首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
AIM: Fatty acid-CoA ligase 4 (FACL4) is an arachidonate-preferring enzyme which has been shown to be up-regulated in human colon cancer tissues and implicated in the colon tumorigenesis. The purpose of this study was to investigate the role of FACL4 in the human hepatocellular carcinoma (HCC) tumorigenesis and the specific signal pathways involved in this process. METHODS: We investigated the expression and regulation of FACL4 in HCC, adjacent non-tumorous liver tissues, and cell lines. RESULTS: In HCC patients, we demonstrated that FACL4 gene expression was markedly elevated in the cancerous tissues than in the adjacent non-cancerous liver tissues. In addition, several human hepatoma cell lines, including Hep3B and HepG2, expressed high levels of FACL4. Stable overex-pression of FACL4 knockdown plasmids (small interfering RNA, siRNA) to Hep3B cells significantly decreased FACL4 expression and subsequently limited the cell proliferation. Treatment of Hep3B cells with 8-bromo-cAMP and SB203508 (p38 MAPK inhibitor) significantly suppressed the FACL4 expression. CONCLUSION: FACL4 is involved in the HCC tumorigenesis and both cAMP and p38 MAPK pathways are associated with the regulation of FACL4 in HCC.  相似文献   

2.
Objective Previous investigations have shown that N-acetylcysteine (NAC) could regulate diverse cell type's apoptosis. The purpose of this study was to evaluate the mechanism of NAC reversed apoptosis of cardiomyocytes induced by hypoxia-reoxygenation (H/R). Methods Cardiomyocytes were treated with hypoxia 6 h and reoxygenation 72 h in the absence and presence of NAC (100/2mol/ L). The ROS was assayed by using Image-iTTM LIVE green reactive oxygen species detection kit. The viability of cell was assayed with trypan blue. Early stages ofapoptosis were assessed by flow cytometry using Annexin V, and late stages of apoptosis were assessed using TUNEL system. Bcl2 and bax mRNA levels were determined by real-time quantitative PCR. Bcl2, bax, p38 and pp38 protein levels were determined by western blot. Results We found that H/R could markedly increase ROS generation and induce the apoptosis of cardiomyocytes (P〈0.01). NAC (10012 mol/L) significantly reduced the generation of ROS and apoptosis (P all 〈0.01). NAC also significantly reduced the protein ratio of pp38 and p38 and increased the RNA and protein ratio of bcl2 and bax (P all 〈0.01). Conclusion The results showed that NAC significantly reduced apoptosis through inhibiting the phosphorylation of p38 signal pathway, which has potential value for clinical cardiac diseases (J Geriatr Cardio12009; 6:168-172).  相似文献   

3.
AIM: To explore the effect of Echinococcusmultilocularis on the activation of mitogen-activated protein kinase (MAPK) signaling pathways and on livercell proliferation.METHODS: Changes in the phosphorylation of MAPKs and proliferating cell nuclear antigen (PCNA)expression were measured in the liver of patients withalveolar echinococcosis (AE). MAPKs, MEK1/2 [MAPK/extracellular signal-regulated protein kinase (ERK)kinase] and ribosomal S6 kinase (RSK) phosphorylationwere detected in primary cultures of rat hepatocytesin contact in vitro with (1) E. multilocu/aris vesicle fluid(EmF), (2)E. multilocularis-conditioned medium (EmCM).RESULTS: In the liver of AE patients, ERK 1/2 andp38 MAPK were activated and PCNA expression wasincreased, especially in the vicinity of the metacestode.Upon exposure to EmF, p38, c-Jun N-terminal kinase(JNK) and ERK1/2 were also activated in hepatocytesin vitro, as well as MEK1/2 and RSK, in the absenceof any toxic effect. Upon exposure to EmCM, only JNKwas up-regulated.CONCLUSION: Previous studies have demonstratedan influence of the host on the MAPK cascade inE. multilocularis. Our data suggest that the reverse,i.e. parasite-derived signals efficiently acting onMAPK signaling pathways in host liver ceils, is actuallyoperating.  相似文献   

4.
5.
6.
Fibroblast growth factor receptors(FGFRs) regulate a variety of cellular functions, from embryogenesis to adult tissue homeostasis. FGFR signaling also plays significant roles in the proliferation, invasion, and survival of several types of tumor cells. FGFR-induced alterations, including gene amplification, chromosomal translocation, and mutations, have been shown to be associated with the tumor initiation and progression of gastric cancer, especially in diffuse-type cancers. Therefore, the FGFR signaling pathway might be one of the therapeutic targets in gastric cancer. This review aims to provide an overview of the role of FGFR signaling in tumorigenesis, tumor progression, proliferation, and chemoresistance. We also discuss the accumulating evidence that demonstrates the effectiveness of using clinical therapeutic agents to inhibit FGFR signaling for the treatment of gastric cancer.  相似文献   

7.
Involvement of ATM/ATR-p38 MAPK cascade in MNNG induced G1-S arrest   总被引:2,自引:0,他引:2  
AIM: To understand the effect of low concentration of N-methyI-N‘-nitro-nitTosoguanidine (MNNG), which is a widely distributed environmental mutagen and carcinogen especially for human gastric cancer, on DNA damage and to study its possible pathway in regulating cell cycle arrest.METHODS: The DNA damage effect was measured by Comet assay. A specific phospho-(Ser/Thr) ATH/ATR substrate antibody was used to detect the damage sensor by Western blot. p38 kinase activity was measured by direct kinase assay,and immunopredpitation for the possible connection between ATH/ATR and p38 HAPK. Row cytometry analysis and p38 HAPK specific inhibitor SB203580 were combined to detect the possible cell cycle arrest by p38 HAPK.RESULTS: With the same low concentration MNNG exposure (0.2μM 2.5 h), Comet assays indicated that strand breaks accumulated, Western blot and kinase assay showed ATM/ATR and p38 kinase activated, immunoprecipitation showed phospho-ATH/ATR substrate antibody combined with both p38 HAPK antibody and phospho-p38 HAPK antibody, p38 HAPK pathway was involved in the G1-S arrest.CONCLUSION: Activation of ATM/ATR by MNNG induced DNA damage leads to activation of p38 MAPK, which involves in the G1 checkpoint in mammalian cells.  相似文献   

8.
9.
Invasion and metastasis are the deadly face of malignant tumors. Considering the high rate of incidence and mortality of colorectal cancer, it is critical to determine the mechanisms of its dissemination. In the parallel investigation of the invasive front and tumor center area of colorectal cancer (CRC), observation of heterogeneous β-catenin distribution and epithelial-mesenchymal transition (EMT) at the invasive front suggested that there might be a crosstalk between tumor cells and the tumor microenvironment. Wnt signaling pathway is also involved in the cancer progression due to its key role in CRC tumorigenesis. Moreover, in recent years, there is increasing evidence that the regulators of microenvironment, including extracellular matrix, growth factors and inflammatory factors, are associated with the activation of Wnt pathway and the mobility of tumor cells. In this review, we will try to explain how these molecules trigger metastasis via the Wnt pathway.  相似文献   

10.
11.
Tumor necrosis factor α (TNF-α) is an inflammatory mediator overexpressed in the skin as a response to ultraviolet radiation, as well as in chronic non-healing wounds. On the other hand, senescent fibroblasts have been shown to accumulate in the skin under these stressful conditions. Accordingly, here we assessed the putative implication of TNF-α in the induction of premature senescence of human adult dermal fibroblasts. We showed that TNF-α led to a rapid transient p38 MAPK activation, while elevation of reactive oxygen species (ROS) only occurred after a chronic exposure to TNF-α. Furthermore, in contrast to the majority of previous reports using various cell models and experimental settings, it was a long-term treatment with TNF-α that resulted in the premature senescence of human dermal fibroblasts, as shown by the reduced proliferative potential and the increased senescence associated β-galactosidase staining of the cells. TNF-α-senescent cells displayed a permanent phosphorylation of p38 MAPK and an inflammatory and catabolic phenotype. Increased ROS levels were also observed, possibly attributed to the weakened anti-oxidative response evidenced by the underexpression of the Nrf2-regulated genes encoding HO-1 and NQO1. These traits and the overall senescent phenotype were significantly reversed using the known anti-oxidant N-acetyl-l-cysteine or a specific p38 MAPK inhibitor, suggesting the participation of oxidative stress and of the p38 MAPK pathway in TNF-α-triggered premature senescence. Even more, the observed blockade of ROS accumulation in senescent skin fibroblasts by p38 MAPK inhibition indicates a possible link between these two separate events during the manifestation of TNF-α-induced senescence.  相似文献   

12.
目的探究阿托伐他汀通过调节ERK/MAPK信号通路改善H2O2诱导的血管内皮细胞损伤的作用机制。方法体外培养人脐静脉内皮细胞(HUVECs),分为空白对照组、模型组(H2O2处理)、阿托伐他汀组(阿托伐他汀+H2O2)、U0126组(ERK/MAPK信号通路抑制剂U0126+H2O2)、阿托伐他汀+LM22B-10组(阿托伐他汀和ERK/MAPK信号通路激活剂LM22B-10+H2O2)。采用MTT法、AO/EB染色法分别检测各组细胞活性、凋亡率;用酶联免疫吸附法检测各组细胞乳酸脱氢酶(LDH)、丙二醛(MDA)、超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)含量;荧光法检测活性氧簇(ROS)水平;Western blot法检测各组细胞中ERK1/2、p-ERK1/2、p38 MAPK、p-p38 MAPK蛋白表达。结果与空白对照组比较,模型组细胞增殖活性、SOD和GSH-Px含量降低,细胞凋亡率、LDH、MDA和ROS水平增加,p-ERK1/2/ERK1/2、p-p38 MAPK/p38 MAPK蛋白表达比值上调(P均<0.05)。与模型组比较,阿托伐他汀组细胞增殖活性、SOD和GSH-Px含量升高,细胞凋亡率、LDH、MDA和ROS水平降低,且p-ERK1/2/ERK1/2、p-p38 MAPK/p38 MAPK蛋白表达比值下调(P均<0.05)。与阿托伐他汀组比较,阿托伐他汀+LM22B-10组细胞增殖活性、SOD和GSH-Px含量降低,凋亡率、LDH、MDA和ROS水平升高,同时p-ERK1/2/ERK1/2、p-p38 MAPK/p38 MAPK蛋白表达比值上调(P均<0.05)。结论阿托伐他汀能够改善H2O2诱导的血管内皮细胞损伤,其机制与抑制ERK/MAPK信号通路进而降低ROS介导的血管内皮细胞凋亡和氧化应激损伤有关。  相似文献   

13.
目的探讨p38MAPK信号通路在胰高血糖素样肽1(GLP-1)拮抗人脐静脉内皮细胞凋亡中的作用。方法实验分为对照组、糖基化终末产物(AGE)组、GLP-1组、AGE+GLP-1组、AGE+SB203580组、AGE+GLP-1+SB203580组及AGE+GLP-1+L-NAME组,Western blot检测p-p38MAPK/p38MAPK、磷酸化内皮型一氧化氮合酶/内皮型一氧化氮合酶(p-eNOS/eNOS)蛋白表达情况,NO检测试剂盒(一步法)检测NO含量,DCFH-DA荧光探针检测细胞活性氧(ROS)含量,Annexin V/PI流式检测细胞凋亡率。结果与AGE组相比,GLP-1预处理可诱导p-p38MAPK蛋白表达下降(P=0.000);与对照组比较,GLP-1或p38 MAPK抑制剂(SB203580)预处理后,受AGE抑制的eNOS蛋白表达或诱导的ROS水平分别显著升高(P=0.004)或下降(P=0.000);GLP-1预处理后,因AGE诱导的细胞凋亡率显著降低(P=0.000),而加入L-NAME后,GLP-1的抗凋亡作用显著减弱(P=0.002);GLP-1预处理后,细胞NO含量较单纯AGE组明显升高(P=0.000),而予以L-NAME后,细胞NO含量显著降低(P=0.011)。结论GLP-1可抑制p38 MAPK信号通路的活化,拮抗AGE对血管内皮细胞的氧化损伤;上调eNOS蛋白的表达,拮抗AGE诱导的内皮细胞NO生成障碍及细胞凋亡,从而延缓糖尿病合并动脉粥样硬化的发生发展。  相似文献   

14.
15.
OBJECTIVE: Several compounds, including butyrate and trichostatin A, have been shown to activate gamma-gene expression via p38 mitogen-activated protein kinase (MAPK) signaling. In eukaryotic cells, reactive oxygen species (ROS) act as signaling molecules to mediate phosphorylation of tyrosine kinases such as p38 MAPK to regulate gene expression. Therefore, we determined the role of the reactive oxygen species hydrogen peroxide (H(2)O(2)) in drug-mediated fetal hemoglobin (HbF) induction. METHODS: H(2)O(2) levels were measured using 2',7'-dichlorofluorescein-diacetate in K562 cells after drug treatments. To confirm a role for H(2)O(2) in HbF induction, studies were completed with the mitochondrial respiratory chain inhibitor myxothiazole, which prevents ROS generation. The ability of myxothiazole to block gamma-globin mRNA accumulation and HbF induction was measured in K562 cells and burst-forming unit-erythroid colonies respectively using quantitative real-time PCR and alkaline denaturation. RESULTS: Butyrate and trichostastin A stimulated p38 MAPK phosphorylation via a H(2)O(2)-dependent mechanism. Pretreatment with myxothiazole to inhibit ROS formation or SB203580 to impede p38 MAPK signaling attenuated gamma-gene activation in K562 cells and HbF induction in erythroid progenitors. However, myxothiazole had no effect on the ability of hydroxyurea to induce HbF. CONCLUSION: The findings presented herein support a ROS-p38 MAPK cell signaling mechanism for HbF induction by butyrate and trichostatin A.  相似文献   

16.
Hematopoietic stem cells (HSCs) are responsible for sustaining hematopoietic homeostasis and regeneration after injury for the entire lifespan of an organism through self-renewal, proliferation, differentiation, and mobilization. Their functions can be affected by reactive oxygen species (ROS) that are produced endogenously through cellular metabolism or after exposure to exogenous stress. At physiological levels, ROS function as signal molecules which can regulate a variety of cellular functions, including HSC proliferation, differentiation, and mobilization. However, an abnormal increase in ROS production occurs under various pathological conditions, which can inhibit HSC self-renewal and induce HSC senescence, resulting in premature exhaustion of HSCs and hematopoietic dysfunction. This review aims to provide a summary of a number of recent findings regarding the cellular sources of ROS in HSCs and the mechanisms of action whereby ROS induce HSC senescence. In particular, we highlight the roles of the p38 mitogen-activated protein kinase (p38)-p16Ink4a (p16) pathway in mediating ROS-induced HSC senescence.  相似文献   

17.
Myocardial mitogen-activated protein kinases can be activated by ischemia and reperfusion, and they may play important roles in the evolution of ischemic injury. Considerable work has been performed to evaluate the role of different MAPK signaling pathways in ischemia/reperfusion injury. The focus of this review is the p38 MAPK pathway, specifically whether activation of the p38 MAPK signaling pathway is beneficial or detrimental. Different studies have come to conflicting conclusions. This review will examine the literature on the role of p38 MAPK in myocardial ischemia/reperfusion injury, highlight areas of controversy and areas of general agreement, examine possible downstream targets of p38 during acute ischemia, and attempt to draw some conclusions. Received: 25 February 2002/Returned for revision: 14 March 2002/Revision received: 4 April 2002/Accepted: 8 April 2002  相似文献   

18.
19.
Stress-induced premature senescence (SIPS) is quite similar to replicative senescence that is committed by cells exposed to various stress conditions viz. ultraviolet radiation (DNA damage), hydrogen peroxide (oxidative stress), chemotherapeutic agents (cytotoxic threat), etc. Here, we report that cristacarpin, a natural product obtained from the stem bark of Erythrina suberosa, promotes endoplasmic reticulum (ER) stress, leading to sub-lethal reactive oxygen species (ROS) generation and which eventually terminates by triggering senescence in pancreatic and breast cancer cells through blocking the cell cycle in the G1 phase. The majority of cristacarpin-treated cells responded to conventional SA-β-gal stains; showed characteristic p21waf1 upregulation along with enlarged and flattened morphology; and increased volume, granularity, and formation of heterochromatin foci—all of these features are the hallmarks of senescence. Inhibition of ROS generation by N-acetyl-l-cysteine (NAC) significantly reduced the expression of p21waf1, confirming that the modulation in p21waf1 by anti-proliferative cristacarpin was ROS dependent. Further, the elevation in p21waf1 expression in PANC-1 and MCF-7 cells was consistent with the decrease in the expression of Cdk-2 and cyclinD1. Here, we provide evidence that cristacarpin promotes senescence in a p53-independent manner. Moreover, cristacarpin treatment induced p38MAPK, indicating the ROS-dependent activation of the MAP kinase pathway, and thus abrogates the tumor growth in mouse allograft tumor model.  相似文献   

20.
We recently reported that angiotensin II (Ang II) induced IL-6 mRNA expression in cardiac fibroblasts, which played an important role in Ang II-induced cardiac hypertrophy in paracrine fashion. The present study investigated the regulatory mechanism of Ang II-induced IL-6 gene expression, focusing especially on reactive oxygen species (ROS)-mediated signaling in cardiac fibroblasts. Ang II increased intracellular ROS in cardiac fibroblasts, and the increase was completely inhibited by the AT-1 blocker candesartan and the NADH/NADPH oxidase inhibitor diphenyleneiodonium (DPI). We first confirmed that antioxidant N-acetylcysteine, superoxide scavenger Tiron, and DPI suppressed Ang II-induced IL-6 expression. Because we observed that exogenous H(2)O(2) also increased IL-6 mRNA, the signaling pathways downstream of Ang II and exogenous H(2)O(2) were compared. Ang II, as well as exogenous H(2)O(2), activated ERK, p38 MAPK, and JNK, which were significantly inhibited by N-acetylcysteine and DPI. In contrast with exogenous H(2)O(2), however, Ang II did not influence phosphorylation and degradation of IkappaB-alpha/beta or nuclear translocation of p65, nor did it increase NF-kappaB promoter activity. PD98059 and SB203580 inhibited Ang II-induced IL-6 expression. Truncation and mutational analysis of the IL-6 gene promoter showed that CRE was an important cis-element in Ang II-induced IL-6 gene expression. NF-kappaB-binding site was important for the basal expression of IL-6, but was not activated by Ang II. Ang II phosphorylated CREB through the ERK and p38 MAPK pathway in a ROS-sensitive manner. Collectively, these data indicated that Ang II stimulated ROS production via the AT1 receptor and NADH/NADPH oxidase, and that these ROS mediated activation of MAPKs, which culminated in IL-6 gene expression through a CRE-dependent, but not NF-kappaB-dependent, pathway in cardiac fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号