首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scientific information on the potential harmful effects of silver nanoparticles (AgNPs) on human health severely lags behind their exponentially growing applications in consumer products. In assessing the toxic risk of AgNP usage, liver, as a detoxifying organ, is particularly important. The aim of this study was to explore the toxicity mechanisms of nano and ionic forms of silver on human hepatoblastoma (HepG2) cells. The results showed that silver ions and citrate‐coated AgNPs reduced cell viability in a dose‐dependent manner. The IC50 values of silver ions and citrate‐coated AgNPs were 0.5 and 50 mg L?1, respectively. The LDH leakage and inhibition of albumin synthesis, along with decreased ALT activity, indicated that treatment with either AgNP or Ag ions resulted in membrane damage and reduced the cell function of human liver cells. Evaluation of oxidative stress markers demonstrating depletion of GSH, increased ROS production, and increased SOD activity, indicated that oxidative stress might contribute to the toxicity effects of nano and ionic forms of silver. The observed toxic effect of AgNP on HepG2 cells was substantially weaker than that caused by ionic silver, while the uptake of nano and ionic forms of silver by HepG2 cells was nearly the same. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 679–692, 2016.  相似文献   

2.
The widespread use of silver nanoparticles (AgNPs) is accompanied by a growing concern regarding their potential risks to human health, thus calling for an increased understanding of their biological effects. The aim of this work was to systematically study the extent to which changes in cellular metabolism were dependent on the properties of AgNPs, using NMR metabolomics. Human skin keratinocytes (HaCaT cells) were exposed to citrate-coated AgNPs of 10, 30 or 60?nm diameter and to 30?nm AgNPs coated either with citrate (CIT), polyethylene glycol (PEG) or bovine serum albumin (BSA), to assess the influence of NP size and surface chemistry. Overall, CIT-coated 60?nm and PEG-coated 30?nm AgNPs had the least impact on cell viability and metabolism. The role of ionic silver and reactive oxygen species (ROS)-mediated effects was also studied, in comparison to CIT-coated 30?nm particles. At concentrations causing an equivalent decrease in cell viability, Ag+?ions produced a change in the metabolic profile that was remarkably similar to that seen for AgNPs, the main difference being the lesser impact on the Krebs cycle and energy metabolism. Finally, this study newly reported that while down-regulated glycolysis and disruption of energy production were common to AgNPs and H2O2, the impact on some metabolic pathways (GSH synthesis, glutaminolysis and the Krebs cycle) was independent of ROS-mediated mechanisms. In conclusion, this study shows the ability of NMR metabolomics to define subtle biochemical changes induced by AgNPs and demonstrates the potential of this approach for rapid, untargeted screening of pre-clinical toxicity of nanomaterials in general.  相似文献   

3.
The rapid progress and early commercial acceptance of silver‐based nanomaterials is owed to their biocidal activity. Besides embracing the antimicrobial potential of silver nanoparticles (AgNPs), it is imperative to give special attention to the potential adverse health effects of nanoparticles owing to prolonged exposure. Here, we report a detailed study on the in vitro interactions of citrate‐coated AgNPs with porcine kidney (Pk15) cells. As uncertainty remains whether biological/cellular responses to AgNPs are solely as a result of the release of silver ions or whether the AgNPs themselves have toxic effects, we investigated the effects of Ag+ on Pk15 cells for comparison. Next, we investigated the cellular uptake of both AgNPs and Ag+ in Pk15 cells at various concentrations applied. The detected Ag contents in cells exposed to 50 mg l?1 AgNPs and 50 mg l?1 Ag+ were 209 and 25 µg of Ag per 106 cells, respectively. Transmission electron microscopy (TEM) images indicated that the Pk15 cells internalized AgNPs by endocytosis. Both forms of silver, nano and ionic, decreased the number of viable Pk15 cells after 24 h in a dose‐dependent manner. In spite of a significant uptake into the cells, AgNPs had only insignificant toxicity at concentrations lower than 25 mg l?1, whereas Ag+ exhibited a significant decrease in cell viability at one‐fifth of this concentration. The Comet assay suggested that a rather high concentration of AgNP (above 25 mg l?1) is able to induce genotoxicity in Pk15 cells. Further studies must seek deeper understanding of AgNP behavior in biological media and their interactions with cellular membranes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The toxicity of silver nanoparticles (AgNPs) has been shown in many publications. Here we investigated to which degree the silver ion fraction of AgNP suspensions, contribute to the toxicity of AgNPs in A549 lung cells. Cell viability assays revealed that AgNP suspensions were more toxic when the initial silver ion fraction was higher. At 1.5 μg/ml total silver, A549 cells exposed to an AgNP suspension containing 39% silver ion fraction showed a cell viability of 92%, whereas cells exposed to an AgNP suspension containing 69% silver ion fraction had a cell viability of 54% as measured by the MTT assay. In addition, at initial silver ion fractions of 5.5% and above, AgNP-free supernatant had the same toxicity as AgNP suspensions. Flow-cytometric analyses of cell cycle and apoptosis confirmed that there is no significant difference between the treatment with AgNP suspension and AgNP supernatant. Only AgNP suspensions with silver ion fraction of 2.6% or less were significantly more toxic than their supernatant as measured by MTT assays. From our data we conclude that at high silver ion fractions (≥5.5%) the AgNPs did not add measurable additional toxicity to the AgNP suspension, whereas at low silver ion fractions (≤2.6%) AgNP suspensions are more toxic than their supernatant.  相似文献   

5.
Silver nanoparticles (AgNPs) are incorporated into a large number of consumer and medical products. Several experiments have demonstrated that AgNPs can be toxic to the vital organs of humans and especially to the lung. The present study evaluated the in vitro mechanisms of AgNP (<100 nm) toxicity in relationship to the generation of reactive oxygen species (ROS) in A549 cells. AgNPs caused ROS formation in the cells, a reduction in their cell viability and mitochondrial membrane potential (MMP), an increase in the proportion of cells in the sub-G1 (apoptosis) population, S phase arrest and down-regulation of the cell cycle associated proliferating cell nuclear antigen (PCNA) protein, in a concentration- and time-dependent manner. Pretreatment of the A549 cells with N-acetyl-cysteine (NAC), an antioxidant, decreased the effects of AgNPs on the reduced cell viability, change in the MMP and proportion of cells in the sub-G1population, but had no effect on the AgNP-mediated S phase arrest or down-regulation of PCNA. These observations allow us to propose that the in vitro toxic effects of AgNPs on A549 cells are mediated via both ROS-dependent (cytotoxicity) and ROS-independent (cell cycle arrest) pathways.  相似文献   

6.
The widespread use of nanosilver in various antibacterial, antifungal, and antiviral products warrants the studies of the toxicity pathways of nanosilver-enabled materials toward microbes and viruses. We profiled the toxicity mechanisms of uncoated, casein-coated, and polyvinylpyrrolidone-coated silver nanoparticles (AgNPs) using Saccharomyces cerevisiae wild-type (wt) and its 9 single-gene deletion mutants defective in oxidative stress (OS) defense, cell wall/membrane integrity, and endocytosis. The 48-h growth inhibition assay in organic-rich growth medium and 24-h cell viability assay in deionized (DI) water were applied whereas AgNO3, H2O2, and SDS served as positive controls. Both coated AgNPs (primary size 8–12 nm) were significantly more toxic than the uncoated (~ 85 nm) AgNPs. All studied AgNPs were ~ 30 times more toxic if exposed to yeast cells in DI water than in the rich growth medium: the IC50 based on nominal concentration of AgNPs in the growth inhibition test ranged from 77 to 576 mg Ag/L and in the cell viability test from 2.7 to 18.7 mg Ag/L, respectively. Confocal microscopy showed that wt but not endocytosis mutant (end3Δ) internalized AgNPs. Comparison of toxicity patterns of wt and mutant strains defective in OS defense and membrane integrity revealed that the toxicity of the studied AgNPs to S. cerevisiae was not caused by the OS or cell wall/membrane permeabilization.  相似文献   

7.
Silver nanoparticles (AgNPs) are commonly used nanomaterials in consumer products. Previous studies focused on its effects on neurons; however, little is known about their effects and uptake mechanisms on glial cells under normal or activated states. Here, ALT astrocyte‐like, BV‐2 microglia and differentiated N2a neuroblastoma cells were directly or indirectly exposed to 10 nm AgNPs using mono‐ and co‐culture system. A lipopolysaccharide (LPS) was pretreated to activate glial cells before AgNP treatment for mimicking NP exposure under brain inflammation. From mono‐culture, ALT took up the most AgNPs and had the lowest cell viability within three cells. Moreover, AgNPs induced H2O2 and NO from ALT/activated ALT and BV‐2, respectively. However, AgNPs did not induce cytokines release (IL‐6, TNF‐α, MCP‐1). LPS‐activated BV‐2 took up more AgNPs than normal BV‐2, while the induction of ROS and cytokines from activated cells were diminished. Ca2+‐regulated clathrin‐ and caveolae‐independent endocytosis and phagocytosis were involved in the AgNP uptake in ALT, which caused more rapid NP translocation to lysosome than in macropinocytosis and clathrin‐dependent endocytosis‐involved BV‐2. AgNPs directly caused apoptosis and necrosis in N2a cells, while by indirect NP exposure to bottom chamber ALT or BV‐2 in Transwell, more apoptotic upper chamber N2a cells were observed. Cell viability of BV‐2 also decreased in an ALT–BV‐2 co‐culturing study. The damaged cells correlated to NP‐mediated H2O2 release from ALT or NO from BV‐2, which indicates that toxic response of AgNPs to neurons is not direct, but indirectly arises from AgNP‐induced soluble factors from other glial cells.  相似文献   

8.
The increasing application of silver nanoparticles (AgNPs) has been raising concerns about their potential adverse effects to human and the environment. However, the knowledge on the systemic toxicity of AgNPs in mammalian systems is still limited. The present study investigated the toxicity of PVP‐coated AgNPs in rats treated with repeated oral administration, and compared that with equivalent dose of AgNO3. Specifically, one hundred male and female rats were orally administrated with particulate or ionic forms of silver (Ag) separately at doses of 0.5 and 1 mg kg?1 body weight daily for 28 days. The results reveal no significant toxic effects of AgNPs and AgNO3 up to 1 mg kg?1 body weight, with respect to the body weight, organ weight, food intake, and histopathological examination. Ag distribution pattern in organs of rats treated with AgNPs was similar to that of AgNO3 treated rats, showing liver and kidneys are the main target organs followed by testis and spleen. The total Ag contents in organs were significantly lower in the AgNPs treated rats than those in the AgNO3 treated rats. However, the comparisons between AgNPs and AgNO3 treatments further indicated more potent of AgNPs in biochemical and hematological parameters in rats, including red blood cell count (RBC), platelet count (PLT), white blood cell count (WBC) and aspartate transaminase (AST). Results of this study suggested that particulate Ag at least partially contributed to the observed toxicity of AgNPs, and both ionic and particulate Ag should be taken into consideration in toxicological evaluation of AgNPs. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 609–618, 2017.  相似文献   

9.
The use of microbial cell culture a valuable tool for the biosynthesis of nanoparticles is considered a green technology as it is eco-friendly, inexpensive and simple. Here, the synthesis of nanosilver particle (AgNP) from the yeast, Saccharomyces cerevisiae, gram (+), Bacillus subtilis and gram (?), Escherichia coli was shown. In this field we are the first to study their the antimicrobial effects of the microorganisms mentioned above against pathogens and anticancer activity on MCF-7 cell line. Silver nanoparticles in the size range of 126–323?nm were synthesized extracellularly by the microorganisms, which have different cell structures. Optical absorption, scanning electron microscopy, and zetasizer analysis confirmed the silver nanoparticles formation. Antimicrobial activity of AgNPs was evaluated the minimum inhibition concentration and disc diffusion methods. AgNPs inhibited nearly 90% the growth of Gram-positive Listeria monocytogenes, Streptococcus pneumoniae and Gram-negative Haemophilus influenzae, Klebsiella pneumoniae, Neisseria meningitidis bacterial pathogens. Anticancer potentials of AgNPs were investigated by MTT method. The synthesized AgNPs exhibited excellent high toxicity on MCF-7 cells and had a dose-dependent effect on cell viability. Especially AgNP 2 eliminated 67% of the MCF-7 cells at the concentration of 3.125?μg/mL. We found that extracellular synthesis of nanoparticles from microbial culture may be ‘green’ alternative to physical and chemical methods from the point of view of synthesis in large amounts and easy process.  相似文献   

10.
Silver nanoparticles (AgNPs), which have well-known antimicrobial properties, are extensively used in various medical and general applications. Despite the widespread use of AgNPs, relatively few studies have been undertaken to determine the cytotoxic effects of AgNPs exposure. This study investigates possible molecular mechanisms underlying the cytotoxic effects of AgNPs. Here, we show that AgNPs-induced cytotoxicity was higher compared than that observed when AgNO3 was used as a silver ion source. AgNPs induced reactive oxygen species (ROS) generation and suppression of reduced glutathione (GSH) in human Chang liver cells. ROS generated by AgNPs resulted in damage to various cellular components, DNA breaks, lipid membrane peroxidation, and protein carbonylation. Upon AgNPs exposure, cell viability decreased due to apoptosis, as demonstrated by the formation of apoptotic bodies, sub-G1 hypodiploid cells, and DNA fragmentation. AgNPs induced a mitochondria-dependent apoptotic pathway via modulation of Bax and Bcl-2 expressions, resulting in the disruption of mitochondrial membrane potential (Δψm). Loss of Δψm was followed by cytochrome c release from the mitochondria, resulting in the activation of caspases 9 and 3. The apoptotic effect of AgNPs was exerted via the activation of c-Jun NH2-terminal kinase (JNK) and was abrogated by the JNK-specific inhibitor, SP600125 and siRNA targeting JNK. In summary, the results suggest that AgNPs cause cytotoxicity by oxidative stress-induced apoptosis and damage to cellular components.  相似文献   

11.
The combined action of shikonin and silver nanoparticles (AgNPs) for apoptosis in human cancer cells has not been elucidated. Hence, we investigated the synergistic combinatorial effect of shikonin and AgNPs in human lung cancer cells. Shikonin was used as a reducing and capping agent for AgNPs synthesis as a green method avoiding the hazards of chemical methods. Radiolabeling of shikonin-AgNPs with radioactive iodine forming [131I]I-Shikonin-AgNPs was carried out to enable the intracellular tracking of NPs. The antitumor effect of a combined treatment (shikonin-AgNPs) was evaluated using tissue culture assay. The 50% inhibitory concentration (IC50) of SHK-AgNPs on A549 cells after 24 hours determined by an MTT assay is 2.4 ± 0.11 μg/mL. As a deduction, this study revealed that the combination of shikonin and AgNPs treatment significantly inhibited cell viability and proliferation of A549 cells (human lung carcinoma cell line) with a great potential than the monotherapy.  相似文献   

12.
13.
The physicochemical characteristics of silver nanoparticles (AgNPs) may greatly alter their toxicological potential. To explore the effects of size and coating on the cytotoxicity and genotoxicity of AgNPs, six different types of AgNPs, having three different sizes and two different coatings, were investigated using the Ames test, mouse lymphoma assay (MLA) and in vitro micronucleus assay. The genotoxicities of silver acetate and silver nitrate were evaluated to compare the genotoxicity of nanosilver to that of ionic silver. The Ames test produced inconclusive results for all types of the silver materials due to the high toxicity of silver to the test bacteria and the lack of entry of the nanoparticles into the cells. Treatment of L5718Y cells with AgNPs and ionic silver resulted in concentration-dependent cytotoxicity, mutagenicity in the Tk gene and the induction of micronuclei from exposure to nearly every type of the silver materials. Treatment of TK6 cells with these silver materials also resulted in concentration-dependent cytotoxicity and significantly increased micronucleus frequency. With both the MLA and micronucleus assays, the smaller the AgNPs, the greater the cytotoxicity and genotoxicity. The coatings had less effect on the relative genotoxicity of AgNPs than the particle size. Loss of heterozygosity analysis of the induced Tk mutants indicated that the types of mutations induced by AgNPs were different from those of ionic silver. These results suggest that AgNPs induce cytotoxicity and genotoxicity in a size- and coating-dependent manner. Furthermore, while the MLA and in vitro micronucleus assay (in both types of cells) are useful to quantitatively measure the genotoxic potencies of AgNPs, the Ames test cannot.  相似文献   

14.
Silver nanoparticles (Ag-NPs) are highly relevant for human and environmental exposure due to their widespread use in consumer and medical products and various applications. Thus, there is a need for evaluating potential toxicity of these NPs. The objective of this study was to investigate the toxic effects of the OECD (Organization for Economic Co-operation and Development) representative Ag-NPs, NM300K, in mouse macrophage J774A.1 and human colonic epithelial HT29 cells, using multiple endpoint assays. Exposure of test cells to different concentrations (1–250 μg/mL; total silver content) of NM300K for 24 h showed a dose-dependent decrease in cell viability. At high doses, NM300K altered cell shape and induced the formation of vacuolar structures, as examined by confocal and electron microscopy. Moreover, NM300K induced inflammation as evidenced by the elevated levels of pro-inflammatory cytokines. Finally, high doses of NM300K led to increased production of reactive oxygen species and induction of oxidative stress, leading to oxidative DNA damage and apoptosis in test cells. At equivalent silver concentrations, NM300K were less cytotoxic than AgNO3. However, the similar patterns in the effects of NM300K and AgNO3 throughout the assessed toxicological endpoints suggest that Ag+ released from these NPs by dissolution could be a primary contributor to toxicity. This study is among the first to characterize the potential toxicity of OECD representative AgNPs in vitro, and provides additional insight into the biological mechanisms associated with Ag-NP toxicity.  相似文献   

15.
《Nanotoxicology》2013,7(8):1041-1059
Abstract

In the current study, we evaluated the modulatory effects of size and surface coating/charge of AgNPs on their toxicity to a unicellular yeast Saccharomyces cerevisiae BY4741 – a fungal model. For that, the toxicity of a set of 10 and 80?nm citrate-coated (negatively charged) and branched polyethylenimine (bPEI) coated (positively charged) AgNPs was evaluated in parallel with AgNO3 as ionic control. Yeast cells were exposed to different concentrations of studied compounds in deionized water for 24?h at 30?°C and evaluated for the viability by the post-exposure colony-forming ability. Particle-cell interactions were assessed by SEM, TEM and confocal laser scanning microscopy (CLSM) in the reflection mode. AgNPs toxicity to yeast was size and charge-dependent: 24-h IC50 values ranged from 0.04 (10nAg-bPEI) up to 8.3?mg Ag/L (80nAg-Cit). 10?nm AgNPs were 5–27 times more toxic than 80?nm AgNPs and bPEI-AgNPs 8–44 times more toxic than citrate-AgNPs. SEM and TEM visualization showed that bPEI-AgNPs but not citrate-AgNPs adsorbed onto the yeast cell’s surface. However, according to CLSM all the studied AgNPs, whatever the size and coating, ended up within the yeast cell. Toxicity of citrate-AgNPs was largely explained by the dissolved Ag ions but the bPEI-AgNPs showed mainly particle-driven effects leading to the cellular internalization and/or to more pronounced dissolution of AgNPs in the close vicinity of the cell wall. Therefore, the size, and especially the coating/charge of AgNPs can be efficiently used for the design of new more efficient antifungals.  相似文献   

16.
Because of their antimicrobial properties, the use of silver nanoparticles (AgNPs) is increasing fast in industry, food, and medicine. In the food industry, nanoparticles are used in packaging to enable better conservation products such as sensors to track their lifetime, and as food additives, such as anti-caking agents and clarifying agents for fruit juices. Nanoemulsions, used to encapsulate, protect and deliver additives are also actively developed. Nanomaterials in foods will be ingested and passed through the digestive tract. Those incorporated in food packaging may also be released unintentionally into food, ending up in the gastrointestinal tract. It is therefore important to make a risk assessment of nanomaterials to the consumer. Thus, exposure to AgNPs is increasing in quantity and it is imperative to know their adverse effects in man. However, controversies still remain with respect to their toxic effects and their mechanisms. Understanding the toxic effects and the interactions of AgNPs with biological systems is necessary to handle these nanoparticles and their use. They usually generate reactive oxygen species resulting in increased pro-inflammatory reactions and oxidative stress via intracellular signalling pathways. Here, we mainly focus on the routes of exposure of AgNPs, toxic effects and the mechanisms underlying the induced toxicity.  相似文献   

17.
The rapid growth in silver nanoparticles (AgNPs) commercialization has increased environmental exposure, including aquatic ecosystem. It has been reported that the AgNPs have damaging effects on photosynthesis and induce oxidative stress, but the toxic mechanism of AgNPs is still a matter of debate. In the present study, on the model aquatic higher plant Spirodela polyrhiza, we found that AgNPs affect photosynthesis and significantly inhibit Photosystem II (PSII) maximum quantum yield (Fv/Fm) and effective quantum yield (ΦPSII). The changes of non-photochemical fluorescence quenching (NPQ), light-induced non-photochemical fluorescence quenching [Y(NPQ)] and non-light-induced non-photochemical fluorescence quenching [Y(NO)] showed that AgNPs inhibit the photo-protective capacity of PSII. AgNPs induce reactive oxygen species (ROS) that are mainly produced in the chloroplast. The activity of ribulose-1, 5-bisphosphate carboxylase–oxygenase (Rubisco) was also very sensitive to AgNPs. The internalized Ag, regardless of whether the exposure was Ag+?or AgNPs had the same capacity to generate ROS. Our results support the hypothesis that intra-cellular AgNP dissociate into high toxic Ag+. Rubisco inhibition leads to slowing down of CO2 assimilation. Consequently, the solar energy consumption decreases and then the excess excitation energy promotes ROS generation in chloroplast.  相似文献   

18.
Surface‐functionalized silver nanoparticles (AgNPs) are the most deployed engineered nanomaterials in consumer products because of their optical, antibacterial and electrical properties. Almost all engineered nanoparticles are coated with application‐specific capping agents (i.e. organic/inorganic ligands on particle surface) to enhance their stability in suspension or increase their biocompatibility for biomedicine. The aim of this study was to investigate the contribution of the selected capping agents to their observed health impacts using realistic dose ranges. AgNPs capped with citrate, polyvinylpyrrolidone (PVP) and tannic acid were studied with human bronchoalveolar carcinoma (A549) and human colon adenocarcinoma (Caco‐2) cell lines and compared against exposures to Ag ions. Cellular uptake and cytotoxicity were evaluated up to 24 h. Tannic acid capped AgNPs induced higher cellular uptake and rate in both cell lines. Citrate‐capped and PVP‐capped AgNPs behaved similarly over 24 h. All three of the capped AgNPs penetrated more into the A549 cells than Caco‐2 cells. In contrast, the uptake rate of Ag ions in Caco‐2 cells (0.11 ± 0.0001 µg h–1) was higher than A549 cells (0.025 ± 0.00004 µg h–1). The exposure concentration of 3 mg l–1 is below the EC50 value for all of the AgNPs; therefore, little cytotoxicity was observed in any experiment conducted herein. Exposure of Ag ions, however, interrupted cell membrane integrity and cell proliferation (up to 70% lysed after 24 h). These findings indicate cellular uptake is dependent on capping agent, and when controlled to realistic exposure concentrations, cellular function is not significantly affected by AgNP exposure. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Soil microorganisms are key contributors to nutrient cycling and are essential for the maintenance of healthy soils and sustainable agriculture. Although the antimicrobial effects of a broad range of nanoparticulate substances have been characterised in vitro, little is known about the impact of these compounds on microbial communities in environments such as soil. In this study, the effect of three widely used nanoparticulates (silver, silicon dioxide and aluminium oxide) on bacterial and fungal communities in an agricultural pastureland soil was examined in a microcosm-based experiment using a combination of enzyme analysis, molecular fingerprinting and amplicon sequencing. A relatively low concentration of silver nanoparticles (AgNPs) significantly reduced total soil dehydrogenase and urease activity, while Al2O3 and SiO2 nanoparticles had no effect. Amplicon sequencing revealed substantial shifts in bacterial community composition in soils amended with AgNPs, with significant decreases in the relative abundance of Acidobacteria and Verrucomicrobia and an increase in Proteobacteria. In particular, the relative abundance of the Proteobacterial genus Dyella significantly increased in AgNP amended soil. The effects of Al2O3 and SiO2 NPs on bacterial community composition were less pronounced. AgNPs significantly reduced bacterial and archaeal amoA gene abundance in soil, with the archaea more susceptible than bacteria. AgNPs also significantly impacted soil fungal community structure, while Al2O3 and SiO2 NPs had no effect. Several fungal ribotypes increased in soil amended with AgNPs, compared to control soil. This study highlights the need to consider the effects of individual nanoparticles on soil microbial communities when assessing their environmental impact.  相似文献   

20.
Some nanoparticles (NPs) may induce adverse health effects in exposed organisms, but to date the evidence for this in wildlife is very limited. Silver nanoparticles (AgNPs) can be toxic to aquatic organisms, including fish, at concentrations relevant for some environmental exposures. We applied whole mount in-situ hybridisation (WISH) in zebrafish embryos and larvae for a suite of genes involved with detoxifying processes and oxidative stress, including metallothionein (mt2), glutathionine S-transferase pi (gstp), glutathionine S-transferase mu (gstm1), haem oxygenase (hmox1) and ferritin heavy chain 1 (fth1) to identify potential target tissues and effect mechanisms of AgNPs compared with a bulk counterpart and ionic silver (AgNO3). AgNPs caused upregulation in the expression of mt2, gstp and gstm1 and down regulation of expression of both hmox1 and fth1 and there were both life stage and tissue-specific responses. Responding tissues included olfactory bulbs, lateral line neuromasts and ionocytes in the skin with the potential for effects on olfaction, behaviour and maintenance of ion balance. Silver ions induced similar gene responses and affected the same target tissues as AgNPs. AgNPs invoked levels of target gene responses more similar to silver treatments compared to coated AgNPs indicating the responses seen were due to released silver ions. In the Nrf2 zebrafish mutant, expression of mt2 (24 hpf) and gstp (3 dpf) were either non-detectable or were at lower levels compared with wild type zebrafish for exposures to AgNPs, indicating that these gene responses are controlled through the Nrf2-Keap pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号