首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Hemodynamic tolerance occurs upon continuous exposure of vascular tissues to nitroglycerin (NTG). This phenomenon is believed to be due to the depletion of the tissue sulfhydryl (SH) group, which is essential for NTG-induced increase in tissue cyclic GMP and vasorelaxation. To determine the effect of an NTG-free interval on recovery of tissue cyclic GMP accumulation and vasorelaxation following development of NTG tolerance, isolated rat aortic rings were kept in Krebs physiologic buffer at 37 degrees, precontracted with epinephrine, and exposed to NTG. The mean concentration of NTG, which relaxed the rings by 50% (EC50) upon first exposure, was 1.1 x 10(-7) M (N = 20), and vascular cyclic GMP levels after NTG increased from 21 to 46 fmol/mg (P less than 0.02). A second exposure to NTG 15 min later increased the EC50 to 1.3 x 10(-4) M and cyclic GMP levels did not change (P less than 0.001 vs first NTG exposure), indicating tolerance to NTG. However, acetylcholine-mediated relaxation of aortic rings was preserved even in NTG-tolerant rings. A second exposure of tissues to NTG separated by 30, 60, and 120 min from the first exposure progressively decreased the EC50, such that at 120 min the EC50 of NTG was 0.4 x 10(-7) M (P = NS vs first NTG exposure). Tissue cyclic GMP levels increased from 14 to 71 fmol/mg (P = NS vs first NTG exposure). These data confirm development of tolerance to the vasorelaxant effects of NTG following initial exposure. An interval of 2 hr between multiple exposures of tissues to NTG results in preservation of the smooth muscle relaxation and an increase in tissue cyclic GMP in response to NTG.  相似文献   

2.
3.
The inhalation of particulate matter (PM) is closely related to respiratory damage, including acute lung injury (ALI), characterized by inflammatory fluid edema and disturbed alveolar-capillary permeability. Ruscogenin (RUS), the main active ingredient in the traditional Chinese medicine Ophiopogonis japonicus, has been found to exhibit anti-inflammatory activity and rescue LPS-induced ALI. In this study, we investigated whether and how RUS exerted therapeutic effects on PM-induced ALI. RUS (0.1, 0.3, 1 mg·kg−1·d−1) was orally administered to mice prior to or after intratracheal instillation of PM suspension (50 mg/kg). We showed that RUS administration either prior to or after PM challenge significantly attenuated PM-induced pathological injury, lung edema, vascular leakage and VE-cadherin expression in lung tissue. RUS administration significantly decreased the levels of cytokines IL-6 and IL-1β, as well as the levels of NO and MPO in both bronchoalveolar lavage fluid (BALF) and serum. RUS administration dose-dependently suppressed the phosphorylation of NF-κB p65 and the expression of TLR4 and MyD88 in lung tissue. Furthermore, TLR4 knockout partly diminished PM-induced lung injury, and abolished the protective effects of RUS in PM-instilled mice. In conclusion, RUS effectively alleviates PM-induced ALI probably by inhibition of vascular leakage and TLR4/MyD88 signaling. TLR4 might be crucial for PM to initiate pulmonary lesion and for RUS to exert efficacy against PM-induced lung injury.  相似文献   

4.
Age‐related endothelial dysfunction is closely associated with the local production of reactive oxygen species (ROS) within and in the vicinity of the vascular endothelium. Oxidant‐induced DNA damage can activate the nuclear enzyme poly(ADP‐ribose) polymerase 1 (PARP‐1), leading to endothelial dysfunction in various pathophysiological conditions. The present study aimed to investigate the role of PARP‐1 in age‐dependent changes in endothelial cell function and its underlying mechanism. Wild‐type (WT) and PARP‐1?/? mice were divided into young (2 months) and old (12 months) groups. Isolated aortic rings were suspended to record isometric tension to assess endothelial function. Nitric oxide (NO) production and content in plasma were detected by spectrophotometry. Superoxide ( production was detected by dihydroethidium. Expression of PARP‐1, endothelial nitric oxide synthase (eNOS), induced nitric oxide synthase (iNOS), and arginase‐2 (Arg2) was assessed by western blot analysis. Endothelium‐dependent relaxation in response to acetylcholine was lost in old WT, but not PARP‐1?/?, mice. Endothelium‐independent vasodilation was not impaired in aging mice. Production of was greater in aging WT mice than young or aging PARP‐1?/? mice. eNOS expression was not affected by aging in WT or PARP‐1?/? mice, but p‐eNOS expression decreased and iNOS and Arg2 levels were upregulated only in aging WT mice. In conclusion, PARP‐1 inhibition may protect against age‐dependent endothelial dysfunction, potentially by regulating NO bioavailability via iNOS. Inhibition of PARP‐1 may help in vascular aging prevention.  相似文献   

5.
6.

Aim:

Apolipoprotein E (ApoE) plays an important role in the transport and metabolism of lipids. Recent studies show that bone mass is increased in young apoE−/− mice. In this study we investigated the bone phenotype and metabolism in aged apoE−/− mice.

Methods:

Femurs and tibias were collected from 18- and 72-week-old apoE−/− mice and their age-matched wild-type (WT) littermates, and examined using micro-CT and histological analysis. Serum levels of total cholesterol, oxidized low-density lipoprotein (ox-LDL) and bone turnover markers were measured. Cultured bone mesenchymal stem cells (BMSCs) from tibias and femurs of 18-week-old apoE−/− mice were used in experiments in vitro. The expression levels of Sirt1 and Runx2 in bone tissue and BMSCs were measured using RT-PCR and Western blot analysis.

Results:

Compared with age-matched WT littermates, young apoE−/− mice exhibited high bone mass with increased bone formation, accompanied by higher serum levels of bone turnover markers OCN and TRAP5b, and higher expression levels of Sirt1, Runx2, ALP and OCN in bone tissue. In contrast, aged apoE−/− mice showed reduced bone formation and lower bone mass relative to age-matched WT mice, accompanied by lower serum OCN levels, and markedly reduced expression levels of Sirt1, Runx2, ALP and OCN in bone tissue. After BMSCs were exposed to ox-LDL (20 μg/mL), the expression of Sirt1 and Runx2 proteins was significantly increased at 12 h, and then decreased at 72 h. Treatment with the Sirt1 inhibitor EX527 (10 μmol/L) suppressed the expression of Runx2, ALP and OCN in BMSCs.

Conclusion:

In contrast to young apoE−/− mice, aged apoE−/− mice showe lower bone mass than age-matched WT mice. Long-lasting exposure to ox-LDL decreases the expression of Sirt1 and Runx2 in BMSCs, which may explain the decreased bone formation in aged apoE−/− mice.  相似文献   

7.
Epidemiology studies suggest that exposure to air pollution increases the frequency of cardiac arrhythmias. A limitation of these studies is that it is difficult to link an increased risk of arrhythmias to a specific air pollutant. Animal exposure studies offer the opportunity to examine the effects of concentrated ambient fine particulate matter (PM), ultrafine PM, and copollutant gases separately. Male Fischer 344 rats, aged 18 mo, with implanted electrocardiograph (ECG) transmitters were used to determine the effects of PM on the frequency of arrhythmias. We found that old F344 rats had many spontaneous arrhythmias. An arrhythmia classification system was developed to quantify arrhythmia frequency. Arrhythmias were broadly grouped into two categories: premature beats and delayed beats. The rats were exposed to concentrated ambient PM (CAPS) or air for 4 h. The rats were exposed twice with a crossover design so each rat could serve as its own control. The CAPS concentrations were 160 μ g/m3 and 200 μ g/m3 for the first and second exposures, respectively. There was a significant increase in the frequency of irregular and delayed beats after exposure to CAPS. The same rats were subsequently exposed to laboratory-generated ultrafine carbon particles, to SO2, or to air with a repeated crossover design. In these experiments there was no significant change in the frequency of any category of spontaneous arrhythmia following exposure to ultrafine carbon or SO2. Thus, this study adds supporting evidence that acute exposure to elevated levels of ambient PM increases the frequency of cardiac arrhythmias.  相似文献   

8.
While luteolin, a flavone rich in many plants, has some cardiovascular activity, it is not clear whether luteolin has beneficial effects on the vascular endothelial impairment in hyperglycemia/high glucose. Here, we reveal the protective effect of luteolin on endothelium-dependent relaxation in isolated rat aortic rings exposed to high glucose. The thoracic aorta of male Sprague–Dawley rats was rapidly dissected out and the effect of luteolin on the tension of aortic rings pretreated with high glucose (44 mM) for 4 h was measured in an organ bath system. The levels of nitric oxide (NO), hydroxy radical (OH?) and reactive oxygen species (ROS), and the activity of superoxide dismutase (SOD) and nitric oxide synthase (NOS) were measured in aortas. The vasorelaxation after treatment with luteolin for 8 weeks in aortic rings from diabetic rats was also determined. We found that exposure to high glucose decreased acetylcholine-induced endothelium-dependent relaxation. However, high mannitol had no effect on vasorelaxation. Luteolin evoked a concentration-dependent relaxation in aortic rings previously contracted by phenylephrine, and the pD2 value was 5.24 ± 0.04. The EC50 of luteolin markedly attenuated the inhibition of relaxation induced by high glucose, which was significantly weakened by pretreatment with l-NAME (0.1 mM), but not by indomethacin (0.01 mM). Luteolin significantly inhibited the increase of ROS level and OH? formation, and the decrease of NO level, NOS and SOD activity caused by high glucose. The improving effect of luteolin on endothelium-dependent vasorelaxation in diabetic rat aortic rings was reversed by pretreatment with l-NAME or methylene blue. The results indicate that the decrease of endothelium-dependent relaxation in rat aortic rings exposed to high glucose is markedly attenuated by luteolin, which may be mediated by reducing oxidative stress and enhancing activity in the NOS–NO pathway.  相似文献   

9.
《Inhalation toxicology》2013,25(8):444-454
Abstract

Context: Inhalation of fine particulate matter (PM2.5) is associated with acute pulmonary inflammation and impairments in cardiovascular function. In many regions, PM2.5 is largely derived from diesel exhaust (DE), and these pathophysiological effects may be due in part to oxidative stress resulting from DE inhalation. The antioxidant glutathione (GSH) is important in limiting oxidative stress-induced vascular dysfunction. The rate-limiting enzyme in GSH synthesis is glutamate cysteine ligase and polymorphisms in its catalytic and modifier subunits (GCLC and GCLM) have been shown to influence vascular function and risk of myocardial infarction in humans.

Objective: We hypothesized that compromised de novo synthesis of GSH in Gclm?/+ mice would result in increased sensitivity to DE-induced lung inflammation and vascular effects.

Materials and methods: WT and Gclm?/+ mice were exposed to DE via inhalation (300?μg/m3) for 6?h. Neutrophil influx into the lungs, plasma GSH redox potential, vascular reactivity of aortic rings and aortic nitric oxide (NO?) were measured.

Results: DE inhalation resulted in mild bronchoalveolar neutrophil influx in both genotypes. DE-induced effects on plasma GSH oxidation and acetylcholine (ACh)-relaxation of aortic rings were only observed in Gclm?/+ mice. Contrary to our hypothesis, DE exposure enhanced ACh-induced relaxation of aortic rings in Gclm?/+ mice.

Discussion and conclusion: These data support the hypothesis that genetic determinants of antioxidant capacity influence the biological effects of acute inhalation of DE. However, the acute effects of DE on the vasculature may be dependent on the location and types of vessels involved. Polymorphisms in GSH synthesis genes are common in humans and further investigations into these potential gene-environment interactions are warranted.  相似文献   

10.
Abstract

Ultrafine particulate matter (PM) in the air may be harmful to health, particularly in elderly subjects. From the dosimetry point of view, it is not known if the elderly subjects are more susceptible to exposure to ultrafine PM. We measured the total deposition fraction (TDF) of ultrafine PM (NMD = 0.04–0.1 μm in number median diameter) in the lungs of healthy, elderly subjects (age = 69 ± 5yr) and compared the results with those obtained from young adults (age = 31 ± 4 yr) in an earlier study. Subjects inhaled the aerosols with six different breathing patterns: three different tidal volumes (Vt = 500, 750, and 1000 ml) and two flow rates (Q) for each Vt. TDF was measured breath by breath in situ by measuring aerosol concentrations on inhalation and exhalation using an ultrafine condensation particle counter. Mean TDF (±SD) of the elderly subjects was 0.43 ± 0.03, 0.36 ± 0.04, 0.31 ± 0.03, and 0.27 ± 0.02for NMD = 0.04, 0.06, 0.08, and 0.1 μm, respectively, for Vt = 500ml and Q = 250ml/s. These and all other results were very similar to those of young adults. The results suggest that healthy, elderly subjects are not subjected to a greater respiratory dose of ultrafine PM than young adults under the same exposure conditions.  相似文献   

11.
Particulate matter (PM) is a type of air pollutant that induces adverse health effects, including acute exacerbation of chronic obstructive pulmonary disease (COPD). However, the effects of co-exposure to PM and cigarette smoke extract (CSE) on bronchial epithelial cells remain unknown. This study investigated the cytotoxic and pro-inflammatory effects of combined exposure to PM and CSE on bronchial epithelial cells, and assessed the potential of antioxidants to inhibit CSE/PM-induced oxidative stress and inflammation. Exposure of epithelial cells to PM or CSE induced cytotoxicity, inflammation, and oxidative stress, all of which were dramatically increased when cells were exposed to the combination of CSE and PM. Importantly, the adverse effects of CSE/PM exposure were suppressed when cells were treated with sulforaphane (SFN) or sulforaphane N-acetylcysteine (SFNAC). Furthermore, SFN and SFNAC suppressed the CSE/PM-induced pro-inflammatory cytokine production and expression of inflammatory genes. Combined PM and CSE exposure further activated the MAPK and Nrf2 signaling pathways. SFN and SFNAC attenuated CSE/PM-induced epithelial toxicity through the ERK/JNK signaling pathway-dependent inhibition of inflammation. Moreover, SFN and SFNAC suppressed ROS generation by activating antioxidant enzymes and Nrf2 signaling. Therefore, SFN and SFNAC could be a promising approach to prevent or mitigate the exacerbation of pulmonary diseases caused by PM and other air pollutants.  相似文献   

12.
《Inhalation toxicology》2013,25(9):509-516
Abstract

Background: Hyperoxia or clinical oxygen (O2) therapy is known to result in increased oxidative burden. Therefore, understanding susceptibility to hyperoxia exposure is clinically important. Bone morphogenetic proteins (BMPs) 2 and 4 are involved in cardiac development and may influence responses to hyperoxia.

Methods. Bmp2+/?. Bmp4+/? and wild-type mice were exposed to hyperoxia (100% O2) for 24?hrs. Electrocardiograms (ECG) were recorded before and during exposure by radio-telemetry.

Results: At baseline, a significantly higher low frequency (LF) and total power (TP) heart rate variability (HRV) were found in Bmp2+/? mice only (p?<?0.05). Twenty-four hours hyperoxia-induced strain-independent reductions in heart rate, QTcB and ST-interval and increases in QRS, LF HRV and standard deviation of RR-intervals were observed. In Bmp4+/? mice only, increased PR-interval (PR-I) (24?hrs), P-wave duration (P-d; 18 and 21–24?hrs), PR-I minus P-d (PR?–?Pd; 24?hrs) and root of the mean squared differences of successive RR-intervals (24?hrs) were found during hyperoxia (p?<?0.05).

Discussion: Elevated baseline LF and TP HRV in Bmp2+/? mice suggests an altered autonomic nervous system regulation of cardiac function in these mice. However, this was not related to strain specific differences in responses to 24?hrs hyperoxia. During hyperoxia, Bmp4+/? mice were the most susceptible in terms of atrioventricular conduction changes and risk of atrial fibrillation, which may have important implications for patients treated with O2 who also harbor Bmp4 mutations. This study demonstrates significant ECG and HRV responses to 24?hrs hyperoxia in mice, which highlights the need to further work on the genetic mechanisms associated with cardiac susceptibility to hyperoxia.  相似文献   

13.
Objective: There is substantial evidence that exposure to airborne particulate matter (PM) from road traffic is associated with adverse health outcomes. Although it is often assumed to be caused by vehicle exhaust emissions such as soot, other components may also contribute to detrimental effects. The toxicity of fine PM (PM2.5; <2.5 µm mass median aerodynamic diameter) released from brake pads was compared to PM from other sources.

Materials and methods: PM2.5 of different types of brake pads (low-metallic, semi-metallic, NAO and ECE-NAO hybrid), tires and road pavement, poultry as well as the combustion of diesel fuel and wood (modern and old-fashioned stove technologies) were collected as suspensions in water. These were subsequently aerosolized for inhalation exposures. Female BALB/cOlaHsd mice were exposed for 1.5, 3, or 6?hours by nose-only inhalation up to 9?mg/m3.

Results: Neither cytotoxicity nor oxidative stress was observed after exposure to any of the re-aerosolized PM2.5 samples. Though, at similar PM mass concentrations the potency to induce inflammatory responses was strongly dependent on the emission source. Exposure to most examined PM2.5 sources provoked inflammation including those derived from the poultry farm, wear emissions of the NAO and ECE-NAO hybrid brake pads as well as diesel and wood combustion, as indicated by neutrophil chemoattractant, KC and MIP-2 and lung neutrophil influx.

Discussion and conclusions: Our study revealed considerable variability in the toxic potency of brake wear particles. Understanding of sources that are most harmful to health can provide valuable information for risk management strategies and could help decision-makers to develop more targeted air pollution regulation.  相似文献   


14.
Pharmacodynamic tolerance during continuous nitroglycerin (NTG) infusion is a significant limitation of nitrate therapy. The mechanism of this phenomenon is not well-understood but may involve physiologic compensation which involves vasoconstriction. We have obtained pharmacodynamic data on NTG-induced hemodynamic tolerance in a rat model of congestive heart failure (CHF), which we have shown to mimic human behavior toward NTG in vivo. In this report, we developed two mechanism-based pharmacokinetic/ pharmacodynamic models to describe the time-dependent effects of NTG infusion on left ventricular end-diastolic pressures (LVEDP) in CHF rats and compared their abilities to describe the observed hemodynamic data. Both mathematical models introduced a counter-regulatory vasoconstrictive effect as a result of NTG-induced vasodilation and assumed the magnitude of this effect to be driven by the extent of the initial hemodynamic effect produced by NTG. The decay of this counter-regulatory effect was described by a first-order process in both models. A model that assumed vasoconstriction to develop via two sequential first-order processes was statistically superior in describing the data, when compared to one that assumed a single first-order process and a lag phase. Both models provided similar estimates of the half-life for the disappearance of the vasoconstriction (t1/2 of vasoconstriction: 128min vs. 182min, respectively), and both predicted rebound elevations of LVEDP after abrupt NTG withdrawal. These results are consistent with a counter-regulatory mechanism of NTG-induced hemodynamic tolerance and suggest that such an approach may be useful for modeling other tolerance phenomena as well.  相似文献   

15.
Because epidemiology studies consistently identify the elderly at risk for air pollution-related morbidity and mortality, we developed a model of senescent-dependent susceptibility based on indices of physiological aging. In the current study, we hypothesized that heart-rate regulation during particulate matter (PM) exposure differs with senescence-dependent susceptibility owing to variation in autonomic nervous control. Heart rate (HR) and heart-rate variability (HRV) parameters were measured from 162 samples of 2-min electrocardiograph (ECG) recordings in age-matched healthy (n = 5) and terminally senescent (n = 3) AKR mice during 3-h exposures to filtered-air (FA, day 1) and carbon black (CB, day 4; < 200 μ g/m3). On day 1, HR was significantly (p <. 01) depressed during FA in terminally senescent mice. By day 4, HR was further slowed significantly (p <. 01) due to the effects of CB exposure for 3 days. The combined effects of terminal senescence and CB exposure acted to depress HR to an average (±SEM) 445 ± 40 bpm, or ~ 80 bpm lower compared to healthy HR responses. The change in rMSSD, an HRV parameter corresponding to relative influences of parasympathetic tone on HR, was significantly (p <. 01) greater on day 1 and day 4 in terminally senescent mice compared to healthy mice. In contrast, the LF/HF ratio, an HRV parameter derived from spectral analysis indicating relative changes in cardiac sympathetic tone, was significantly (p <. 01) depressed in terminally senescent mice on day 1. By day 4, significant increases in LF/HF were evident in healthy mice during CB exposure, suggesting that HR regulation was associated with an increase in sympathetic tone. Alternatively, terminally senescent mice appeared to modulate a lower HR without change in LF/HF ratio during CB exposure, suggesting an absence of sympathetic tone. In conclusion, older healthy mice increase cardiac sympathetic tone during PM exposure while terminally senescent mice show a greater PM-induced parasympathetic tone in regulating HR. The significance of the current results suggest that PM-induced HR regulatory changes may ultimately depend on the degree of physiological aging.  相似文献   

16.

AIMS

To assess the effect of the calcitonin gene-related peptide (CGRP) receptor antagonist, telcagepant, on the haemodynamic response to sublingual nitroglycerin (NTG).

METHODS

Twenty-two healthy male volunteers participated in a randomized, placebo-controlled, double-blind, two-period, crossover study. Subjects received 500 mg telcagepant or placebo followed, 1.5 h later, by 0.4 mg NTG. To assess the haemodynamic response the following vascular parameters were measured: blood pressure, aortic augmentation index (AIx) and brachial artery diameter (BAD). Data are presented as mean (95% confidence interval, CI).

RESULTS

The aortic AIx following NTG decreased by −18.50 (−21.02, −15.98) % after telcagepant vs. −17.28 (−19.80, −14.76) % after placebo. The BAD fold increase following NTG was 1.14 (1.12, 1.17) after telcagepant vs. 1.13 (1.10, 1.15) after placebo. For both AIx and BAD, the hypothesis that telcagepant does not significantly affect the changes induced by NTG is supported (P < 0.0001). In addition, no vasoconstrictor effect of telcagepant could be demonstrated.

CONCLUSIONS

Telcagepant did not affect NTG-induced haemodynamic changes. These data suggest that NTG-induced vasodilation is not CGRP dependent.  相似文献   

17.
Rosuvastatin treatment protects against nitrate-induced oxidative stress   总被引:5,自引:0,他引:5  
Nitrate tolerance is associated with an enhanced superoxide anion production and can be attenuated by statins, which interact with the 2 main [eNOS and NAD(P)H oxidase] pathways involved in producing this oxidative stress. Three groups of normocholesterolemic rats were treated: group 1 received rosuvastatin (10 mg/kg/d PO) for 5 weeks and in the last 3 days cotreatment with nitroglycerin (NTG 50 mg/kg/d, subcutaneous injections BID); group 2 received only NTG (50 mg/kg/d BID for the last 3 days); and group 3 served as control. Rings of thoracic aortas from these groups were studied in organ baths. Relaxations to NTG (0.1 nM to 0.1 mM) were determined on phenylephrine-preconstricted rings and O2 production (RLU/10 s/mg dry weight) was assessed by lucigenin and the luminol analogue (L-012) chemiluminescence technique. In group 2 (NTG), the concentration-response curves to NTG were significantly shifted to the right: the pD2 (-log NTG concentration evoking a half-maximal relaxation) was 6.75+/-0.06 (n=7) versus 7.75+/-0.07 (n=7) in group 3 (not exposed to NTG, P<0.05); O2 production was enhanced (10,060+/-1,205, n=7 versus 5,235+/-1,052, n=7; P<0.05). In contrast, in group 1, the rightward shift was attenuated: pD2 value was 7.20+/-0.10 (n=8), P<0.05 versus group 2; O2 production was decreased (5911+/-663; n=9, P<0.05 versus group 2). In addition, before NTG exposure, rosuvastatin treatment decreased p22phox [the essential NAD(P)H oxidase subunit] abundance in the aortic wall and decreased NAD(P)H oxidase activity. In contrast, this treatment did not alter either eNOS abundance or the basal release of endothelium-derived NO. Interestingly, in vivo treatment with apocynin, an NAD(P)H oxidase inhibitor, produced a protection similar to that with rosuvastatin. Long-term rosuvastatin treatment protects against nitrate tolerance in the rat aorta by counteracting NTG-induced increase in O2 production. This protection seems to involve a direct interaction with the NAD(P)H oxidase pathway rather than an up-regulation of the eNOS pathway.  相似文献   

18.
Season and location have documented impacts on particulate matter (PM)-induced morbidity and mortality. Seasonal and regional influences on the physical and chemical properties of PM?.? (also known as fine/ultrafine PM) contribute to differences in exposure burden and adverse respiratory health outcomes experienced in California's San Joaquin Valley (SJV), which ranks among the worst in the nation for PM pollution. Current regulations are driven by the association between mass concentrations and adverse health outcomes. However, this association is difficult to reproduce in toxicological studies and suggests a role for other parameters, such as chemical composition, involved in PM-induced adverse pulmonary health effects. Pulmonary toxicity of summer/winter and rural/urban SJV PM was evaluated given the unique geography, metereology and sources of the region. Healthy juvenile male mice inhaled summer/winter and urban/rural concentrated ambient PM (CAP) or ambient PM for 6 h/d for 10 d, and pulmonary inflammatory responses were measured 48 h postexposure. Exposure concentrations ranged from 10 to 20 μg/m3 for ambient air control mice and from 86 to 284 μg/m3. Mice exposed to rural but not urban CAP, displayed significant neutrophil influx that was more than 50-fold greater than control levels, which ranged from 21 to 60 neutrophils/ml for all experiments. Pulmonary neutrophilic inflammation was measured despite lower CAP concentrations in the rural compared to the urban location and in the absence of cytotoxicity, oxidative stress, or elevations in cytokine and chemokines expression. Further, the inflammatory responses induced by rural winter CAP were associated with the highest levels of organic carbon (OC) and nitrates (NO??). Evidence indicates that regional/seasonal influences on PM chemical composition rather than PM mass may be associated with increased PM-induced adverse health effects.  相似文献   

19.
《Inhalation toxicology》2013,25(9):754-759
Associations between high particulate matter (PM) pollution and increased morbidity and mortality from coronary heart disease have been identified. This study assessed leukotriene (LT) participation in PM-induced vascular endothelial dysfunction. Ten healthy males exercised 4 times for 30?min in both high PM (550,286?±?42,004 particles·cm?3) and low PM (4571?±?1922 particles·cm?3) after ingesting placebo (PL) or 10?mg montelukast (MK; half-life 3–6?h), a leukotriene receptor antagonist. Brachial artery flow-mediated dilation (FMD) was measured pre- and 30?min, 4?h, 24?h post-exercise. No basal brachial artery vascoconstriction was evident from high PM exercise. High PM blunted FMD, whereas high PM MK, low PM PL, and low PM MK demonstrated normal FMD (p < .003). Change in FMD (pre- to post-exercise) for high PM PL was different than for high PM MK, low PM PL, and low PM MK at 30?min post-exercise (p?<?.007). At 4?h, high PM MK FMD blunting increased (p?=?.1). At 24?h, high PM FMD blunting persisted (p?<?.05); no difference was observed between high PM PL or MK treatment, but was different that low PM PL/MK treatments (p?<?.05). MK blocked high PM post-exercise FMD blunting and maintained normal response, suggesting that leukotrienes are involved in PM-initiated vascular endothelial dysfunction.  相似文献   

20.
A murine model of allergen-induced airway inflammation was used to examine the effects of exposure to ultrafine particles (PM2.5) on airway inflammation and remodeling. Lung inflammation was measured by quantitative differential evaluation of lung lavage cells. Alterations in lung structure (airway remodeling and fibrosis) were evaluated by quantitative biochemical analysis of microdissected airways and by histological evaluation of stained lung sections. The same total number of cells was observed in lavage fluid from animals exposed for 4 wk to ovalbumin alone or to ovalbumin for 4 wk immediately before or after 6 exposures over a period of 2 wk to 235 ug/m3 of PM2.5. Mice exposed to ovalbumin for 6 wk with concurrent exposure to PM2.5 during wk 5–6 had a significant decrease in the total number of cells recovered by lavage as compared with the group exposed to ovalbumin alone. There were no significant differences in the cell differential counts in the lavage fluid from mice exposed to ovalbumin alone as compared with values from mice exposed to ovalbumin and PM2.5 under the protocols studied. Airway structural changes (remodeling) were examined by three different quantitative methods. None of the groups exposed to ovalbumin and PM had a significant increase in airway collagen content evaluated biochemically (i.e., total airway collagen) as compared to the matched groups of mice exposed to ovalbumin alone. Airway collagen content evaluated histologically by sirius red staining showed significant increases in all of the animals exposed to ovalbumin, with or without PM, and no apparent difference between the ovalbumin group and mice exposed to PM with ovalbumin. The findings were consistent with an additive, or less than additive, response of mice to exposure to PM and ovalbumin. Air or PM exposure alone for 2 wk did not result in observable goblet cells in the airways, while mice exposed to ovalbumin aerosol alone for 4 wk had about 20–25% goblet cells in their conducting airways. Sequential exposure to ovalbumin and PM (or vice versa) caused significant increases in goblet cells (to about 35% of total cells) in the conducting airways of the exposed mice. We conclude that when mice with allergen-induced airway inflammation induced by ovalbumin are also exposed to PM2.5, the lung inflammatory response and airway remodeling may be modified, but that this altered response is dependent upon the sequence of exposure and the duration of exposure to ovalbumin aerosol. At the concentrations of PM tested, we did not see changes in airway fibrosis or airway reactivity for animals exposed to ovalbumin and PM2.5 as compared with animals exposed only to ovalbumin aerosol. However, goblet-cell hyperplasia was significantly increased in mice exposed concurrently to ovalbumin and PM2.5 as compared with mice exposed to ovalbumin alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号