首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 319 毫秒
1.
2.
Melatonin is involved in the control of various physiological functions, such as sleep, cell growth and free radical scavenging. The ability of melatonin to behave as an antioxidant, together with the fact that the Alzheimer‐related amyloid β‐peptide (Aβ) triggers oxidative stress through hydroxyl radical‐induced cell death, suggests that melatonin could reduce Alzheimer's pathology. Although the exact etiology of Alzheimer's disease (AD) remains to be established, excess Aβ is believed to be the primary contributor to the dysfunction and degeneration of neurons that occurs in AD. Aβ peptides are produced via the sequential cleavage of β‐secretase β‐site APP‐cleaving enzyme 1 (BACE1) and γ‐secretase (PS1/PS2), while α‐secretase (ADAM10) prevents the production of Aβ peptides. We hypothesized that melatonin could inhibit BACE1 and PS1/PS2 and enhance ADAM10 expression. Using the human neuronal SH‐SY5Y cell line, we found that melatonin inhibited BACE1 and PS1 and activated ADAM10 mRNA level and protein expression in a concentration‐dependent manner and mediated via melatonin G protein‐coupled receptors. Melatonin inhibits BACE1 and PS1 protein expressions through the attenuation of nuclear factor‐κB phosphorylation (pNF‐κB). Moreover, melatonin reduced BACE1 promoter transactivation and consequently downregulated β‐secretase catalytic activity. The present data show that melatonin is not only a potential regulator of β/γ‐secretase but also an activator of α‐secretase expression through the activation of protein kinase C, thereby favoring the nonamyloidogenic pathway over the amyloidogenic pathway. Altogether, our findings suggest that melatonin may be a potential therapeutic agent for reducing the risk of AD in humans.  相似文献   

3.
A link between endotoxemia and nonalcoholic fatty liver disease (NAFLD) has been demonstrated in human and rodent animals. Nevertheless, the molecular mechanisms of endotoxin-evoked NAFLD remain poorly understood. We hypothesize that reactive oxygen species (ROS) mediate lipopolysaccharide (LPS)-evoked hepatic lipid accumulation. Melatonin is an antioxidant. In the present study, we investigated the effects of melatonin on LPS-induced hepatic lipid accumulation. We showed that a single dose of LPS significantly increased hepatic triglyceride (TG) contents and caused hepatic lipid accumulation in mice. Further analysis found that hepatic sterol regulatory element-binding protein (SREBP)-1c was activated in LPS-treated mice. In agreement with hepatic SREBP-1c activation, fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), two SREBP-1c target genes, were significantly upregulated in liver of mice injected with LPS. Melatonin significantly attenuated LPS-induced SREBP-1c activation and the expression of SREBP-1c target genes. In addition, melatonin reduced serum and hepatic triglyceride (TG) content and prevented LPS-induced hepatic lipid accumulation. Taken together, these results suggest that ROS might be, at least partially, mediated in LPS-induced SREBP-1c activation and hepatic lipid accumulation. Melatonin may be useful as pharmacological agents to protect against endotoxin-evoked NAFLD.  相似文献   

4.
Melatonin enhances pathogen resistance by inducing the expression of a number of plant defense‐related genes. To examine whether the melatonin‐mediated pathogen resistance is associated with mitogen‐activated protein kinase (MAPK) cascades, Arabidopsis and tobacco leaves were treated with melatonin and investigated for MAPK activation using an antiphospho‐p44/42 MAPK (Erk1/2) monoclonal antibody. Two MAPKs, MPK3 and MPK6, were activated rapidly and transiently by 1 μm melatonin treatment in Arabidopsis. Its tobacco ortholog MAPKs were also activated. The activation of MPK3 and MPK6 by 2‐hydroxymelatonin and N‐acetylserotonin was also observed, albeit to a lesser degree than that by melatonin. Furthermore, MAPK activation by melatonin was uncoupled from G‐protein signaling, because melatonin efficiently activated two MAPKs in a G‐protein β knockout mutant (agb1). Suppression of both MPK3 and MPK6 in transgenic Arabidopsis exhibited significant decreases in the induction of defense‐related gene expression and pathogen resistance relative to wild‐type plants. Using an array of MAP kinase kinase (MKK) knockout mutants, we found that four MKKs, namely MKK4, MKK5, MKK7, and MKK9, are responsible for the activation of MPK3 and MPK6 by melatonin, indicating that melatonin‐mediated innate immunity is triggered by MAPK signaling through MKK4/5/7/9‐MPK3/6 cascades.  相似文献   

5.
6.
Myocardial contractile dysfunction is associated with an increase in mitochondrial fission in patients with diabetes. However, whether mitochondrial fission directly promotes diabetes‐induced cardiac dysfunction is still unknown. Melatonin exerts a substantial influence on the regulation of mitochondrial fission/fusion. This study investigated whether melatonin protects against diabetes‐induced cardiac dysfunction via regulation of mitochondrial fission/fusion and explored its underlying mechanisms. Here, we show that melatonin prevented diabetes‐induced cardiac dysfunction by inhibiting dynamin‐related protein 1 (Drp1)‐mediated mitochondrial fission. Melatonin treatment decreased Drp1 expression, inhibited mitochondrial fragmentation, suppressed oxidative stress, reduced cardiomyocyte apoptosis, improved mitochondrial function and cardiac function in streptozotocin (STZ )‐induced diabetic mice, but not in SIRT 1?/? diabetic mice. In high glucose‐exposed H9c2 cells, melatonin treatment increased the expression of SIRT 1 and PGC ‐1α and inhibited Drp1‐mediated mitochondrial fission and mitochondria‐derived superoxide production. In contrast, SIRT 1 or PGC ‐1α siRNA knockdown blunted the inhibitory effects of melatonin on Drp1 expression and mitochondrial fission. These data indicated that melatonin exerted its cardioprotective effects by reducing Drp1‐mediated mitochondrial fission in a SIRT 1/PGC ‐1α‐dependent manner. Moreover, chromatin immunoprecipitation analysis revealed that PGC ‐1α directly regulated the expression of Drp1 by binding to its promoter. Inhibition of mitochondrial fission with Drp1 inhibitor mdivi‐1 suppressed oxidative stress, alleviated mitochondrial dysfunction and cardiac dysfunction in diabetic mice. These findings show that melatonin attenuates the development of diabetes‐induced cardiac dysfunction by preventing mitochondrial fission through SIRT 1‐PGC 1α pathway, which negatively regulates the expression of Drp1 directly. Inhibition of mitochondrial fission may be a potential target for delaying cardiac complications in patients with diabetes.  相似文献   

7.
Background/Aims: High‐fat dietary intake and low physical activity lead to insulin resistance, nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Recent studies have shown an effect of glucagon‐like peptide‐1 (GLP‐1) on hepatic glucose metabolism, although GLP‐1 receptors (GLP‐1r) have not been found in human livers. The aim of this study was to investigate the presence of hepatic GLP‐1r and the effect of exenatide, a GLP‐1 analogue, on hepatic signalling. Methods: The expression of GLP‐1r was evaluated in human liver biopsies and in the livers of high‐fat diet‐treated rats. The effect of exenatide (100 nM) was evaluated in hepatic cells of rats fed 3 months with the high‐fat diet. Results: GLP‐1r is expressed in human hepatocytes, although reduced in patients with NASH. Similarly, in rats with NASH resulted from 3 months of the high‐fat diet, we found a decreased expression of GLP‐1r and peroxisome proliferator‐activated receptor γ (PPARγ), and reduced peroxisome proliferator‐activated receptor α (PPARα) activity. Incubation of hepatocytes with exenatide increased PPARγ expression, which also exerted an insulin‐sensitizing action by reducing JNK phosphorylation. Moreover, exenatide increased protein kinase A (PKA) activity, Akt and AMPK phosphorylation and determined a PKA‐dependent increase of PPARα activity. Conclusions: GLP‐1 has a direct effect on hepatocytes, by activating genes involved in fatty acid β‐oxidation and insulin sensitivity. GLP‐1 analogues could be a promising treatment approach to improve hepatic insulin resistance in patients with NAFLD/NASH.  相似文献   

8.
Melatonin, a circadian molecule secreted by the pineal gland, confers a protective role against cardiac hypertrophy induced by hyperthyroidism, chronic hypoxia, and isoproterenol. However, its role against pressure overload‐induced cardiac hypertrophy and the underlying mechanisms remains elusive. In this study, we investigated the pharmacological effects of melatonin on pathological cardiac hypertrophy induced by transverse aortic constriction (TAC). Male C57BL/6 mice underwent TAC or sham surgery at day 0 and were then treated with melatonin (20 mg/kg/day, via drinking water) for 4 or 8 weeks. The 8‐week survival rate following TAC surgery was significantly increased by melatonin. Melatonin treatment for 8 weeks markedly ameliorated cardiac hypertrophy. Compared with the TAC group, melatonin treatment for both 4 and 8 weeks reduced pulmonary congestion, upregulated the expression level of α‐myosin heavy chain, downregulated the expression level of β‐myosin heavy chain and atrial natriuretic peptide, and attenuated the degree of cardiac fibrosis. In addition, melatonin treatment slowed the deterioration of cardiac contractile function caused by pressure overload. These effects of melatonin were accompanied by a significant upregulation in the expression of peroxisome proliferator‐activated receptor‐gamma co‐activator‐1 beta (PGC‐1β) and the inhibition of oxidative stress. In vitro studies showed that melatonin also protects against angiotensin II‐induced cardiomyocyte hypertrophy and oxidative stress, which were largely abolished by knocking down the expression of PGC‐1β using small interfering RNA. In summary, our results demonstrate that melatonin protects against pathological cardiac hypertrophy induced by pressure overload through activating PGC‐1β.  相似文献   

9.
Liver fibrosis is scar tissue resulting from an uncontrolled wound‐healing process in response to chronic liver injury. Liver damage generates an inflammatory reaction that activates hepatic stellate cells (HSC) that transdifferentiate from quiescent cells that control retinol metabolism to proliferative and migratory myofibroblasts that produce excessive amounts of extracellular matrix proteins, in particular collagen 1a1 (COL1A1). Although liver fibrosis is reversible, no effective drug therapy is available to prevent or reverse HSC activation. Melatonin has potent hepatoprotective properties in a variety of acute and chronic liver injury models and suppresses liver fibrosis. However, it remains unclear whether melatonin acts indirectly or directly on HSC to prevent liver fibrosis. Here, we studied the effect of melatonin on culture‐activated rat HSC. Melatonin dose‐dependently suppressed the expression of HSC activation markers Col1a1 and alpha‐smooth muscle actin (αSMA, Acta2), as well as HSC proliferation and loss of lipid droplets. The nuclear melatonin sensor retinoic acid receptor‐related orphan receptor‐alpha (RORα/Nr1f1) was expressed in quiescent and activated HSC, while the membranous melatonin receptors (Mtrn1a and Mtrn1b) were not. The synthetic RORα agonist SR1078 more potently suppressed Col1a1 and αSma expression, HSC proliferation, and lipid droplet loss, while the RORα antagonist SR1001 blocked the antifibrotic features of melatonin. Melatonin and SR1078 inhibited the expression of Alox5, encoding 5‐lipoxygenase (5‐LO). The pharmacological 5‐LO inhibitor AA861 reduced Acta2 and Col1a1 expression in activated HSC. We conclude that melatonin directly suppresses HSC activation via RORα‐mediated inhibition of Alox5 expression, which provides novel drug targets to treat liver fibrosis.  相似文献   

10.
Melatonin is involved in the physiological regulation of the β‐amyloid precursor protein (βAPP)‐cleaving secretases which are responsible for generation of the neurotoxic amyloid beta (Aβ) peptide, one of the hallmarks of Alzheimer's disease (AD) pathology. In this study, we aimed to determine the underlying mechanisms of this regulation under pathological conditions. We establish that melatonin prevents Aβ42‐induced downregulation of a disintegrin and metalloproteinase domain‐containing protein 10 (ADAM10) as well as upregulation of β‐site APP‐cleaving enzyme 1 (BACE1) and presenilin 1 (PS1) in SH‐SY5Y cell cultures. We also demonstrate that the intrinsic mechanisms of the observed effects occurred via regulation of nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF‐κB) and glycogen synthase kinase (GSK)‐3β as melatonin reversed Aβ42‐induced upregulation and nuclear translocation of NF‐κBp65 as well as activation of GSK3β via its receptor activation. Furthermore, specific blocking of the NF‐κB and GSK3β pathways partially abrogated the Aβ42‐induced reduction in the BACE1 and PS1 levels. In addition, GSK3β blockage affected α‐secretase cleavage and modulated nuclear translocation of NF‐κB. Importantly, our study for the first time shows that peptidyl‐prolyl cis‐trans isomerase NIMA‐interacting 1 (Pin1) is a crucial target of melatonin. The compromised levels and/or genetic variation of Pin1 are associated with age‐dependent tau and Aβ pathologies and neuronal degeneration. Interestingly, melatonin alleviated the Aβ42‐induced reduction of nuclear Pin1 levels and preserved the functional integrity of this isomerase. Our findings illustrate that melatonin attenuates Aβ42‐induced alterations of βAPP‐cleaving secretases possibly via the Pin1/GSK3β/NF‐κB pathway.  相似文献   

11.
12.
13.
14.
The human liver fluke Opisthorchis viverrini infection and N‐nitrosodimethylamine (NDMA) administration induce cholangiocarcinoma (CCA) and liver injury in hamsters. Melatonin protects against liver injury and reduces the alteration of mitochondrial structure, mitochondrial membrane potential, and mitochondrial pro‐ and anti‐apoptotic pathways in various cancer types. To investigate the chemopreventive effect of melatonin on CCA genesis and liver injury, hamsters were treated with a combination of O. viverrini infection and NDMA concurrently administered with melatonin (10 mg/kg and 50 mg/kg) for 120 days. Melatonin treatment at 50 mg/kg caused a significant reduction in liver/body weight ratios and decreased tumor volumes leading to an increase in the survival of animals. In the tumorous tissues, the high‐dose melatonin reduced DNA fragmentation and mitochondrial apoptosis by inducing anti‐apoptotic protein (Bcl‐2) in the mitochondrial fraction and down‐regulating cytochrome c, pro‐apoptotic protein (Bax), and caspase‐3 in tumor cytosol. Moreover, a high‐dose melatonin treatment significantly increased mitochondrial antioxidant enzymes and prevented mitochondrial ultrastructure changes in the tumor. Overall, melatonin has potent chemopreventive effects in inhibiting CCA genesis and also reduces liver injury in hamster CCA, which, in part, might involve in the suppression of CCA by reducing tumor mitochondria alteration.  相似文献   

15.
The cardiac microvascular system, which is primarily composed of monolayer endothelial cells, is the site of blood supply and nutrient exchange to cardiomyocytes. However, microvascular ischemia/reperfusion injury (IRI) following percutaneous coronary intervention is a woefully neglected topic, and few strategies are available to reverse such pathologies. Here, we studied the effects of melatonin on microcirculation IRI and elucidated the underlying mechanism. Melatonin markedly reduced infarcted area, improved cardiac function, restored blood flow, and lower microcirculation perfusion defects. Histological analysis showed that cardiac microcirculation endothelial cells (CMEC) in melatonin‐treated mice had an unbroken endothelial barrier, increased endothelial nitric oxide synthase expression, unobstructed lumen, reduced inflammatory cell infiltration, and less endothelial damage. In contrast, AMP‐activated protein kinase α (AMPKα) deficiency abolished the beneficial effects of melatonin on microvasculature. In vitro, IRI activated dynamin‐related protein 1 (Drp1)‐dependent mitochondrial fission, which subsequently induced voltage‐dependent anion channel 1 (VDAC1) oligomerization, hexokinase 2 (HK2) liberation, mitochondrial permeability transition pore (mPTP) opening, PINK1/Parkin upregulation, and ultimately mitophagy‐mediated CMEC death. However, melatonin strengthened CMEC survival via activation of AMPKα, followed by p‐Drp1S616 downregulation and p‐Drp1S37 upregulation, which blunted Drp1‐dependent mitochondrial fission. Suppression of mitochondrial fission by melatonin recovered VDAC1‐HK2 interaction that prevented mPTP opening and PINK1/Parkin activation, eventually blocking mitophagy‐mediated cellular death. In summary, this study confirmed that melatonin protects cardiac microvasculature against IRI. The underlying mechanism may be attributed to the inhibitory effects of melatonin on mitochondrial fission‐VDAC1‐HK2‐mPTP‐mitophagy axis via activation of AMPKα.  相似文献   

16.
The sphingosine kinase (SphK)1/sphingosine‐1‐phosphate (S1P) pathway is involved in multiple biological processes, including liver diseases. This study investigate whether modulation of the SphK1/S1P system associates to the beneficial effects of melatonin in an animal model of acute liver failure (ALF) induced by the rabbit hemorrhagic disease virus (RHDV). Rabbits were experimentally infected with 2 × 104 hemagglutination units of a RHDV isolate and received 20 mg/kg of melatonin at 0, 12, and 24 hr postinfection. Liver mRNA levels, protein concentration, and immunohistochemical labeling for SphK1 increased in RHDV‐infected rabbits. S1P production and protein expression of the S1PR1 receptor were significantly elevated following RHDV infection. These effects were significantly reduced by melatonin. Rabbits also exhibited increased expression of toll‐like receptor (TLR)4, tumor necrosis factor alpha (TNF‐α), interleukin (IL)‐6, nuclear factor‐kappa B (NF‐κB) p50 and p65 subunits, and phosphorylated inhibitor of kappa B (IκB)α. Melatonin administration significantly inhibited those changes and induced a decreased immunoreactivity for RHDV viral VP60 antigen in the liver. Results obtained indicate that the SphK1/S1P system activates in parallel to viral replication and the inflammatory process induced by the virus. Inhibition of the lipid signaling pathway by the indole reveals novel molecular pathways that may account for the protective effect of melatonin in this animal model of ALF, and supports the potential of melatonin as an antiviral agent.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号