首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 828 毫秒
1.
《中成药》2019,(11)
目的制备葫芦素B磷脂复合物纳米结构脂质载体。方法溶剂挥发法制备磷脂复合物后,乳化-超声分散法制备其纳米结构脂质载体。以脂质用量、固液脂质比、投药量、乳化剂浓度为影响因素,包封率为评价指标,正交试验优化处方。5%甘露醇制备冻干粉,考察其粒径、Zeta电位、包封率、载药量、体外释放度、体内药动学行为。结果最佳处方为脂质用量350 mg,固液脂质比5∶1,投药量45 mg,乳化剂浓度1.0%。冻干前后,粒径、Zeta电位、包封率、载药量无明显变化。纳米结构脂质载体24 h内累积释放度高于原料药、磷脂复合物,相对生物利用度分别提高到200.41%、158.22%。结论磷脂复合物纳米结构脂质载体可促进葫芦素B体内吸收,提高其生物利用度。  相似文献   

2.
杨娟  钟莹  尚曙玉  贾安 《中成药》2021,(4):841-846
目的制备白藜芦醇磷脂复合物固体脂质纳米粒,并考察其体内药动学。方法乳化超声-低温固化法制备固体脂质纳米粒,测定其粒径、Zeta电位、包封率、载药量、体外稳定性、体外释药。18只大鼠随机分为3组,分别灌胃给予原料药、磷脂复合物、固体脂质纳米粒0.5%CMC-Na混悬液(20 mg/kg),于0、2、4、8、12、24 h采血,HPLC法测定白藜芦醇血药浓度,计算主要药动学参数。结果固体脂质纳米粒平均粒径为218.6 nm,Zeta电位为-15.6 mV,包封率为84.07%,载药量为2.62%,48 h内累积溶出度为76.18%,白藜芦醇含量在48 h内无明显变化。与原料药、磷脂复合物比较,固体脂质纳米粒tmax延长(P<0.01),Cmax、AUC0~_t、AUC0~∞升高(P<0.01),其相对生物利用度与原料药相比增加至3.00倍。结论固体脂质纳米粒可提高白藜芦醇磷脂复合物体外溶出度和稳定性,促进该成分体内吸收。  相似文献   

3.
《中成药》2019,(6)
目的制备蛇床子素纳米结构脂质载体,并考察其体内药动学行为。方法制备纳米结构脂质载体后,测定其包封率、载药量、粒径、Zeta电位、体外释药行为。然后,大鼠分别灌胃给予蛇床子素和纳米结构脂质载体,测定血药浓度,计算主要药动学参数。结果纳米结构脂质载体粒径为226.25 nm,Zeta电位为-15.17 mV,包封率为88.17%,载药量为5.06%,24 h内累积释放度为77.12%。与蛇床子素组比较,纳米结构脂质载体组T_(max)、T_(1/2)、C_(max)、AUC_(0~t)、AUC_(0~∞)显著升高(P0.05,P0.01)。结论纳米结构脂质载体可有效改善蛇床子素体内吸收,提高其生物利用度。  相似文献   

4.
目的制备隐丹参酮纳米结构脂质载体,并研究其药动学。方法高压均质法制备纳米结构脂质载体后,测定粒径、Zeta电位、包封率、载药量、体外释药。大鼠分别灌胃给予隐丹参酮及其纳米结构脂质载体混悬液(15 mg/kg),HPLC法测定隐丹参酮含有量,计算主要药动学参数,绘制血药浓度-时间曲线。结果所得隐丹参酮纳米结构脂质载体平均粒径为(175. 26±6. 07) nm,PDI为0. 068±0. 009,Zeta电位为(-34. 2±3. 4) m V,包封率为(87. 69±1. 97)%,载药量为(3. 75±0. 38)%,36 h内累积释放度为64. 13%。与隐丹参酮比较,其纳米结构脂质载体tmax、t1/2、Cmax、AUC0~t、AUC0~∞升高(P<0. 05,P<0. 01),相对生物利用度增加到226. 06%。结论隐丹参酮纳米结构脂质载体具有明显的缓释特征,口服吸收生物利用度有所改善。  相似文献   

5.
王颖慧  代永霞  崔晓鸽 《中成药》2023,(7):2117-2123
目的 制备紫檀芪纳米结构脂质载体,并考察其体内药动学。方法 溶剂挥发法制备纳米结构脂质载体,Box-Behnken响应面法优化处方,测定其包封率、载药量、粒径、Zeta电位、体外释药,分析其稳定性。18只大鼠随机分为3组,分别灌胃给予紫檀芪、物理混合物、紫檀芪纳米结构脂质载体的0.5%CMC-Na混悬液(30 mg/kg),于不同时间点采血,HPLC法测定紫檀芪血药浓度,计算主要药动学参数。结果 最佳处方为液态脂质辛癸酸三甘油酯,固态脂质单硬脂酸甘油酯,脂药比13.4∶1,固液脂质比3.1∶1,泊洛沙姆188浓度1.10%,包封率、载药量、粒径、Zeta电位、48 h内累积释放度分别为82.07%、5.56%、228.41 nm、-34.81 mV、72.69%。模拟胃液、模拟肠液中纳米结构脂质载体在180 min内稳定性良好。与原料药、物理混合物比较,纳米结构脂质载体tmax、t1/2延长(P<0.01),Cmax、AUC0~t、AUC0~∞升高(P<0.01);...  相似文献   

6.
《中成药》2019,(12)
目的制备延胡索乙素纳米结构脂质载体,并考察其药动学行为。方法乳化-超声法制备纳米结构脂质载体后,测定其粒径、Zeta电位、体外释药情况。12只大鼠灌胃给药(30 mg/kg)后眼眶静脉取血,测定延胡索乙素血药浓度,计算主要药动学参数。结果纳米结构脂质载体包封率为(82.38±0.69)%,载药量为(12.46±0.31)%,粒径为(193.57±7.14)nm,PDI为(0.171±0.055),Zeta电位为(-19.4±1.3)mV,在体外具有明显的缓释特征,符合Weibull释药模型。与原料药比较,纳米结构脂质载体t_(max)显著延后(P0.05),C_(max)显著升高(P0.01),相对生物利用度提高到200.13%。结论纳米结构脂质载体可显著促进延胡索乙素体内吸收,提高其生物利用度。  相似文献   

7.
《中成药》2020,(6)
目的制备蒙花苷磷脂复合物固体脂质纳米粒,并研究其体内药动学。方法乳化-超声分散法制备固体脂质纳米粒,考察其粒径、Zeta电位、包封率、载药量。SD大鼠灌胃给予蒙花苷、蒙花苷磷脂复合物、蒙花苷磷脂复合物固体脂质纳米粒的0.5%CMC-Na混悬液(含40 mg/kg蒙花苷)后,HPLC法测定蒙花苷血药浓度,计算主要药动学参数。结果蒙花苷磷脂复合物固体脂质纳米粒的粒径为(216.72±3.57)nm,Zeta电位为(-8.7±0.7)mV,包封率为82.06%,载药量为4.72%。与原料药比较,磷脂复合物、固体脂质纳米粒t_(max)延长(P0.05),C_(max)、AUC_(0~)_t、AUC_(0~∞)升高(P0.05,P0.01),以后者更明显(P0.05,P0.01),相对生物利用度分别增加至1.39、2.89倍。结论固体脂质纳米粒可进一步促进蒙花苷磷脂复合物体内吸收,提高其生物利用度。  相似文献   

8.
《中成药》2021,(8)
目的制备田蓟苷纳米结构脂质载体,并研究其体内药动学。方法乳化蒸发-低温固化法制备纳米结构脂质载体,测定其包封率、载药量、粒径、Zeta电位、体外释药。在单因素试验基础上,以田蓟苷用量、脂质质量浓度、表面活性剂体积分数为影响因素,包封率为评价指标,Box-Behnken响应面法优化制备工艺。于0.5、1、1.5、2、2.5、3、4、6、8、10、12 h采血,HPLC法测定田蓟苷血药浓度,计算主要药动学参数。结果最佳条件为田蓟苷用量53.9 mg,脂质质量浓度7.1 mg/mL,表面活性剂体积分数1.5%,包封率为82.5%,载药量为2.32%,粒径为176.5 nm, Zeta电位为-37.7 mV,48 h内累积释放度大约为80%,体外释药符合Weibull模型(R~2=0.982 9)。与原料药比较,纳米结构脂质载体t_(max)延长(P0.01),C_(max)、AUC_(0~)_t、AUC_(0~∞)升高(P0.01),相对生物利用度提高至4.07倍。结论纳米结构脂质载体可有效改善田蓟苷口服吸收生物利用度。  相似文献   

9.
田莉  李伟宏  王风云  刘俊保 《中成药》2023,(5):1403-1409
目的 制备辣椒素纳米结构脂质载体,并考察其体内药动学。方法 高压均质法制备纳米结构脂质载体,测定其粒径、Zeta电位、体外释药。以脂药比、固液脂质比、乳化剂(聚乙二醇硬脂酸酯15)浓度为影响因素,包封率、载药量为评价指标,星点设计-效应面法优化处方工艺。18只大鼠随机分为3组,分别灌胃给予辣椒素、物理混合物、辣椒素纳米结构脂质载体的0.5%CMC-Na混悬液(15 mg/kg),于不同时间点采血,HPLC法测定辣椒素血药浓度,计算主要药动学参数。另取30只大鼠,随机分为空白组(生理盐水)、阳性对照组(50 mg/kg盐酸雷尼替丁)、辣椒素纳米结构脂质载体组(15 mg/kg),给药7 d后在倒置荧光显微镜下观察胃黏膜组织形态。结果 最佳处方为脂药比18.5∶1,固液脂质比4∶1,乳化剂浓度1%,包封率为80.62%,载药量为3.96%,粒径为178.06 nm, Zeta电位为-36.14 mV,36 h内累积释放度为66.17%。与原料药、物理混合物比较,纳米结构脂质载体tmax延长(P<0.05),Cmax、AUC0~t<...  相似文献   

10.
张艳慧  董亚娜  谈秀凤 《中成药》2023,(10):3382-3386
目的 制备金丝桃苷纳米结构脂质载体,并考察其体内药动学。方法 制备纳米结构脂质载体。以固态脂质用量、液态脂质用量、表面活性剂(泊洛沙姆188)浓度为影响因素,包封率、载药量、粒径为评价指标,Box-Behnken响应面法优化处方,测定冻干粉体外释药。12只大鼠随机分为2组,分别灌胃给予金丝桃苷及其纳米结构脂质载体的0.5%CMC-Na混悬液(40 mg/kg),于0.5、1、2、3、4、4.5、5、6、8、10、12 h采血,HPLC法测定金丝桃苷血药浓度,计算主要药动学参数。结果 最佳处方为固态脂质用量1 015 mg,液态脂质用量270 mg,表面活性剂浓度1.1%,包封率为89.92%,载药量为3.37%,粒径为162.56 nm, Zeta电位为-34.28 mV。纳米结构脂质载体48 h内累积释放度为71.77%。与原料药比较,纳米结构脂质载体tmax、t1/2延长(P<0.01),Cmax、AUC0~t、AUC0~∞升高(P<0.01),相对生物利用度增...  相似文献   

11.
目的制备延胡索乙素聚乳酸纳米粒,并考察其体内药动学。方法改良的自乳化溶剂挥发法制备聚乳酸纳米粒,测定平均粒径、Zeta电位、包封率、载药量、体外释药,透射电镜观察形态。大鼠随机分为2组,分别灌胃给予延胡索乙素及其聚乳酸纳米粒0??5%CMC?Na混悬液(20 mg/kg),于0、0.25、0.5、1、2.0、2.5、3、4、6、8、10、12 h采血,HPLC法测定延胡索乙素血药浓度,计算主要药动学参数。结果所得纳米粒呈球形,平均粒径为(176.18±5.21)nm,Zeta电位为(-11.1±1.5)mV,包封率为(76.64±0.23)%,载药量为(5.01±0.12)%,36 h内累积释放度低于30%,释药过程符合Weibull模型(r=0.9884)。与原料药比较,聚乳酸纳米粒tmax、t1/2延长(P<0.05,P<0.01),Cmax、AUC0-t、AUC0-∞升高(P<0.01),相对生物利用度增加至2.41倍。结论聚乳酸纳米粒可促进延胡索乙素体内吸收,改善其口服生物利用度。  相似文献   

12.
 目的 制备适于眼部给药的环孢素A纳米脂质载体(cyclosporine A-loaded nanostructured lipid carriers, CsA-NLC),并考察其理化性质和眼局部刺激性。方法 采用熔融-乳化法制备CsA-NLC,通过正交实验筛选出最优处方。考察CsA-NLC的粒径、形态,包封率、载药量及在人工泪液中的释药行为,采用差示扫描量热法(differential scanning calorimetry, DSC)确证CsA在载体中的分散状态,利用家兔研究其眼局部刺激性。结果 优化条件下制备的CsA- NLC多为类球形粒子,平均粒径(35.9±0.21) nm,Zeta电位(-13.9±0.21) mV,包封率、载药量分别为(97.5±0.58)%和(16.2±0.09) mg·mL-1。DSC表明药物以非结晶状分散于纳米粒中。CsA-NLC具有明显的缓释特征,其体外释药行为符合单指数模型。CsA-NLC对家兔眼部无刺激性。结论 制备的CsA- NLC粒径小,载药量高,刺激性小,体外释放具有明显的缓释特征,有望实现药物眼部控释递送,提高药物的眼用生物利用度。
  相似文献   

13.
该文建立了热高压均质法制备穿山龙薯蓣皂苷纳米结构脂质载体的工艺方法,并对星点设计-响应面法优化其工艺处方进行了体外制剂学评价。结果显示按照星点设计-响应面法优化后的最佳工艺处方制备的穿山龙薯蓣皂苷纳米结构脂质载体为类球形,粒径为(90.9±0.6)nm,多分散系数为(0.253±0.07),粒度分布均匀,Zeta电位为(-45.7±0.5)m V,包封率为(90.2±0.5)%,载药量为(23.30±0.10)%。结果表明热高压均质法制备的穿山龙薯蓣皂苷纳米结构脂质载体具有良好的理化性质。  相似文献   

14.
王风云  李伟宏 《中成药》2020,(5):1114-1119
目的 制备莪术醇固体脂质纳米粒,并评价其抗肿瘤活性.方法 乳化超声分散法制备固体脂质纳米粒,测定粒径、Zeta电位、包封率、载药量、体外释药、光稳定性(4 500 lx,25℃).MTT法考察固体脂质纳米粒对人宫颈癌上皮细胞(Caski细胞)的抑制作用.结果 所得莪术醇固体脂质纳米粒粒径为(198.84±4.17) nm,Zeta电位为(-21.8±2.5)mV,包封率为83.27%,载药量为3.83%,36 h内累积溶出度为61.81%;体外释药符合Weibull模型(R2 =0.960 5);光照72 h后,莪术醇含有量仅降低了3.42%;对Caski细胞有较好的抑制作用,并呈量效和时效依赖性(P<0.05,P<0.01).结论 固体脂质纳米粒可明显提高莪术醇体外抗肿瘤活性.  相似文献   

15.
王晓明  张智强 《中成药》2022,(2):356-362
目的 制备柚皮素-PLGA纳米粒,并考察其体内药动学.方法 纳米沉淀法制备PLGA纳米粒,在单因素试验基础上采用正交试验优化处方,测定包封率、载药量、粒径、Zeta电位、体外释药.大鼠分别灌胃给予柚皮素及其PLGA纳米粒混悬液(40 mg/kg)后采血,HPLC法测定柚皮素血药浓度,计算主要药动学参数.结果 最佳处方为...  相似文献   

16.
大黄酸聚乳酸纳米粒的制备及大鼠体内药动学研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 目的 制备大黄酸聚乳酸纳米粒,并考察其在大鼠体内的药动学特征,以期提高大黄酸口服生物利用度。方法 以聚乳酸为载体材料,采用改良的自乳化溶剂扩散法制备大黄酸聚乳酸纳米粒;透射电镜观察纳米粒的形态;激光粒度仪考察粒径和Zeta电位;超速离心法测定其包封率及载药量;透析袋法研究其体外释药特性;以大黄酸混悬液为对照组,进行大鼠口服大黄酸聚乳酸纳米粒的药动学研究。结果 纳米粒外观呈圆形或类圆形,平均粒径为(134.37±3.61)nm,Zeta电位为(-18.41±0.07) mV,包封率和载药量分别为(60.37±1.52)%和(1.32±0.09)%;体外释药符合Higuchi方程;大鼠口服大黄酸混悬液和纳米粒后,ρmax分别为(5.788±0.15)和(11.607±0.56)mg·L-1,tmax分别为(0.193±0.01)和(1.102±0.13)h, AUC0→t分别为(8.077±2.98)和(34.583±3.93)mg·h·L-1,t1/2β分别为(3.319±0.23)和(21.721±6.13)h。结论 聚乳酸纳米粒可显著改善大黄酸的药动学行为,有效提高其口服生物利用度。
  相似文献   

17.
目的:制备用于脑靶向给药的葛根素纳米结构脂质载体(Pue-NLC)并考察其理化性质.方法:采用乳化-超声分散法制备Pue-NLC;以包封率为指标,通过正交试验考察固体脂质材料用量、豆磷脂与泊洛沙姆-188的比例、脂质材料与乳化剂的比例及药物用量对处方工艺的影响,确定最佳制备工艺;通过透射电镜观察粒子形态,分别用Zeta电位及粒度分析仪测定表面电位和粒径,离心超滤法测定包封率,透析法考察其体外释药特性,HPLC测定葛根素含量.结果:最佳制备工艺为脂质材料用量400 mg,豆磷脂与泊洛沙姆-188的比例1:3,脂质材料与乳化剂的比例为1:2,药物用量10 mg.制备的Pue-NLC外形呈类圆球状,粒径分布均匀,平均粒径(89±7)nm,包封率(91.33±1.2)%,平均Zeta电位(-22±0.4)mV;Pue-NLC中葛根素在24 h累积释放率69.25%,且无突释效应.结论:采用乳化-超声分散法制备的Pue-NLC粒径大小分布均匀,药物包封率高,具有明显的缓释效果.  相似文献   

18.
该实验采用自组装法制备及表征三七总皂苷壳聚糖纳米粒(Panax notoginseng saponins chitosan nanoparticles,PNS-NPs),对其外观、粒径、包封率、载药量、多分散指数(PDI)、Zeta电位、微观结构等进行表征.所制得PNS-NPs形态结构完整,平均粒径为(209±0.25...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号