首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
BackgroundInflammatory response and acute lung injury (ALI) occur in sodium taurocholate-induced severe acute pancreatitis (SAP). Because sildenafil has anti-inflammatory, anti-oxidant and immune-modulating effects, we investigated its effect on inflammatory and lung injury in sodium taurocholate-induced SAP-associated ALI rat lung.MethodsSodium taurocholate-induced SAP rats received sildenafil (100 mg/kg) or not and were compared to age-matched normal control animals. We evaluated inflammatory response by detecting the expression of inflammatory factors including IL-1β, IL-6 and TNF-α, and detected the level of lung injury through histopathological evaluation. Moreover, we also tested the protein expression of PCNA, P21, Bcl-2 and Bax in the lung.ResultsSildenafil administration rats had a low level of lung injury and inflammation. In addition, sildenafil significantly increased the expression of proliferation-related markers and decreased the expression of apoptosis-related markers in lung tissue.ConclusionsSildenafil administration may attenuate inflammation and lung injury by promoting proliferation and suppressing apoptosis in SAP rats.  相似文献   

2.
BackgroundAs an ongoing worldwide health issue, Coronavirus disease 2019 (COVID–19) has been causing serious complications, including pneumonia, acute respiratory distress syndrome (ARDS), and multi-organ failure. However, there is no decisive treatment approach available for this disorder, which is primarily attributed to the large amount of inflammatory cytokine production. We aimed to identify the effects of Nano-curcumin on the modulation of inflammatory cytokines in COVID-19 patients.MethodForty COVID-19 patients and 40 healthy controls were recruited and evaluated for inflammatory cytokine expression and secretion. Subsequently, COVID-19 patients were divided into two groups: 20 patients receiving Nano-curcumin and 20 patients as the placebo group. The mRNA expression and cytokine secretion levels of IL-1β, IL-6, TNF-α and IL‐18 were assessed by Real‐time PCR and ELISA, respectively.ResultOur primary results indicated that the mRNA expression and cytokine secretion of IL-1β, IL-6, TNF-α, and IL-18 were increased significantly in COVID-19 patients compared with healthy control group. After treatment with Nano-curcumin, a significant decrease in IL-6 expression and secretion in serum and in supernatant (P = 0.0003, 0.0038, and 0.0001, respectively) and IL-1β gene expression and secretion level in serum and supernatant (P = 0.0017, 0.0082, and 0.0041, respectively) was observed. However, IL-18 mRNA expression and TNF-α concentration were not influenced by Nano-curcumin.ConclusionNano-curcumin, as an anti-inflammatory herbal based agent, may be able to modulate the increased rate of inflammatory cytokines especially IL-1β and IL-6 mRNA expression and cytokine secretion in COVID-19 patients, which may cause an improvement in clinical manifestation and overall recovery.  相似文献   

3.
4.
ObjectiveDiurnal variation of symptoms are observed in rheumatoid arthritis, especially in productions of cytokines that show peak concentrations during mid night. In contrast, cytokines of collagen-induced arthritis (CIA) mice increase in daytimes under Mid-light condition. By using chronotherapy, differences in drug efficacies according to administration time of Baricitinib, a wide ranged cytokine blocker, were examined in CIA mice.MethodsCIA mice were administered a dose of 3 mg/kg of Baricitinib once a day at zeitgeber time (ZT) 0 or ZT12 for 21 days. Arthritis scores, histopathology and factors related to joint destruction in sera were examined. Phosphorylation of STAT3 in liver, expressions of cytokines in spleen, and Interleukin (IL)-6 and tumor necrosis factor (TNF)-α in sera were measured.ResultsIn CIA mice, diurnal variations were observed both in expressions of cytokines and phosphorylation of STAT3. Arthritis scores of ZT0/12 group decreased from day3 as compared to untreated mice, and those of ZT0 group significantly decreased as compared to ZT12 group from day12. Pathological findings, immunohistochemistry of cytokines and Receptor activator of nuclear factor kappa-Β ligand (RANKL)/osteoprotegerin ratio in sera well reflected results of arthritis scores. Diurnal variation of STAT3 phosphorylation was suppressed in ZT0 group. At ZT2, expressions of IL-6/Interferon-γ/TNF/granulocyte–macrophage colony-stimulating factor in ZT0 group were significantly decreased as compared to untreated mice, though not in ZT12 group. In ZT0 group, IL-6 and TNF-α in sera were decreased for longer time than that in ZT12 group.ConclusionChronotherapy using Baricitinib targeting cytokine secretions is effective in CIA mice. Clinical applications of chronotherapy can be expected to enhance the drug efficacy.  相似文献   

5.
BackgroundAllergic conjunctivitis (AC), a common eye inflammation that affects patients’ health and quality of life, is still a therapeutic challenge for ophthalmologists. Tofacitinib, a new Janus kinase (JAK) inhibitor, has been successfully used in the treatment of several disorders. Nonetheless, its effect in AC and the potential anti-allergic mechanisms are still unclear. The objective of the current study was to explore the roles of tofacitinib in preventing AC and elucidate the potential underlying mechanisms.MethodsTofacitinib was used topically in BALB/c mice with experimental allergic conjunctivitis (EAC). Ocular allergic symptoms and biological modifications were examined. To assess the anti-allergic mechanisms of tofacitinib, RBL-2H3 cells and HUVECs were cultured in vitro. The inhibitory effects and mechanisms of tofacitinib were studied and measured by real-time quantitative PCR, ELISA, western blot analysis, and flow cytometry.ResultsTopical administration of tofacitinib reduced the clinical symptoms of OVA-induced EAC, with a substantial mitigation in inflammatory cell infiltration, histamine release, and TNF-α mRNA as well as IL-4 mRNA expression. In vitro, tofacitinib repressed the degranulation and cytokine production in RBL-2H3 cells and reduced histamine-induced vascular hyperpermeability. The underlying mechanism might involve the downregulation of phosphorylation of JAK3/STATs signaling molecules in RBL-2H3 cells and HUVECs.ConclusionsOur findings provide evidence that tofacitinib prevented EAC by targeting the JAK3/STATs pathway. We recommend the use of tofacitinib as an innovative approach for the treatment of AC.  相似文献   

6.
7.
Macrophages are the most abundant immune cells in the lung, which play an important role in COPD. The anti-inflammatory and anti-oxidation of ergosterol are well documented. However, the effect of ergosterol on macrophage polarization has not been studied. The objective of this work was to investigate the effect of ergosterol on macrophage polarization in CSE-induced RAW264.7 cells and Sprague-Dawley (SD) rats COPD model. Our results demonstrate that CSE-induced macrophages tend to the M1 polarization via increasing ROS, IL-6 and TNF-α, as well as increasing MMP-9 to destroy the lung construction in both RAW264.7 cells and SD rats. However, treatment of RAW264.7 cells and SD rats with ergosterol inhibited CSE-induced inflammatory by decreasing ROS, IL-6 and TNF-α, and increasing IL-10 and TGF-β, shuffling the dynamic polarization of macrophages from M1 to M2 both in vitro and in vivo. Ergosterol also decreased the expression of M1 marker CD40, while increased that of M2 marker CD163. Moreover, ergosterol improved the lung characters in rats by decreasing MMP-9. Furthermore, ergosterol elevated HDAC3 activation and suppressed P300/CBP and PCAF activation as well as acetyl NF-κB/p65 and IKKβ, demonstrating that HDAC3 deacetylation was involved in the effect of ergosterol on macrophage polarization. These results also provide a proof in immunoregulation of ergosterol for therapeutic effects of cultured C. sinensis on COPD patients.  相似文献   

8.
BackgroundIschemia reperfusion (I/R) play an imperative role in the expansion of cardiovascular disease. Sinomenine (SM) has been exhibited to possess antioxidant, anticancer, anti-inflammatory, antiviral and anticarcinogenic properties. The aim of the study was scrutinized the cardioprotective effect of SM against I/R injury in rat.MethodsRat were randomly divided into normal control (NC), I/R control and I/R + SM (5, 10 and 20 mg/kg), respectively. Ventricular arrhythmias, body weight and heart weight were estimated. Antioxidant, inflammatory cytokines, inflammatory mediators and plasmin system indicator were accessed.ResultsPre-treated SM group rats exhibited the reduction in the duration and incidence of ventricular fibrillation, ventricular ectopic beat (VEB) and ventricular tachycardia along with suppression of arrhythmia score during the ischemia (30 and 120 min). SM treated rats significantly (P < 0.001) altered the level of antioxidant parameters. SM treatment significantly (P < 0.001) repressed the level of creatine kinase MB (CK-MB), creatine kinase (CK) and troponin I (Tnl). SM treated rats significantly (P < 0.001) repressed the tissue factor (TF), thromboxane B2 (TXB2), plasminogen activator inhibitor 1 (PAI-1) and plasma fibrinogen (Fbg) and inflammatory cytokines and inflammatory mediators.ConclusionOur result clearly indicated that SM plays anti-arrhythmia effect in I/R injury in the rats via alteration of oxidative stress and inflammatory reaction.  相似文献   

9.
Concanavalin A (Con A) activates innate immunity and causes liver damage mediated by cytotoxic T lymphocytes (CTL) in mice. The Pancreatic lipase-related protein 2 (PLRP2) is induced by interleukin (IL)-4 in vitro in CTLs and associated with CTL functions. We examined the role of PLRP2 in a mouse model of Con A-induced T cell-mediated hepatitis. PLRP2-knockout and wild-type (WT) mice were inoculated with 20 mg/kg Con A. Mice lacking PLRP2 reduced Con A-induced hepatitis, which was manifested by a decrease in serum aminotransferase and histopathological assessment. The expression and secretion of cytokines including tumor necrosis factor-alpha (TNF-α), interferon (IFN)-γ, IL-6, and IL-1β were suppressed in Con A-treated PLRP2-knockout mice. In PLRP2 knockout mice, Con A-induced liver chemokines and adhesion molecules (such as MIP-1α, MIP-1β, ICAM-1 and MCP-1) were also down regulated. In the WT liver treated with Con A, the number of T cells (CD4+ and CD8+) and macrophages (CD11b+ F4/80+) increased significantly, while the lack of PLRP2 reduced the number of T cells in the liver, but had no effect on macrophages. The shift of the metabolic profiles was impaired in Con A-treated PLRP2-knockout mice compared to WT mice. In conclusion, these results indicate that PLRP2 deficiency reduces T-cell mediated Con A-induced hepatitis, and suggest PLRP2 is a potential target of anti-inflammatory and immunomodulatory drugs to treat immune-mediated hepatitis.  相似文献   

10.
MicroRNAs (miRNAs) have emerged as critical modulators involved in the regulation of airway remodeling in asthma. MicroRNA-182-5p (miR-182-5p) has been reported as a key miRNA in regulating the proliferation and migration of various cell types, and its dysfunction contributes is implicated in a wide range of pathological processes. Yet, it remains unknown whether miR-182-5p modulates the proliferation and migration of airway smooth muscle (ASM) cells during asthma. In the present study, we aimed to determine the potential role of miR-182-5p in regulating the proliferation and migration of ASM cells induced by tumor necrosis factor (TNF)-α in vitro. We found that TNF-α stimulation markedly reduced miR-182-5p expression in ASM cells. Gain-of-function experiments showed that miR-182-5p upregulation suppressed the proliferation and migration of ASM cells induced by TNF-α. By contrast, miR-182-5p inhibition had the opposite effect. Notably, tripartite motif 8 (TRIM8) was identified as a target gene of miR-182-5p. TRIM8 expression was induced by TNF-α stimulation, and TRIM8 knockdown markedly impeded TNF-α-induced ASM cell proliferation and migration. Moreover, miR-182-5p overexpression or TRIM8 knockdown significantly downregulated the activation of nuclear factor-κB (NF-κB) induced by TNF-α. However, TRIM8 restoration partially reversed the miR-182-5p-mediated inhibitory effect on TNF-α-induced ASM cell proliferation and migration. In conclusion, our study indicates that miR-182-5p restricts TNF-α-induced ASM cell proliferation and migration through downregulation of NF-κB activation via targeting TRIM8. The results of our study highlight the potential importance of the miR-182-5p/TRIM8/NF-κB axis in the airway remodeling of asthma.  相似文献   

11.
BackgroundThe therapeutic utility of the effective chemotherapeutic agent cisplatin is hampered by its nephrotoxic effect. We aimed from the current study to examine the possible protective effects of amlodipine through gamma-glutamyl transpeptidase (GGT) enzyme inhibition against cisplatin nephrotoxicity.MethodsAmlodipine (5 mg/kg, po) was administered to rats for 14 successive days. On the 10th day, nephrotoxicity was induced by a single dose of cisplatin (6.5 mg/kg, ip). On the last day, blood samples were collected for estimation of kidney function, while kidney samples were used for determination of GGT activity, oxidative stress, inflammatory, and apoptotic markers, along with histopathological evaluation.ResultsAmlodipine alleviated renal injury that was manifested by significantly diminished serum creatinine and blood urea nitrogen levels, compared to cisplatin group. Amlodipine inhibited GGT enzyme, which participates in the metabolism of extracellular glutathione (GSH) and platinum-GSH-conjugates to a reactive toxic thiol. Besides, amlodipine diminished mRNA expression of NADPH oxidase in the kidney, while enhanced the anti-oxidant defense by activating Nrf2/HO-1 signaling. Additionally, it showed marked anti-inflammatory response by reducing expressions of p38 mitogen-activated protein kinase (p38 MAPK) and nuclear factor-kappa B (NF-κB), with subsequent down-regulation of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and vascular cell adhesion molecule-1 (VCAM-1). Moreover, amlodipine reduced Bax/Bcl-2 ratio and elevated hepatocyte growth factor (HGF), thus favoring renal cell survival.ConclusionsEffective GGT inhibition by amlodipine associated with enhancement of anti-oxidant defense and suppression of inflammatory signaling and apoptosis support our suggestion that amlodipine could replace toxic GGT inhibitors in protection against cisplatin nephrotoxicity.  相似文献   

12.
ObjectiveThis study aims to select the most effective anti-Rheumatoid Arthritis (RA) component of flavonoids from Daphne genkwa Sieb. et Zucc. by anti-inflammatory and immunomodulatory effects in vitro, and to elucidate the mechanism.MethodsThe anti-inflammatory and immunomodulatory effects of total flavonoids (TF) and four flavonoid components (genkwanin, hydroxygenkwanin, luteolin and apigenin) were determined by pharmacological approach in LPS-induced RAW 264.7 macrophages and ConA-induced T lymphocytes. Principal component analysis (PCA) was used to obtain the optimal anti-RA component in vitro. Western blot and real-time quantitative PCR (q-PCR) were used to explore the mechanisms. Finally, the in vitro anti-RA effect was verified by human rheumatoid arthritis fibroblast-like synoviocytes (FLSs).ResultsTF and four flavonoids significantly reduced the expressions of NO, iNOS, TNF-α, IL-6, IFN-γ and IL-2. PCA showed that genkwanin was the most effective anti-RA component in vitro. Genkwanin inhibited nuclear factor-κB (NF-κB) pathway by decreasing the phosphorylation levels of IKK, IκB and NF-κB, and down-regulated the expressions of iNOS, COX-2 and IL-6 mRNA. Genkwanin also inhibited the abnormal proliferation of FLSs and down-regulated the secretions of NO and IL-6.ConclusionThe most effective anti-RA component was genkwanin. Genkwanin exerts anti-RA effect through down-regulating the activation of NF-κB pathway and mRNA expressions of inflammatory mediators, and also by inhibiting the abnormal proliferation of FLSs and its NO and IL-6 secretion levels.  相似文献   

13.
The thyroid receptor interactor protein 6 (TRIP6) has emerged as a key regulator for the proliferation and migration of various cells. However, whether TRIP6 is involved in regulating the proliferation and migration of airway smooth muscle (ASM) cells in the progression of pediatric asthma remains undetermined. The present study investigated the function of TRIP6 in regulating the proliferation and migration of fetal ASM cells induced by tumor necrosis factor (TNF)-α in vitro. The results revealed that TRIP6 expression was significantly upregulated in TNF-α-stimulated ASM cells. Loss-of-function experiments demonstrated that the knockdown of TRIP6 markedly suppressed TNF-α-proliferation and migration of ASM cells. By contrast, overexpression of TRIP6 had the opposite effect. In-depth research uncovered that TNF-α stimulation promoted the activation of yes-associated protein (YAP), which could be significantly reversed by TRIP6 silencing. Moreover, inactivation of YAP significantly reversed the promotion effect of TRIP6 overexpression on TNF-α-induced ASM cell proliferation and migration. Overall, these results reveal that upregulation of TRIP6 contributes to the proliferation and migration of fetal ASM cells by enhancing YAP activation, highlighting the importance of the TRIP6/YAP axis in the airway remodeling of pediatric asthma.  相似文献   

14.
IntroductionLiver injury induced by burn plus delayed resuscitation (B + DR) is life threatening in clinical settings. Mitochondrial damage and oxidative stress may account for the liver injury. MitoQ is a mitochondria-targeted antioxidant. We aimed to evaluate whether MitoQ protects against B + DR-induced liver injury.MethodsRats were randomly divided into three groups: (1) the sham group; (2) the B + DR group, which was characterized by third-degree burn of 30% of the total body surface area plus delayed resuscitation, and (3) the treatment group, in which rats from the B + DR model received the target treatment. MitoQ was injected intraperitoneally (i.p) at 15 min before resuscitation and shortly after resuscitation. In the vitro experiments, Kupffer cells (KCs) were subjected to hypoxia/reoxygenation (H/R) injury to simulate the B + DR model. Mitochondrial characteristics, oxidative stress, liver function, KCs apoptosis and activation of the NLRP3 inflammasome in KCs were measured.ResultsB + DR caused liver injury and oxidative stress. Excessive ROS lead to liver injury by damaging mitochondrial integrity and activating the mitochondrial DNA (mtDNA)-NLRP3 axis in KCs. The oxidized mtDNA, which was released into the cytosol during KCs apoptosis, directly bound and activated the NLRP3 inflammasome. MitoQ protected against liver injury by scavenging intracellular and mitochondrial ROS, preserving mitochondrial integrity and function, reducing KCs apoptosis, inhibiting the release of mtDNA, and suppressing the mtDNA-NLRP3 axis in KCs.ConclusionMitoQ protected against B + DR-induced liver injury by suppressing the mtDNA-NLRP3 axis.  相似文献   

15.
BackgroundThe endotoxin tolerance (ET) of Kupffer cells (KCs) is an important protective mechanism for limiting endotoxin shock. As a key anti-inflammatory molecule, the roles and mechanism of Forkhead protein O3a (Foxo3a) in ET of KCs are not yet well understood.MethodsET and nonendotoxin tolerance (NET) KCs models were established in vitro and in vivo. The levels of cytokines were detected by enzyme-linked immunosorbent assay (ELISA). The protein expression and phosphorylation levels were detected by western blotting (WB). Changes in the localization of nuclear factor kappa B (NF-κB) and Foxo3a in KCs were detected by immunofluorescence assays. KCs apoptosis and survival rates were detected by flow cytometry and an automatic cell counter, respectively.ResultsThe activity of NF-κB and the levels of p-Foxo3a and tumor necrosis factor (TNF-α) in the ET group were significantly lower than those in the NET group, while the levels of Foxo3a and interleukin 10 (IL-10) in the ET group were significantly higher than those in the NET group. Overexpression of Foxo3a or the use of a phosphatidylinositol-3-hydroxykinase (PI3K) inhibitor suppressed the activation of NF-κB by decreasing the levels of p-Foxo3a by inhibiting the activity of PI3K/AKT, which improved the tolerance of KCs and mice to endotoxin. In contrast, silencing Foxo3a or the use of a PI3K agonist reduced the tolerance of KCs and mice to endotoxin. The PI3K agonist counteracted the inhibitory effects of Foxo3a overexpression on NF-κB, impairing the tolerance of KCs to endotoxin.ConclusionsThe on-off action of Foxo3a in the ET of KCs depends on the PI3K/AKT pathway.  相似文献   

16.
Zaluzanin D (ZD) is a sesquiterpene lactone isolated from the leaves of Vernonia arborea. Earlier studies have highlighted the Sesquiterpene lactones (SLs) as molecules of medicinal value. The current study investigates the anti-inflammatory potential of ZD and its biotransformed derivatives in PMA differentiated human monocytic THP-1 cells. ZD and its fungal biotransformed derivatives Zaluzanin C (ZC) and 11,13- dihydrozaluzanin C (DZC) were screened for anti-inflammatory activity using their IC50 concentration. ZD showed significant ability to reduce PMA mediated THP-1 activation, while both ZC and DZC did not show any anti-inflammatory activity. Further studies revealed that ZD had ability to attenuate intracellular reactive oxygen species production in THP-1 cells as confirmed with FACS and fluorescence microscope experiments. Similarly, Oil red O (ORO) assay showed ability of ZD to inhibit lipid accumulation in monocytes. ZD also significantly reduced the expression of pro-inflammatory markers, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, MMP (Matrix metalloproteinases)-9 and MMP-2 as observed with RT-PCR and ELISA. Interestingly the molecule ZD also partially reversed DNA methylation levels in the PMA activated THP-1 cells. This indicated the ability of ZD to influence the epigenetic machinery of the cell. Overall the current study indicates that ZD has ability to attenuate inflammation in differentiated human THP-1 cells by regulating genes involved in the atherosclerosis inflammatory pathway. Thus ZD could potentially be used to modulate inflammation in atherosclerosis like disorders wherein monocytes play a key role.  相似文献   

17.
Nocardia rubra cell wall skeleton (Nr-CWS) has been reported to have innate immunostimulating and anti-tumor activities. However, the immunomodulatory effects of Nr-CWS on CD8+ T cells and their related mechanisms are still unknown. In this work, our team purified CD8+T cells from spleen cells and explored the phenotype and function of NR-CWS in vitro on CD8+T cells. We observed that Nr-CWS can significantly up-regulate the expression of CD69 and CD25 on CD8+T cells, with no significant effect on apoptosis or cell death of CD8+T cells that occurs in vitro during culture. In addition, the effect of perforin and granzyme B was increased after Nr-CWS treatment, but did not substantially alter the expression of TRAIL and FasL. A variety of cytokine analyses have shown that of the cytokines examined (IFN-γ, TNF-α, IL-2, IL-4, IL-5, IL-6 and IL-10), only IFN-γ and TNF The increase in -α was more pronounced, and the effect of Nr-CWS in CD8+T cell culture medium on CD8+ T cells was independent of Th cells. Our results demonstrated that Nr-CWS could up-regulate CD69 and CD25 expression on CD8+T cells, promoting IFN-γ and TNF-α secretion, and enhancing perforin and granzyme B production. Thus Nr-CWS may have Immunoaugmenting therapeutic activity via an increase in CD8+T cells response.  相似文献   

18.
Background & AimsAlthough interactions between enteric glial cells (EGCs) and enteric mast cells have been demonstrated to play an important role in the pathogenesis of inflammatory bowel disease (IBD), the exact mechanisms by which EGCs regulate enteric mast cells are still unknown. The aims of this study were to investigate whether glial-derived neurotrophic factor (GDNF), which has been confirmed to be produced mostly by EGCs, might regulate enteric mast cells and ameliorate dextran sulfate sodium (DSS)-induced experimental colitis.MethodsRecombinant adenoviral vectors encoding GDNF (Ad-GDNF) were administered intracolonically in experimental colitis induced by DSS. The disease activity index and histological score were measured. The expression of tumour necrosis factor-α (TNF-α), interleukin-6 and myeloperoxidase (MPO) activity were measured by ELISA assay. The expression of trypsin and β-hexosaminidase were evaluated. GDNF specific receptor (GFR-α1/RET) was detected. The calcium reflux was tested by microplate reader. The expression p-JNK was analyzed by western blot assay.ResultsGDNF resulted in a significant inhibition of the activation of enteric mast cells by down-regulating JNK signal pathway, lessening intracellular calcium influx, and then reducing the degranulation as well as the expression of pro-inflammatory cytokines via combing with its receptor (GFR-α1/RET) in mast cells, and these inhibitory effects were abrogated by treatment with neutralizing antibody against GDNF. Moreover, the administration of GDNF led to an amelioration of experimental colitis.ConclusionsGDNF are able to regulate enteric mast cells and ameliorate experimental colitis. GDNF might be an important mediator of the cross-talk between EGCs and enteric mast cells, and GDNF might be a useful therapeutic drug for IBD.  相似文献   

19.
《Saudi Pharmaceutical Journal》2020,28(12):1877-1882
BackgroundPharmacological treatments including antivirals (Lopinavir/Ritonavir), Immuno-modulatory and anti-inflammatory drugs including, Tocilizumab and Hydroxychloroquine (HCQ) has been widely investigated as a treatment for COVID-19.Despite the ongoing controversies, HCQ was recommended for managing mild to moderate cases in Saudi Arabia . However, to our knowledge, no previous studies have been conducted in Saudi Arabia to assess its effectiveness.MethodsA hospital-based retrospective cohort study involving 161 patients with COVID-19 was conducted from March 1 to May 20, 2020. The study was conducted at Prince Mohammed bin Abdul Aziz Hospital (PMAH).The population included hospitalized adults (age ≥ 18 years) with laboratory-confirmed COVID-19. Each eligible patient was followed from the time of admission until the time of discharge. Patients were classified into two groups according to treatment type: in the HCQ group, patients were treated with HCQ; in the SC group, patients were treated with other antiviral or antibacterial treatments according to Ministry of Health (MOH) protocols.The outcomes were hospitalization days, ICU admission, and the need for mechanical ventilation.We estimated the differences in hospital length of stay and time in the ICU between the HCQ group and the standard care (SC) group using a multivariate generalized linear regression. The differences in ICU admission and mechanical ventilation were compared via logistic regression. All models were adjusted for age and gender variables.ResultsA total of 161 patients fulfilled the inclusion criteria. Approximately 59% (n = 95) received HCQ-based treatment, and 41% (n = 66) received SC. Length of hospital stay and time in ICU in for patients who received HCQ based treatment was shorter than those who received SC. Similarly, there was less need for ICU admission and mechanical ventilation among patients who received HCQ based treatment compared with SC, (8.6% vs. 10.7 and 3.1% vs. 9.1%). However, the regression analysis showed no significant difference between the two groups in terms of patient outcomes.ConclusionHCQ had a modest effect on hospital length stay and days in ICU compared with SC. However, these results need to be interpreted with caution. Larger observational studies and RCTs that evaluate the efficacy of HCQ in COVID-19 patients in the Saudi population are urgently needed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号