首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
β-内酰胺酶抑制剂的临床应用   总被引:1,自引:0,他引:1  
保维利 《天津药学》2004,16(3):53-55
β-内酰胺类是临床应用广泛、抗感染效果强大的一类抗生素,但细菌的耐药性目前已成为此类药物的严重问题。细菌耐药最主要机制是细菌通过产生β-内酰胺酶破坏β-内酰胺类抗生素,因而解决细菌产生耐药问题的方法之一,是开发β-内酰胺酶抑制剂,与β-内酰胺类抗生素联合应用,使不耐酶的抗生素发挥它原  相似文献   

2.
<正>β-内酰胺类是临床应用广泛、抗感染效果强大的一类抗生素,但细菌的耐药性目前已成为此类药物的严重问题。细菌耐药最主要机制是细菌通过产生β-内酰胺酶破坏β-内酰胺类抗生素,因而解决细菌产生耐药问题的方法之一,是开发β-内酰胺酶抑制剂,与内酰胺类抗生素联合应用,使不耐酶的抗生素发挥它原有的抗菌作用。目前临床应用的品种日  相似文献   

3.
目的:分析我院常见细菌对β-内酰胺类抗生素的敏感性。为临床选用该类抗生素提供参考。方法:采用我院近三年抗生素药敏资料,将常见细菌对β-内酰胺类抗生素的药敏率进行比较分析。结果:常见细菌对β-内酰胺类抗生素敏感率发生变化。结论:选择β-内酰胺类抗生素时应该根据本院细菌的药敏结果合理选用,并注意耐药性的发展变化。  相似文献   

4.
治疗耐β—内酰胺细菌感染的几种新型复方抗生素制剂   总被引:3,自引:0,他引:3  
由于抗生素的广泛应用,没有严格掌握β-内酰胺类抗生素的适应症,应用时间过长,或者对本院中细菌的耐药性情况不明,因而细菌产生的β—内酰胺酶使某些β—内酰胺抗生素水解失活,使耐药菌株越来越多,这是细菌耐药产生的主要机制。为了解决细菌耐药性问题,科研人员寻找试制耐β—内酰胺酶的新型抗生素和β—内酰胺  相似文献   

5.
在探索天然来源的新型β-内酰胺抗生素过程中,头孢菌素类和单菌胺素类的发展系重要转折点,加速了寻找许多其它新化合物的筛选工作。1985年,利用β-内酰胺超敏变株定向靶位筛选β-内酰胺抗生素中从稳杆菌(Empedobacter)YK-258和LysobacterYK-422中发现新抗生素——Lactivicin(TAN-588)。Lactivicin是第一个得到证实的对细菌PBP具有亲和力的非β-内酰胺抗生素,它的发现证明了在显示所谓β-内酰胺抗生素活性中β-内酰胺环并非必须。  相似文献   

6.
阿莫西林与克拉维酸钾复方制剂的临床应用   总被引:4,自引:0,他引:4  
随着抗生素的不断开发并大量应用于临床,造成了细菌的耐药性,并且细菌对常用的抗生素的耐药性也日渐增加。细菌经过多种途径对抗生素产生耐药,其中以产生β-内酰胺酶为主。使用β-内酰胺酶抑制剂可大大提高某些β-内酰胺类抗生素的抗菌活性,并扩大抗菌谱。  相似文献   

7.
β-内酰胺类抗生素(青霉素类和头孢菌素类)可专一性地与细菌细胞内膜上的靶位点结合,干扰细胞壁肽聚糖合成而导致细菌死亡.由于这些靶位点能与同位素标记的青霉素G共价结合.因此将这些靶位点称之为青霉素结合蛋白(Penicillin binding prote-ins,PBPs).PBPs具有酶活性,在细菌生长繁殖过程中起重要作用.而研究PBPs则对了解β-内酰胺类抗生素的作用及耐药机制有重要意义.已知细菌对β-内酰胺类抗生素的耐药机制主要包括:①质粒介导或染色体突变使细菌产生β-内酰胺酶,破坏β-内酰胺环,使抗生素失活.②革兰阴性细菌细胞外膜通透性降低.阻碍抗生素进入细菌内膜靶位,即改变细菌外膜蛋白,减少抗生素吸收.③对于不产生β-内酰胺酶且外膜通透性无障碍的细菌.获得对β-内酰胺类抗生素耐药的能力是通过改变抗生素的作用靶位点,其结果或是改变PBPs数量,或是降低药物与PBPs的亲和力,即染色体介导的改变PBPs而产生的耐药性,称为固有耐药性.这种不依赖β-内  相似文献   

8.
舒他西林颗粒剂体内 外抗菌作用研究   总被引:2,自引:0,他引:2  
在临床抗感染选择药物中,β-内酰胺类抗生素以其毒性低、显效强的特点始终占有优势地位,过敏问题随着产品质量的提高及临床检测手段的不断完善亦得到了相应的控制.但近年来,细菌对该类抗生素的耐药性日益严重,特别是对青霉素和氨苄西林等临床常用抗生素,据报道常见致病菌对氨苄西林的耐药率已达70%.细菌对β-内酰胺类抗生素产生耐药性的主要原因是由于产生β-内酰胺酶,从而水解β-内酰胺抗生素,使之失去抗菌活性.因此合成β-内酰胺酶抑制剂,以解决细菌的耐药性势在必行.舒他西林即为新开发的氨苄西林与舒巴坦钠综合的酯类药物,舒巴坦钠为不可逆竞争性β-内酰胺抑制剂,与β-内酰胺酶亲和力高于β-内酰胺抗生素,与氨苄西林组成复合制剂保护后者不被破坏,而维持其抗菌活性.舒他西林(sultamicillin)制成颗粒剂具有较好的口感,易于老人和小儿服用.  相似文献   

9.
β-内酰胺类抗生素因其具有广谱抗菌潘性,一直以来被广泛使用,然而β-内酰胺类抗生素的过度使用导致细菌产生耐药性,其耐药机制主要为病原菌产生BLA,约占80%,是细菌耐药的主要原因。旧目前认为克服产酶菌耐药的手段主要有两个,寻找能抵抗BLA水解的抗生素或者发展特异性BLA抑制剂与β-内酰胺抗生素联用,使β-内酰胺抗生素免遭酶的水解,发挥其应有的抗菌活性。  相似文献   

10.
β—内酰胺酶抑制剂的进展   总被引:1,自引:1,他引:0  
方红 《上海医药》1995,(5):32-34
近年来,β-内酰胺类抗生素已成为抗生素大家族中的重要成员,它包括青霉素类、头孢菌素类及其它β-内酰胺类(如:头霉素类、碳青霉烯类、单环β-内酰胺类及氧头孢烯类等)。随着临床上β-内酰胺类抗生素的不断应用,细菌对β-内酰胺类抗生素的耐药亦呈增长的趋势。此类耐药的一个最重要机理是产生β-内酰酶。β-内酰胺酶能够水解β-内酰胺类抗生素的内酰胺环,从而使这类抗生素失去抗菌活性。  相似文献   

11.
β-内酰胺抗生素联合应用可产生协同作用,扩大抗菌谱,亦可产生拮抗作用, 产生协同作用存在于以下情况: 1.抑制β-内酰胺酶 60年代至70年代初,由于大多数β-内酰胺抗生素对能产生β-内酰胺酶的G-细菌无效,因而在使用  相似文献   

12.
β-内酰胺类抗生素包括青霉素类、头孢菌素类以及非典型β-内酰胺类等,为品种最多、研究进展最快、临床应用最广泛的一大类药物.在世界抗生素市场中β-内酰胺类抗生素占主导地位.从第一个β-内酰胺类抗生素——青霉素G上市至今将近60年的历史,由于长期大量的应用,细菌对这类药物的耐药性比较严重.细菌产生耐药性机制很多,包括靶位结构或亲和力改变、细菌细胞膜通透住改变、细胞膜主动外排系统及细菌产生灭活酶等.而产生β-内酰胺酶是细菌对β-内酰胺类药物的主要耐药机制.为了解决产酶耐药问题,近年来通过研制耐酶的药物及β-内酰胺酶抑制剂等途径为β-内酰胺类抗生素在临床的应用开创了广阔前景.本文论述了β-内酰胺酶分类、生物活性及各种β-内酰胺酶抑制剂的抑酶作用特点和β-内酰胺类抗生素与β-内酰胺酶抑制剂复合制剂的主要品种及临床应用.  相似文献   

13.
β-内酰胺类是临床应用广泛、抗感染效果强大的一类抗生素,但细菌的耐药性目前已成为此类药物的严重问题.细菌耐药最主要机制是细菌通过产生β-内酰胺酶破坏β-内酰胺类抗生素,因而解决细菌产生耐药问题的方法之一,是开发β-内酰胺酶抑制剂,与内酰胺类抗生素联合应用,使不耐酶的抗生素发挥它原有的抗菌作用.目前临床应用的品种日益增加,且涉及多种组方、多种配比,含β-内酰胺酶抑制剂的复方制剂主要有舒巴坦、克拉酸和他唑巴坦的复方制剂[1,2].本文对2008-2012 年本院使用这类制剂临床应用情况进行分析,为临床用药提供参考.  相似文献   

14.
β-内酰胺抗生素联用的效果不断引起人们的注意,例如,解释抑菌剂和杀菌剂联合产生协同作用的异常现象。不过,这些效果与不同的β-内酰胺抗生素联用和对不同的菌种有关。因为某些联用仅对特殊的细菌有协同作用或相加作用。本文综述了各种β-内酰胺抗生素联用产生的协同作用和拮抗作用及其产生的原因,并试图确定治疗应用。β-内酰胺抗生素的活性在于抑制与酶有关的不同的细胞浆膜。这些酶被β-内酰胺抗生素酰化,称为青霉素结合蛋白。为了达  相似文献   

15.
控制耐药菌感染是抗生素临床药理研究的一个重要课题。而细菌产生β-内酰胺酶是使β-内酰胺类抗生素灭活的主要原因之一。为了从分子药理水平研究细菌耐药机制和抗生素作用机制,寻找有效新抗生素和评价新抗生素耐酶能力,为临床合理选药提供理论依据,欧美等国家正在深入开展有关阴性杆菌β-内酰胺酶的研究工作,这是国际上进行β-内酰胺类抗生素应用理论研究的一个重要方向。  相似文献   

16.
β-内酰胺酶抑制剂对β-内酰胺抗生素后效应的影响   总被引:2,自引:0,他引:2  
倪芳  童明庆 《药品评价》2005,2(5):377-379
β-内酰胺类抗生素是抗感染效果很好的一类抗菌药物,一直在在临床上得到广泛应用。但是随着在多种感染性疾病中,产β-内酰胺酶细菌的增多,导致了对β-内酰胺抗生素的耐药性的增加,限制了此类抗生素的应用。  相似文献   

17.
近年来,随着抗生素的广泛应用,耐药菌株的增多,耐药程度增强,致病菌株的增多,使控制院内感染成为临床工作者面临的棘手问题[1],而β-内酰胺类抗生素以其高效,选择性强,低毒,广谱,尤其是头孢菌素耐药率低等特点,成为临床应用广泛的抗菌药物,并在世界抗生素市场中占主导地位.细菌耐药机制很多:包括靶位结构或亲和力改变,细胞膜通透性改变,细胞膜主动外排泄系统及细菌产生灭活酶等.而细菌对β-内酰胺类抗生素耐药主要机制是通过产生β-内酰胺酶水解药物结构中的β-内酰胺环而使其失去抗菌活性[2].为了解决细菌产酶耐药问题,广大医、药工作者通过研制耐酶的药物及β-内酰胺抑制剂和抑制剂复合物等抗生素,为β-内酰胺类抗生素提供更广阔的临床应用空间.如何将现有的β-内酰胺类抗生素合理而最优化的使用,于是也就成为摆在临床工作者面前的重大课题,本文综述β-内酰胺类抗生素的药理特点及有关进展,以供临床参考.……  相似文献   

18.
近年来,临床上抗菌药物应用甚广,尤其是β-内酰胺环抗生素应用更广,导致致病菌产生β-内酰胺酶。β-内酰胺酶能破坏β-内酰胺环,使β-内酰胺环类抗生素的疗效急剧降低。因此寻求一种既耐酸又耐酶的新抗生素的任务愈来愈重要,舒氨西林是由氨卡青霉素和舒巴坦钠(β-内酰胺酶抑制剂)复合而成的广谱抗生素,能克服因细菌产生β-内酰胺酶导致细菌对氨卡青霉素的耐药性,扩大氨苄青霉素的抗菌作用而增强疗效。  相似文献   

19.
β-内酰胺酶及其抑制剂研究进展   总被引:31,自引:0,他引:31  
细菌产生的耐药性已对β-内酰胺类抗生素构成严重威胁,β-内酰胺酶作用下的水解开环是造成这类抗生素失活的主要原因,因此,开发β-内酰胺酶抑制剂是解决细菌对这类药物耐药性的关键所在,本文介绍了各种β-内酰胺酶,包括金属β-内酰胺酶的分类、丝氨酸、β-内酰胺酶抑制剂(氧青霉烷、青霉烷、碳青霉烯、青霉烯和单环β-内酰胺类)以及金属β-内酰胺酶抑制剂的研究进展及其作用机制。  相似文献   

20.
β-内酰胺抗生素对革兰阴性菌的杀菌作用,必须是它能通过外膜,进入周质,抵抗住周质中的β-内酰胺酶的水解或生物失活,使有足够量的游离药物作用于细胞内膜上的靶位PBPs,从而干扰细菌胞壁合成,影响细菌繁殖。其中周质中的β-内酰胺酶是使β-内酰胺抗生素灭活,细菌产生耐药的重要原因。为此国际上许多学者对β-内酰胺酶与β-内酰胺抗生素相互作用进行了深入广泛的研究,并研制出一批对β-内酰胺酶稳定的新一代β-内酰胺抗生素。但是随着新抗生素的大量应用,由β-内酰胺酶介导的耐药菌株仍不断出现,而且当某些药物联用于某些菌株时,由于β-内酰胺酶诱导产生,不仅未出现协同或相加,反而出现相互拮抗。因此,为了防止这种由β-内酰胺酶介导的耐药和药物相互作用,有必要对β-内酰胺酶的产生过程及其影响因素进行探讨,这对临床合理用药和新药的开发具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号