necessary.  相似文献   

2.
Studies have shown that insertion of oleic acid into lipid bilayers can modulate the membrane properties of liposomes so as to improve their function as drug carriers. Considering that 2-hydroxyoleic acid (2OHOA), a potential antitumor agent currently undergoing clinical trials, is a derivative of oleic acid, we explored the possibility of developing 2OHOA-inserted liposomes as a multifunctional carrier of antitumor drugs in the present study. The insertion of 2OHOA into lipid bilayers was confirmed by surface charge determination and differential scanning calorimetry. 2OHOA insertion greatly decreased the order of dimyristoylphosphatidylcholine packing, produced a nanosized (<100?nm) dispersion, and improved the colloidal stability of liposomes during storage. Moreover, 2OHOA-inserted liposome forms exhibited greater growth inhibitory activity against cancer cells compared with free 2OHOA, and the growth-inhibitory activity of liposomal 2OHOA was selective for tumor cells. 2OHOA insertion greatly increased the liposome-incorporated concentration of hydrophobic model drugs, including mitoxantrone, paclitaxel, and all-trans retinoic acid (ATRA). The in vitro anticancer activity of ATRA-incorporated/2OHOA-inserted liposomes was significantly higher than that of ATRA-incorporated conventional liposomes. In a B16-F10 melanoma syngeneic mouse model, the tumor growth rate was significantly delayed in mice treated with ATRA-incorporated/2OHOA-inserted liposomes compared with that in the control group. Immunohistochemical analyses revealed that the enhanced antitumor activity of ATRA-incorporated/2OHOA-inserted liposomes was due, at least in part, to increased induction of apoptosis. Collectively, our findings indicate that 2OHOA-inserted liposomes exhibit multiple advantages as antitumor drug carriers, including the ability to simultaneously deliver two anticancer drugs – 2OHOA and incorporated drug – to the tumor tissue.  相似文献   

3.
A main hurdle for the success of tumor-specific liposomes is their inability to penetrate tumors efficiently. In this study, we incorporated a cell-penetrating peptide BR2 onto the surface of a liposome loaded with the anticancer drug cantharidin (CTD) to create a system targeting hepatocellular carcinoma (HCC) cells more efficiently and effectively. The in vitro cytotoxicity assay comparing the loaded liposomes’ effects on hepatocellular cancer HepG2 and the control Miha cells showed that CTD-loaded liposomes had a stronger anticancer effect after BR2 modification. The cellular uptake results of HepG2 and Miha cells further confirmed the superior ability of BR2-modified liposomes to penetrate cancer cells. The colocalization study revealed that BR2-modified liposomes could enter tumor cells and subsequently release drugs. A higher efficiency of delivery by BR2 liposomes as compared to unmodified liposomes was evident by evaluation of the HepG2 tumor spheroids penetration and inhibition. The biodistribution studies and anticancer efficacy results in vivo showed the significant accumulation of BR2-modified liposomes into tumor sites and an enhanced tumor inhibition. In conclusion, BR2-modified liposomes improve the anticancer potency of drugs for HCC.  相似文献   

4.
Temperature-sensitive liposomes (TS-liposomes) have been studied for chemotherapeutic purposes to enhance the release of anticancer drugs at tumor sites. In this study, we prepared poly(N-isopropylacrylamide-co-acrylamide) (PNIPAM-AAM) and polyethylene glycol (PEG)-modified TS-liposomes (PETS-liposomes). PETS-liposomes significantly increased in vitro drug release in serum compared with PEG-fixed or PNIPAM-AAM-modified liposomes. Furthermore, incorporation of both PNIPAM-AAM and PEG into PETS-liposomes enhanced the stabilities of liposomes in serum by inhibiting protein adsorption. In addition, to investigate the therapeutic efficacy of doxorubicin (DOX)-loaded PETS-liposomes, the in vivo antitumor activity of liposomes in combination with hyperthermia was evaluated in a B16F10 melanoma tumor-bearing mouse model. PETS-liposomes showed much higher levels of tumor growth inhibition than PEG-fixed or PNIPAM-AAM-modified TS-liposomes. Moreover, the antitumor activity of PETS-liposomes was enhanced significantly when they were administered in combination with hyperthermia. PETS-liposomes were found to be highly efficacious carriers for the in vivo delivery of anticancer drugs, and to have potential anticancer applications in combination with hyperthermia.  相似文献   

5.
INTRODUCTION: Chemotherapy remains the major form of treatment for cancer. However, chemotherapy often fails due to a variety of barriers, resulting in a limited intratumoral drug disposition. Recently, lipid nanoparticles (LNs, i.e., solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs)) have been shown to provide a favorable means for efficiently delivering drugs to tumor sites, while minimizing their side effects. AREAS COVERED: The delivery of drugs to tumors is restricted by a series of barriers, including the tumor abnormalities, strong adverse effects and poor specificity of cytotoxic drugs, and the induction of multidrug resistance (MDR). The present review summarizes the strategies using SLNs and/or NLCs to improve the anticancer efficacy of cytotoxic drugs, including passive targeting, active targeting, long circulating and MDR reversing. Specifically, the most significant in vitro and in vivo results on the use of SLNs and/or NLCs are highlighted. EXPERT OPINION: The future success of SLNs and NLCs for administration of cytotoxic drugs will depend on their ability to efficiently encapsulate and release drugs, the possibility for large-scale production, selective tumor cells targeting and increased antitumor efficacy with reduced tissue toxicity.  相似文献   

6.
Positron-emission tomography (PET) is a noninvasive real-time functional imaging system and is expected to be useful for the development of new drug candidates in clinical trials. For its application with preformulated liposomes, we devised an optimized [18F]-compound and developed a direct liposome modification method that we termed the "solid-phase transition method". We were successful in using 1-[18F]fluoro-3,6-dioxatetracosane ([18F]7a) for in vivo trafficking of liposomes. This method might be a useful tool in preclinical and clinical studies of lipidic particle-related drugs.  相似文献   

7.
The size of liposomes has been shown to be an important factor in the efficient delivery of an antitumor agent to a tumor. In this paper, the effects of the size of liposomes on the pharmacokinetics of liposomes and liposome-encapsulated drugs are discussed with reference to: (1) the circulation amount and residence time of liposomes in the blood, (2) the accumulation of liposomes in the tumor, and (3) in vivo drug release from liposomes. In addition, the effect of size on therapeutic activity (antitumor efficacy and toxicity) of a liposomal anticancer preparation is discussed. Finally we discuss the importance of liposome size in the design of a more effective liposomal antitumor preparation.  相似文献   

8.
Angiogenesis is the process by which new blood vessels are formed from preexisting microvasculature. To ensure an adequate blood supply, tumor cells release angiogenic factors that are capable of promoting nearby blood vessels to extend vascular branches to the tumor. In addition, larger tumors have been shown to release angiogeneic inhibitory factors that prevent blood vessels from sending branches to smaller, more distant tumors that compete for oxygen and nutrients. Angiogenesis is a complex multistep biochemical process, and offers several potential molecular targets for non-cytotoxic anticancer therapies. Strategies for exploiting tumor angiogenesis for novel cancer drug discovery include: (i) inhibition of proteolytic enzymes that breakdown the extracellular matrix surrounding existing capillaries; (ii) inhibition of endothelial cell migration; (iii) inhibition of endothelial cell proliferation; (iv) enhancement of tumor endothelial cell apoptosis. There is also a host of miscellaneous agents that inhibit angiogenesis for which the specific mechanisms are not clear. Several methods have been developed for measuring antiangiogenic activity both in vitro and in vivo. Although there has been intensive research efforts focused at the phenomena of angiogenesis, as well as the search for antiangiogenic agents for more than two decades, many questions remain unanswered with regard to the overall biochemical mechanisms of the angiogenesis process and the potential therapeutic utility of angiogenic inhibitors. Nevertheless potent angiogenic inhibitors capable of blocking tumor growth have been discovered, and appear to have potential for development into novel anticancer therapeutics. However there are still hurdles to be overcome before these inhibitors become mainstream therapies.  相似文献   

9.
ABSTRACT

Introduction: A major limitation of current liposomal cancer therapies is the inability of liposome therapeutics to penetrate throughout the entire tumor mass. This inhomogeneous distribution of liposome therapeutics within the tumor has been linked to treatment failure and drug resistance. Both liposome particle transport properties and tumor microenvironment characteristics contribute to this challenge in cancer therapy. This limitation is relevant to both intravenously and intratumorally administered liposome therapeutics.

Areas covered: Strategies to improve the intratumoral distribution of liposome therapeutics are described. Combination therapies of intravenous liposome therapeutics with pharmacologic agents modulating abnormal tumor vasculature, interstitial fluid pressure, extracellular matrix components, and tumor associated macrophages are discussed. Combination therapies using external stimuli (hyperthermia, radiofrequency ablation, magnetic field, radiation, and ultrasound) with intravenous liposome therapeutics are discussed. Intratumoral convection-enhanced delivery (CED) of liposomal therapeutics is reviewed.

Expert opinion: Optimization of the combination therapies and drug delivery protocols are necessary. Further research should be conducted in appropriate cancer types with consideration of physiochemical features of liposomes and their timing sequence. More investigation of the role of tumor associated macrophages in intratumoral distribution is warranted. Intratumoral infusion of liposomes using CED is a promising approach to improve their distribution within the tumor mass.  相似文献   

10.
The present investigation reports the development of nanoengineered estrogen receptor (ER) targeted pH-sensitive liposome for the site-specific intracellular delivery of doxorubicin (DOX) for breast cancer therapy. Estrone, a bioligand, was anchored on the surface of pH-sensitive liposome for drug targeting to ERs. The estrone-anchored pH-sensitive liposomes (ES-pH-sensitive-SL) showed fusogenic potential at acidic pH (5.5). In vitro cytotoxicity studies carried out on ER-positive MCF-7 breast carcinoma cells revealed that ES-pH-sensitive-SL formulation was more cytotoxic than non-pH-sensitive targeted liposomes (ES-SL). The flow cytometry analysis confirmed significant enhanced uptake (p < 0.05) of ES-pH-sensitive-SL by MCF-7 cells. Intracellular delivery and nuclear localization of the DOX was confirmed by fluorescence microscopy. The mechanism for higher cytotoxicity shown by estrone-anchored pH-sensitive liposomal-DOX was elucidated using reactive oxygen species (ROS) determination. The in vivo biodistribution studies and antitumor activities of formulations were evaluated on tumor bearing female Balb/c mice followed by intravenous administration. The ES-pH-sensitive-SL efficiently suppressed the breast tumor growth in comparison to both ES-SL and free DOX. Serum enzyme activities such as LDH and CPK levels were assayed for the evaluation of DOX induced cardiotoxicity. The ES-pH-sensitive-SL accelerated the intracellular trafficking of encapsulated DOX, thus increasing the therapeutic efficacy. The findings support that estrone-anchored pH-sensitive liposomes could be one of the promising nanocarriers for the targeted intracellular delivery of anticancer agents to breast cancer with reduced systemic side effects.  相似文献   

11.
吴新荣  刘志林  辛胜昌 《中国药房》2008,19(30):2336-2338
目的:研究磁性纳米药物在动物体内的分布情况并考察其抑瘤效果。方法:尾静脉给予小鼠紫杉醇磁性纳米脂质体和紫杉醇脂质体,在磁性组体外施加0.5T的磁场,测定不同时间这2种药物在不同器官中的药物浓度;建立裸鼠肺癌模型,通过重量的变化比较几种药物的抑瘤效果。结果:紫杉醇磁性纳米脂质体组,在动物的肺部体外施加磁场,肺部位的药物浓度明显高于其它部位,且在给药后很快达到稳态浓度,而其它器官的药物浓度逐渐达到稳态浓度;紫杉醇脂质体组,给药后肺部位逐渐上升到稳态浓度。给予紫杉醇磁性纳米脂质体并施加磁场组的肿瘤抑制率为27.53%,显著高于紫杉醇脂质体组。结论:磁性靶向给药是一种有效的给药方式,可以将药物大量地聚集到靶部位,降低药物在正常器官的分布。  相似文献   

12.
13.
Nanoscale drug delivery systems (DDS) are used to circumvent some of the non-ideal properties of conventional anticancer chemotherapy drugs. Manipulation of the physical properties of DDS provides improved control over the pharmacokinetics (PK) and pharmacodynamics (PD) of the encapsulated drugs relative to free drugs. Liposomes are the archetypical nanoscale DDS and the first of these received clinical approval in 1990. DOXIL, liposomal doxorubicin, was the first commercially available liposomal anticancer drug (1995). It has an enhanced circulation half-life compared to the free drug because of its surface-grafted polyethylene glycol coating. DOXIL passively targets solid tumors, and once the liposomes localize in the tumor interstitial space, the cytotoxic drug is slowly released within the tumor. Liposomes can act as sustained release delivery system and manipulation of properties such as, liposome diameter, drug release rate, bioavailability and dosing schedule can significantly impact the therapeutic outcome of the liposomal drugs. This review will focus on how alteration of these properties can impact the therapeutic efficacy and side effect profiles of DDS.  相似文献   

14.
莫凡  肖学凤  乔晓莉 《齐鲁药事》2009,28(8):482-485
目的对抗癌药物脂质体制剂的药代动力学研究成果进行综述。方法参阅、归纳、总结相关文献,根据作用机制的不同对抗癌药物进行分类,分别阐述这些药物脂质体制剂的药代动力学研究概况。结果与结论脂质体制剂具有靶向性、缓释性的特点,能提高血药浓度和药物的生物利用度,使药物的消除速率慢于游离药物。脂质体制剂能够改善抗癌药物的治疗效果,并能降低药物的毒副作用。  相似文献   

15.
Tumor vessels possess unique physiological features that might be exploited for improved drug delivery. The targeting of liposomal anticancer drugs to tumor vasculature is increasingly recognized as an effective strategy to obtain superior therapeutic efficacy with limited host toxicity compared with conventional treatments. This review introduces recent advances in the field of liposomal targeting of tumor vasculature, along with new approaches that can be used in the design and optimization of liposomal delivery systems. In addition, cationic liposome is focused on as a promising carrier for achieving efficient vascular targeting. The clinical implications are discussed of several approaches using a single liposomal anticancer drug formulation: dual targeting, vascular targeting (targeting tumor endothelial cells) and tumor targeting (targeting tumor cells).  相似文献   

16.
Liposomal drug delivery systems: an update review   总被引:3,自引:0,他引:3  
The discovery of liposome or lipid vesicle emerged from self forming enclosed lipid bi-layer upon hydration; liposome drug delivery systems have played a significant role in formulation of potent drug to improve therapeutics. Recently the liposome formulations are targeted to reduce toxicity and increase accumulation at the target site. There are several new methods of liposome preparation based on lipid drug interaction and liposome disposition mechanism including the inhibition of rapid clearance of liposome by controlling particle size, charge and surface hydration. Most clinical applications of liposomal drug delivery are targeting to tissue with or without expression of target recognition molecules on lipid membrane. The liposomes are characterized with respect to physical, chemical and biological parameters. The sizing of liposome is also critical parameter which helps characterize the liposome which is usually performed by sequential extrusion at relatively low pressure through polycarbonate membrane (PCM). This mode of drug delivery lends more safety and efficacy to administration of several classes of drugs like antiviral, antifungal, antimicrobial, vaccines, anti-tubercular drugs and gene therapeutics. Present applications of the liposomes are in the immunology, dermatology, vaccine adjuvant, eye disorders, brain targeting, infective disease and in tumour therapy. The new developments in this field are the specific binding properties of a drug-carrying liposome to a target cell such as a tumor cell and specific molecules in the body (antibodies, proteins, peptides etc.); stealth liposomes which are especially being used as carriers for hydrophilic (water soluble) anticancer drugs like doxorubicin, mitoxantrone; and bisphosphonate-liposome mediated depletion of macrophages. This review would be a help to the researchers working in the area of liposomal drug delivery.  相似文献   

17.
To achieve an optimal chemotherapy or gene therapy against tumors or to realize rational design of delivery systems for cancer therapy, pharmacokinetic information in tumor should be obtained. A tissue-isolated tumor preparation is a useful experimental system to investigate the intratumoral disposition of drugs, carriers, and their complexes. The disposition of drugs in the solid tumor was analyzed in this system after intraarterial infusion (systemic route) or by intratumoral injection (topical route). Here the results of low-molecular weight drugs, their macromolecular prodrugs, lipid carriers like fat emulsions and liposomes, and plasmid DNA and its complexes, are addressed. Pharmacokinetic analyses in the tumor clearly indicate that the intratumoral fate of drugs and delivery systems are determined by (i) the anatomical and physiological properties of the tissue and (ii) the physicochemical characteristics of drugs and delivery systems such as molecular weight, size, lipophilicity, and electrical charge. These approaches are useful for designing and developing optimized drug delivery systems.  相似文献   

18.
Transferrin As A targeting ligand for liposomes and anticancer drugs.   总被引:6,自引:0,他引:6  
In cancer treatment, one of the approaches is targeting of the drug to tumor cells via receptor specific ligands. Transferrin (molecular weight 80,000) has been used as a ligand for delivering anticancer drugs or drug containing liposomes mostly due to the increased number of transferrin (trf) receptors found on tumor cells as compared to normal cells. Transferrin was linked to methotrexate (MTX) containing small unilamellar liposomes and its activity was compared to antitransferrin receptor antibody (7D-3) linked to MTX liposomes. In each of these conjugates, the method of coupling was the same and a disulphide linkage was formed between the ligand and MTX liposomes. No significant differences in the potency of 7D-3 conjugate or trf conjugate with MTX liposomes were observed in studies performed in vitro against various human tumor cell lines (Hela, KB and Colon). Trf was also linked to adriamycin via a schiff base which was formed by using glutaraldehyde. This conjugate was found to be effective in vitro against various human tumors (Lovo, HL-60, SW 403 and Hep2) and also in vivo against H-mesothelioma tumors. Transferrin receptor has also been used for gene delivery. Gene delivery to K562 haematopoietic leukaemic cells was achieved by using a transferrin-polycation (poly-L-lysine or protamine) conjugate. This review will cover the various important applications of transferrin based drug delivery formulations in the chemotherapy of cancer and the related work performed in our and other laboratories.  相似文献   

19.
Liposome as a carrier of topotecan (TPT), a promising anticancer drug, has been reported in attempt to improve the stability and antitumor activity of TPT. However, the biodistribution pattern of TPT liposome in vivo and PEG-modified liposome containing TPT have not been studied systemically. In this paper, the in vitro stability and in vivo biodistribution behavior of several liposomes containing TPT with different lipid compositions and PEG-modification were studied. Compared with the 'fluid' liposome (S-Lip) composed of soybean phosphatidylcholine (SPC), the 'solid' liposome (H-Lip) composed of hydrogenated soybean phosphatidylcholine HSPC decreased the leaking efficiency of TPT from liposome and enhanced the stability of liposome in fetal bovine serum (FBS) or human blood plasma (HBP). The results of biodistribution studies in S180 tumor-bearing mice showed that liposomal encapsulation increased the concentrations of total TPT and the ratio of lactone form in plasma. Compared with free TPT, S-Lip and H-Lip resulted in 5- and 19-fold increase in the area under the curve (AUC(0-->infinity)), respectively. PEG-modified H-Lip (H-PEG) showed 3.7-fold increase in AUC(0-->infinity) compared with H-Lip, but there was no significant increase in t(1/2) and AUC(0-->infinity) for PEG-modified S-Lip (S-PEG) compared with S-Lip. Moreover, the liposomal encapsulation changed the biodistribution behavior, and H-Lip and H-PEG dramatically increased the accumulation of TPT in tumor, and the relative tumor uptake ratios were 3.4 and 4.3 compared with free drug, respectively. There was also a marked increase in the distribution of TPT in lung when the drug was encapsulated into H-Lip and H-PEG. Moreover, H-PEG decreased the accumulation of TPT in bone marrow compared with unmodified H-Lip. All these results indicated that the membrane fluidity of liposome has an important effect on in vitro stability and in vivo biodistribution pattern of liposomes containing TPT, and PEG-modified 'solid' liposome may be an efficient carrier of TPT.  相似文献   

20.
Tumor cells develop resistance to chemotherapeutic drugs through multiple mechanisms. Overexpression of efflux transporters is an important source of drug resistance. Efflux transporters such as P-glycoprotein reduce intracellular drug accumulation and compromise drug efficacy. Various nanoparticle-based approaches have been investigated to overcome efflux-mediated resistance. These include the use of formulation excipients that inhibit transporter activity and co-delivery of the anticancer drug with a specific inhibitor of transporter function or expression. However, the effectiveness of nanoparticles can be diminished by poor transport in the tumor tissue. Hence, adjunct therapies that improve the intratumoral distribution of nanoparticles may be vital to the successful application of nanotechnology to overcome tumor drug resistance. This review discusses the mechanisms of tumor drug resistance and highlights the opportunities and challenges in the use of nanoparticles to improve the efficacy of anticancer drugs against resistant tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号