首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombinant canine granulocyte-macrophage colony-stimulating factor (rcGM-CSF) was studied in normal dogs and in dogs receiving otherwise lethal total body irradiation (TBI) without marrow transplant. Five normal dogs receiving 25 micrograms/kg of rcGM-CSF by subcutaneous (SC) injection twice daily (BID) for 14 days showed increases in peripheral blood neutrophil counts of three to five times the baseline. Platelet counts decreased during administration of rcGM-CSF to a mean nadir of 52,800. Ten dogs received 400 cGy TBI at 10 cGy/min from two opposing 60Co sources and no marrow graft. Within 2 hours of TBI, rcGM-CSF was begun at a dose of 50 micrograms/kg SC BID for 5 doses and then continued at 25 micrograms/kg SC BID for 21 days. Only 1 of the 10 dogs receiving rcGM-CSF survived with complete and sustained recovery of hematopoiesis. One of 13 historical control dogs survived after 400 cGy with no hematopoietic growth factor or marrow infusion. Results with rcGM-CSF were compared with previous and concurrent data with G-CSF studied in the same model. Of 10 dogs receiving G-CSF, 8 survived with complete and sustained hematopoietic recovery, a significantly better survival than that seen with rcGM-CSF (P = .006). Neutrophil counts were sustained at higher levels after TBI for the first 18 days in the G-CSF group (P < .016) and the neutrophil nadirs were higher. No differences in neutrophil nadirs were noted between the rcGM-CSF and control groups. Dogs treated with rcGM-CSF experienced a more rapid decline of platelet counts than G-CSF-treated or control dogs over the first 18 days (P < .001). The nadir of the platelet count was higher in the control group than in either the G-CSF or rcGM-CSF group and no significant difference was observed between the G-CSF and rcGM-CSF groups. After otherwise lethal TBI (400 cGy) in dogs, rcGM-CSF was not effective in promoting hematopoietic recovery or improving survival.  相似文献   

2.
This study was designed to test whether recombinant human G-CSF (rh G-CSF) affects hematopoiesis in normal dogs and, if so, to test the effects of G-CSF in dogs given otherwise lethal total body irradiation (TBI). Rh G-CSF given subcutaneously at 10 or 100 micrograms/kg/d for 14 days to two normal dogs increased peripheral blood neutrophils eight to tenfold and monocytes four to sixfold above controls. Lymphocyte counts remained unchanged at the lower dose and increased threefold at the higher dose of rh G-CSF. No significant changes were observed in eosinophil, platelet, reticulocyte, or hematocrit levels. After 2 weeks of treatment with rh G-CSF, bone marrow displayed myeloid hyperplasia and left-shifted granulocytopoiesis. After discontinuation of rh G-CSF, peripheral leukocyte counts returned to control levels within three days. Five dogs administered 400 cGy TBI at 10 cGy/min from two opposing 60Co sources and no marrow infusion or growth factor, all developed profound pancytopenia and died between 17 and 23 days after TBI with infections secondary to marrow aplasia. Four of five dogs treated within two hours after 400 cGy TBI with 100 micrograms rh G-CSF/kg/d subcutaneously twice a day for 21 days showed complete and sustained endogenous hematopoietic recovery. In contrast, five dogs irradiated with 400 cGy TBI and treated with 100 micrograms rh G-CSF/kg/d starting on day 7 after TBI, all died between days 17 and 20 after TBI with infections secondary to marrow aplasia. Rh G-CSF, if administered shortly after irradiation, can reverse the otherwise lethal myelosuppressive effect of radiation exposure.  相似文献   

3.
The synthetic cytokine (Synthokine) SC-55494 is a high-affinity interleukin-3 (IL-3) receptor ligand that stimulates greater in vitro multilineage hematopoietic activity than native IL-3, while inducing no significant increase in inflammatory activity relative to native IL-3. The aim of this study was to investigate the in vivo hematopoietic response of rhesus monkeys receiving Synthokine after radiation-induced marrow aplasia. Administration schedule and dose of Synthokine were evaluated. All animals were total-body irradiated (TBI) with 700 cGy 60Co gamma radiation on day 0. Beginning on day 1, cohorts of animals (n = 5) received Synthokine subcutaneously (SC) twice daily with 25 micrograms/kg/d or 100 micrograms/kg/d for 23 days or 100 micrograms/kg/d for 14 days. Control animals (n = 9) received human serum albumin SC once daily at 15 micrograms/kg/d for 23 days. Complete blood counts were monitored for 60 days postirradiation and the durations of neutropenia (NEUT; absolute neutrophil count [ANC] < 500/microL) and thrombocytopenia (THROM; platelet count < 20,000/microL) were assessed. Synthokine significantly (P < .05) reduced the duration of THROM versus the HSA-treated animals regardless of dose or protocol length. The most striking reduction was obtained in the animals receiving 100 micrograms/kg/d for 23 days (THROM = 3.5 v 12.5 days in HSA control animals). Although the duration of NEUT was not significantly altered, the depth of the nadir was significantly lessened in all animal cohorts treated with Synthokine regardless of dose versus schedule length. Bone marrow progenitor cell cultures indicated a beneficial effect of Synthokine on the recovery of granulocyte-macrophage colony-forming units that was significantly higher at day 24 post-TBI in both cohorts treated at 25 and 100 micrograms/kg/d for 23 days relative to the control animals. Plasma pharmacokinetic parameters were evaluated in both normal and irradiated animals. Pharmacokinetic analysis performed in irradiated animals after 1 week of treatment suggests an effect of repetitive Synthokine schedule and/or TBI on distribution and/or elimination of Synthokine. These data show that the Synthokine, SC55 94, administered therapeutically post-TBI, significantly enhanced platelet recovery and modulated neutrophil nadir and may be clinically useful in the treatment of the myeloablated host.  相似文献   

4.
MacVittie  TJ; Farese  AM; Herodin  F; Grab  LB; Baum  CM; McKearn  JP 《Blood》1996,87(10):4129-4135
Combination cytokine therapy continues to be evaluated in an effort to stimulate multilineage hematopoietic reconstitution after bone marrow myelosuppression. This study evaluated the efficacy of combination therapy with the synthetic interleukin-3 receptor agonist, Synthokine- SC55494, and recombinant methionyl human granulocyte colony-stimulating factor (rhG-CSF) on platelet and neutrophil recovery in nonhuman primates exposed to total body 700 cGy 60Co gamma radiation. After irradiation on day (d) 0, cohorts of animals subcutaneously received single-agent protocols of either human serum albumin (HSA; every day [QD], 15 micrograms/kg/d, n = 10), Synthokine (twice daily [BID], 100, micrograms/kg/d, n = 15), rhG-CSF (QD, 10 micrograms/kg/d, n = 5), or a combination of Synthokine and rhG-CSF (BID, 100 and 10 micrograms/kg/d, respectively, n = 5) for 23 days beginning on d1. Complete blood counts were monitored for 60 days postirradiation and the durations of neutropenia (absolute neutrophil count < 500/microL) and thrombocytopenia (platelet count < 20,000/microL) were assessed. Animals were provided clinical support in the form of antibiotics, fresh irradiated whole blood, and fluids. All cytokine protocols significantly (P < .05) reduced the duration thrombocytopenia versus the HSA-treated animals. Only the combination protocol of Synthokine + rhG-CSF and rhG-CSF alone significantly shortened the period neutropenia (P < .05). The combined Synthokine/rhG-CSF protocol significantly improved platelet nadir versus Synthokine alone and HSA controls and neutrophil nadir versus rhG-CSF alone and HSA controls. All cytokine protocols decreased the time to recovery to preirradiation neutrophil and platelet values. The Synthokine/rhG-CSF protocol also reduced the transfusion requirements per treatment group to 0 among 5 animals as compared with 2 among 5 animals for Synthokine alone, 8 among 5 animals for rhG-CSF, and 17 among 10 animals for HSA. These data showed that the combination of Synthokine, SC-55494, and rhG-CSF further decreased the cytopenic periods and nadirs for both platelets and neutrophils relative to Synthokine and rhG-CSF monotherapy and suggest that this combination therapy would be effective against both neutropenia and thrombocytopenia consequent to drug- or radiation- induced myelosuppression.  相似文献   

5.
The effects of recombinant canine granulocyte colony-stimulating factor (rcG-CSF) and recombinant canine stem cell factor (rcSCF), a c-kit ligand, on the circulation of hematopoietic progenitor and stem cells were studied in a canine model. Administration of rcG-CSF (10 micrograms/kg) for 7 days led to a 5.4-fold increase in CFU-GM/mL of blood, while 7 days of rcSCF (200 micrograms/kg) led to an 8.2-fold increase. Although treatment with low-dose rcSCF (25 micrograms/kg) had no effect on the level of peripheral blood progenitors, 7-day exposure to a combination of G-CSF plus low dose SCF led to a 21.6-fold increase (P = .03). To assess the ability of these factors to increase the circulation of cells capable of rescuing animals after lethal total body irradiation (TBI), 1 x 10(8) peripheral blood mononuclear cells (PBMC)/kg were collected and cryopreserved from animals after 7 days of treatment with G-CSF, SCF or a combination of the two. One month later, animals were exposed to 9.2 Gy TBI and transplanted with the previously collected cells. Control animals transplanted with 1 x 10(8) PBMC/kg collected without pretreatment died with marrow aplasia 11 to 29 days after TBI as did animals treated with only low-dose SCF before cell collection. In contrast, all animals given PBMC collected after G-CSF, high-dose SCF, or a combination of G-CSF plus low-dose SCF recovered granulocyte function. Recovery to 500 granulocytes/microL after transplant took 17, 18.8, and 13.6 days, respectively, (P = .056 for the difference between the combination G-CSF-SCF group and the other two groups). In both the G-CSF and SCF groups, 4 of 5 animals completely recovered while 1 of 5 in each group died with prolonged thrombocytopenia. In the combination group, all 5 animals became long- term survivors. These studies demonstrate that both G-CSF and SCF dramatically increase the level of peripheral blood hematopoietic progenitor and stem cells and support the view that these factors can act synergistically.  相似文献   

6.
Myelopoietins (MPOs) constitute a family of engineered, chimeric molecules that bind and activate the IL-3 and G-CSF receptors on hematopoietic cells. This study investigated the in vivo hematopoietic response of rhesus monkeys administered MPO after radiation-induced myelosuppression. Animals were total body irradiated (TBI) in 2 series, with biologically equivalent doses consisting of either a 700 cGy dose of Cobalt-60 ((60)Co) gamma-radiation or 600 cGy, 250 kVp x-irradiation. First series: On day 1 after 700 cGy irradiation, cohorts of animals were subcutaneously (SC) administered MPO at 200 microg/kg/d (n = 4), or 50 microg/kg/d (n = 2), twice daily, or human serum albumin (HSA) (n = 10). Second series: The 600 cGy x-irradiated cohorts of animals were administered either MPO at 200 microg/kg/d, in a daily schedule (n = 4) or 0.1% autologous serum (AS), daily, SC (n = 11) for 23 days. MPO regardless of administration schedule (twice a day or every day) significantly reduced the mean durations of neutropenia (absolute neutrophil count [ANC] < 500/microL) and thrombocytopenia (platelet < 20,000/microL) versus respective control-treated cohorts. Mean neutrophil and platelet nadirs were significantly improved and time to recovery for neutrophils (ANC to < 500/microL) and platelets (PLT < 20,000/microL) were significantly enhanced in the MPO-treated cohorts versus controls. Red cell recovery was further improved relative to control-treated cohorts that received whole blood transfusions. Significant increases in bone marrow-derived clonogenic activity was observed by day 14 after TBI in MPO-treated cohorts versus respective time-matched controls. Thus, MPO, administered daily was as effective as a twice daily schedule for multilineage recovery in nonhuman primates after high-dose, radiation-induced myelosuppression.  相似文献   

7.
We examined the effects of recombinant human granulocyte colony-stimulating factor (rG-CSF) on neutropenia induced by chemotherapy in 10 patients with non-Hodgkin's lymphoma (NHL). The numbers of peripheral blood hematopoietic progenitors were also evaluated before and after administration of rG-CSF. Six patients received an administration of 2 micrograms/kg/body weight of rG-CSF subcutaneously for 14 days after 2nd chemotherapy. Four patients received intravenous infusion of rG-CSF (300 micrograms/body/day) for 4 days from nadir state after chemotherapy. Administration of rG-CSF from the termination of chemotherapy, markedly shortend the period of bone marrow hypoplasia induced by chemotherapy. On the other hand, administration of rhG-CSF from nadir state after chemotherapy have accelerated the recovery of neutrophil counts. In addition, this type of therapy induced 26 to 60 folds increase of peripheral blood hematopoietic progenitors. These results demonstrate the validity of administration of rhG-CSF not only in the chemotherapy of NHL, but also in peripheral blood stem cell transplantation (PBSCT).  相似文献   

8.
We studied whether treatment of dogs with recombinant human granulocyte colony-stimulating factor (rhG-CSF), after 920 cGy total body irradiation (TBI) and transplantation of 3.3 +/- 1.0 x 10(8) bone marrow cells per kilogram from a DLA-identical littermate, accelerated hematopoietic recovery and influenced the incidence of subsequent marrow graft failure or graft-versus-host disease (GVHD). Ten animals were treated with 100 micrograms rhG-CSF/kg/d from days 1 through 10 after TBI. Results were compared with those of historical control of 14 dogs not administered rhG-CSF. Neither group of dogs received GVHD prophylaxis. The median time to recovery of 1,000 neutrophils/mm3 was 8 days for dogs administered rhG-CSF compared with 14 days in controls (logrank test: P less than .03). The median time to reach 100 monocytes/mm3 was 17 days in G-CSF-treated dogs compared with 49 days in controls (P less than .002). The median time to attain 500 lymphocytes/mm3 was 15 days versus 31 days, respectively (P less than .01). The median time to reach 20,000 platelets/mm3 was 26 versus 20 days (P = .68). Graft failure occurred in 1 of 10 G-CSF-treated dogs versus 2 of 14 controls (two-tailed Fisher's exact test: P = 1.00). GVHD was seen in 4 of 9 rhG-CSF-treated dogs compared with 1 of 12 controls (P = .12). Two G-CSF-treated dogs died of GVHD versus none of the controls (P = .17). No unusual toxicities were seen in dogs receiving rhG-CSF. In summary, rhG-CSF significantly accelerated recovery of neutrophils, monocytes, and lymphocytes after DLA-identical littermate marrow transplantation without altering platelet recovery. Graft failure was not seen more often than in controls, but there was a trend toward an increased incidence of GVHD.  相似文献   

9.
Nineteen patients with myelodysplastic syndromes (MDS) were treated with a glycosylated recombinant granulocyte colony-stimulating factor (rG-CSF) for improvement of neutropenia. rG-CSF was administrated intravenously at a dose of 5 micrograms/kg/day for 14 consecutive days. Most of patients responded to rG-CSF and an approximately 10 fold increase of the peak neutrophil counts was observed. The neutrophil counts were maintained at high level during the treatment period and returned to pretreatment levels several days after stopping rG-CSF. Consistent with the recovery of neutrophil, infectious complications improved in many cases. Effects of rG-CSF were confined to neutrophils, sparing blast cells and other blood cells. Eruption was observed in one patient as toxicity. We conclude that rG-CSF therapy is effective in improving neutropenia with MDS patients.  相似文献   

10.
The clinical effect of recombinant human granulocyte colony-stimulating factor (rG-CSF), produced by Chinese hamster ovary cells, was studied in 27 patients with childhood neutropenias. The sample consisted of 8 patients with congenital neutropenia (Kostmann type), 9 with neutropenia with miscellaneous causes (5 chronic benign, 2 associated with hypogammaglobulinemia, 1 drug-induced, and 1 hypoplastic type), 3 with cyclic neutropenia, and 7 with severe aplastic anemia. The rG-CSF was given subcutaneously (or in a few cases intravenously) at a dose of 2 micrograms/kg/day for 7 days and 5 micrograms/kg/day for additional 7 to 28 days in cases with poor response. The rG-CSF was effective in 18 of 27 cases (67%). Patients with congenital neutropenia and aplastic anemia responded less frequently and poorly. The mean level of absolute neutrophil counts of 8 congenital neutropenia cases increased from 88/microliters to 2,718/microliters. That of 9 miscellaneous cases changed from 189/microliters to 7,224/microliters at a dose of 2 micrograms/kg/day. In 7 aplastic anemia cases pretreatment level of 220/microliters rose to 851/microliters, usually after increasing the dose up to 5 micrograms/kg/day. The rG-CSF was apparently effective in 3 cases of cyclic neutropenia. In any type of neutropenia, the effect was largely transient; after the discontinuation of rG-CSF, the absolute neutrophil counts tended to decrease to pretreatment levels within 1 to 2 weeks. The G-CSF was well tolerated, and only one case with mild lumbago and another with minimal elevation of transaminases were observed. We conclude that the rG-CSF can be effective for treating various types of childhood neutropenia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We have studied the role of different conditioning regimens for engraftment of genetically marked hematopoietic repopulating cells in dogs. Peripheral blood (PB) and/or marrow cells collected after treatment with recombinant canine stem cell factor (rcSCF) or cyclophosphamide were transduced in a vector-containing long-term culture system. Three different vector-producing cell lines with similar viral titers were used. In two of them, the neo-containing LN vector was packaged either in the PA317 cell line with an amphotropic murine retrovirus envelope or the PG13 cell line with the gibbon ape leukemia virus (GALV) envelope. The MFG/GC vector produced in PA317 cells contained the human glucocerebrosidase gene. Nineteen dogs received either no conditioning (group A, n = 5), irradiation to both humeri with 1,000 cGy (group B, n = 5), a sublethal dose of cyclophosphamide 40 mg/kg (group C, n = 4), a sublethal dose of 200 or 300 cGy total body irradiation (TBI) (group D, n = 3), or an otherwise lethal dose of 920 cGy TBI (group E, n = 3) before intravenous (groups A, C, D, E) or intramedullary (group B) infusion of the transduced autologous hematopoietic cells. Transduction efficiency of hematopoietic cells at the time of infusion into the animals was similar among the different conditioning groups. Dogs were observed for at least 6 months. PB granulocytes were obtained at least every 3 weeks after transplant and analyzed by polymerase chain reaction for the presence of the transduced genes. The percentages of positive results in dogs more than 4 weeks after transplantation were 0% without conditioning, 5% with local irradiation, 18% with sublethal cyclophosphamide, 33% with sublethal TBI, and 17% with otherwise lethal TBI. Analyzing the influence of conditioning regimens by a generalized estimating equation (GEE) technique, which considered the use of different retrovirus vectors and the number of mononuclear cells infused as potential confounding variables, we found that engraftment of genetically marked repopulating cells was significantly improved (P < .001) in dogs receiving systemic conditioning with either otherwise lethal TBI, sublethal TBI, or sublethal cyclophosphamide compared to dogs with local irradiation only or no conditioning. Within the limitation of the experimental design, these data suggest that myeloablative or myelosuppressive conditioning improves engraftment of genetically marked hematopoietic repopulating cells.  相似文献   

12.
We administered recombinant human granulocyte colony-stimulating factor (rhG-CSF) at 5 micrograms/kg/day by intravenous drip infusion for 21 consecutive days in autologous bone marrow transplanted patients. The period of posttransplant neutropenia was markedly shortened by the rhG-CSF treatment; mean days required for neutrophil recovery (greater than 500/mm3) of 14.3 days in the rhG-CSF group (n = 21) versus 27.8 days in the historical control group (n = 11). More importantly, the numbers of febrile days between day 15 and day 28 were found to be fewer in the rG-CSF group than in control group. These effects were obtained without delay in the recovery of other blood cell series and without any side effect. We conclude that the posttransplant use of the rhG-CSF is beneficial for prevention and treatment of infectious complications after autologous bone marrow transplantation.  相似文献   

13.
Clinical observations show that older patients do not tolerate high-dose chemoradiotherapy as well as younger patients. It is unclear whether this is due to age-related differences in their responses to hematopoietic injury or to differential toxicities to other organs. In the present study, 6 young (0.5 years) and 6 elderly (8 years) dogs were challenged with 7 repeated nonlethal doses of 50 or 100 cGy total body irradiation (TBI) each (total 550 cGy), and 21 days of recombinant canine granulocyte-colony stimulating factor (rcG-CSF) after the last TBI dose. Recoveries of absolute neutrophil, platelet, and lymphocyte counts after each TBI dose, responses to rcG-CSF treatment, and telomere lengths in neutrophils were compared before and after the study. No differences were found in recoveries of neutrophils, platelets, or in responses to rcG-CSF among young and old dogs. In contrast, recoveries were suggestively worse in younger dogs. After rcG-CSF, platelet recoveries were poor in both groups compared with previous platelet recoveries (P <.01). Consequently, 2 old and 3 young dogs were euthanized because of persistent thrombocytopenia and bleeding. At the study's completion, marrow cellularities and peripheral blood counts of the remaining young and elderly dogs were equivalent. The telomere lengths in both groups were significantly reduced after the study versus beforehand (P =.03), but the median attritions of telomeres were not different. It was concluded that aging does not appear to affect hematopoietic cell recoveries after repeated low-dose TBI, suggesting that poor tolerance of radiochemotherapy regimens in older patients may be due to nonhematopoietic organ toxicities rather than age-related changes in hematopoietic stem cells reserves.  相似文献   

14.
N Stute  V M Santana  J H Rodman  M J Schell  J N Ihle  W E Evans 《Blood》1992,79(11):2849-2854
Fifteen children (age 1.2 to 9.4 years) with advanced neuroblastoma were treated with myelosuppressive chemotherapy (cyclophosphamide, cisplatin, doxorubicin) followed by 5 (n = 5), 10 (n = 5), or 15 (n = 5) micrograms/kg recombinant granulocyte colony-stimulating factor (rG-CSF) subcutaneously (SC) once daily for 10 days, starting the day after chemotherapy. Serial serum samples obtained on days 1 and 10 were analyzed for G-CSF activity by a specific proliferation assay using NFS-60 cells. G-CSF serum concentration-time data were best described by a one-compartment model, with zero-order absorption and first-order elimination. After SC injection, absorption was prolonged, with peak concentrations of G-CSF (3 to 117 ng/mL) being reached after 4 to 12 hours. The relatively slow absorption, with a mean elimination half-life of 5.8 hours on day 1 and 4.5 hours on day 10, provided measurable G-CSF concentrations for the entire 24-hour dosing interval in all patients at each dosage level. The median apparent clearance of G-CSF on day 10 was significantly higher than on day 1 (0.57 v 0.31 mL/min/kg, P = .02), and was positively correlated with the absolute neutrophil count (ANC) (r2 = .33, P = .003). Systemic exposure to G-CSF was dose-related, but interpatient pharmacokinetic variability yielded overlap in area under the concentration-time curve (AUC) at all three dosage levels. Stepwise regression analysis showed that G-CSF AUC could be predicted by a model that includes rG-CSF dosage and ANC on the day of administration (r2 = .82, P = .0001).  相似文献   

15.
Hematopoietic progenitor cell levels were monitored in the peripheral blood and bone marrow of 30 cancer patients receiving recombinant human granulocyte-colony stimulating-factor (rG-CSF) in a phase I/II clinical trial. The absolute number of circulating progenitor cells of granulocyte-macrophage, erythroid, and megakaryocyte lineages showed a dose-related increase up to 100-fold after four days of treatment with rG-CSF and often remained elevated two days after the cessation of therapy. The relative frequency of different types of progenitor cells in peripheral blood remained unchanged. The frequency of progenitor cells in the marrow was variable after rG-CSF treatment but in most patients was slightly decreased. The responsiveness of bone marrow progenitor cells to stimulation in vitro by rG-CSF and granulocyte- macrophage colony-stimulating factor did not change significantly during rG-CSF treatment. In patients nine days after treatment with melphalan and then rG-CSF, progenitor cell levels were very low with doses of rG-CSF at or below 10 micrograms/kg/d, but equaled or exceeded pretreatment values when 30 or 60 micrograms/kg/d of rG-CSF was given.  相似文献   

16.
We studied the effects of recombinant human granulocyte colony-stimulating factor (rG-CSF) on neutrophil functions in vitro using neutrophils isolated from the venous blood of normal rats. FMLP-induced superoxide anion (O2-) release, phagocytosis, and FMLP-induced chemotaxis were evaluated. These functions were significantly enhanced by rG-CSF treatment. In addition to performing neutrophil function assays, we evaluated FMLP binding to rat neutrophils after rG-CSF treatment. FMLP specific binding was not changed by rG-CSF treatment. In addition, we intravenously injected rG-CSF (10 micrograms/kg) or control vehicle into rats for 7 consecutive days, and evaluated the functions of neutrophils isolated from venous blood at 6 h after the final injection. The neutrophil count in the peripheral blood of rG-CSF-treated rats was increased significantly compared with that in control rats. FMLP-induced O2- release, phagocytosis, FMLP-induced chemotaxis and spontaneous migration of rG-CSF-treated neutrophils were significantly enhanced in comparison with those in control rats. These findings demonstrate that rG-CSF not only increases neutrophil counts in peripheral blood, but that it also enhances neutrophil functions, both in vitro and in vivo.  相似文献   

17.
F M Uckun  L Souza  K G Waddick  M Wick  C W Song 《Blood》1990,75(3):638-645
The purpose of this study was to investigate the in vivo radioprotective effects of recombinant human granulocyte colony stimulating factor (rhG-CSF) in lethally irradiated BALB/c mice. We initially analyzed the effects of increasing doses of rhG-CSF on survival of mice receiving 700 cGy (LD100/30) single dose total body irradiation (TBI). While 1 microgram/kg to 100 micrograms/kg doses of rhG-CSF were not radioprotective, a dose-dependent radioprotection was observed at 200 micrograms/kg to 4,000 micrograms/kg rhG-CSF. We next compared four different rhG-CSF treatment regimens side by side for their radioprotective effects in LD100/30 irradiated mice. One hundred percent of control mice receiving phosphate buffered saline died within 21 days after TBI with a median survival of 14 days. The median survival was prolonged to 20 days and the actuarial 60-day survival rate was increased to 27% when mice received 2,000 micrograms/kg rhG-CSF 24 hours before TBI (P = .0002; Mantel-Peto-Cox). Similarly, the median survival time was prolonged to 24 days and the actuarial 60-day survival rate was increased to 33%, when mice were given 2,000 micrograms/kg rhG-CSF 30 minutes before TBI. Optimal radioprotection was achieved when 2,000 micrograms/kg rhG-CSF was administered in two divided doses of 1,000 micrograms/kg given 24 hours before and 1,000 micrograms/kg given 30 minutes before TBI. This regimen prolonged the median survival time of LD100/30 irradiated mice to more than 60 days and increased the actuarial 60-day survival rate to 62% (P = .0001; Mantel-Peto-Cox). By comparison, no survival advantage was observed when mice received rhG-CSF 24 hours post-TBI. Similar radioprotective effects were observed when mice were irradiated with 650 cGy (LD80/30). The presented findings provide conclusive evidence that rhG-CSF has significant in vivo radioprotective effects for mice receiving LD100/30 or LD80/30 TBI.  相似文献   

18.
Canine cyclic hematopoiesis (CH) is an autosomal recessive disease of gray collie dogs that is characterized by 14-day cycles of neutropenia, monocytosis, thrombocytosis, and reticulocytosis. Platelets from CH dogs have decreased dense-granule serotonin pools and decreased aggregation responses to collagen, platelet-activating factor (PAF), and thrombin. Recombinant granulocyte colony-stimulating factor (rG-CSF) was administered (5 micrograms/kg, b.i.d.) to four CH and six normal dogs to determine if G-CSF therapy corrected qualitative platelet defects in CH dogs. Neutrophil counts increase to greater than 25,000 cells/microliters within 24 h after starting treatment in all dogs. Treatment with G-CSF blocked neutropenic episodes in the CH dogs. Platelet aggregation, and serotonin content and secretion were significantly (p less than 0.05) decreased in the CH dogs both before and during recombinant human (rh) G-CSF treatment compared to normal dogs. Neutrophil myeloperoxidase, a primary granule enzyme, was significantly (p less than 0.05) decreased in CH dogs and was not corrected by rhG-CSF treatment. Administration of rG-CSF to CH dogs eliminated cell cycles but apparently did not correct cellular defects in CH dogs. Identification of primary biochemical defects in cells from CH dogs may be crucial to investigating the biochemical basis for cyclic hematopoiesis.  相似文献   

19.
Preservation of hematopoietic stem and progenitor cell survival is required for recovery from radiation-induced myelosuppression. We recently showed that short-term injection of antiapoptotic cytokine combinations into mice soon after lethal gamma irradiation promoted survival. The present study investigated the hematopoietic response of cynomolgus monkeys to a single dose of stem cell factor, FLT-3 ligand, megakaryocyte growth and development factor, and interleukin-3 in combination (4F, each factor given intravenously at 50 microg/kg) administered 2 hours after 5-Gy gamma irradiation. Treated monkeys (n = 4) experienced no thrombocytopenia. Only 1 in 4 displayed a transient period of neutropenia (neutrophil [ANC] count < 0.5 x 10(9)/L), whereas all irradiated controls (n = 4) experienced neutropenia (5-12 days) and thrombocytopenia (platelet [PLT] count < 20 x 10(9)/L, 5-31 days). Treated animals exhibited an impressive 2-wave PLT response that peaked at days 8 and 22 after total body irradiation (TBI). Areas under the curve (AUC) of PLTs, ANCs, white blood cells (WBCs), and red blood cells (RBCs) between days 0 and 90 were significantly higher in treated animals than in controls. Humeral bone marrow-derived clonogenic activity was significantly spared at 24 hours and 4 days after TBI in treated monkeys. No apparent impairment of the hematopoietic status and stem cell pool, in terms of long-term culture-initiating cells (LTC-ICs) and side population (SP) cells, was observed after 15 months. These results strongly suggest that the 4F cytokine combination, as a single dose regimen, could act as an emergency treatment for nuclear accident or terrorism victims.  相似文献   

20.
The levels of peripheral progenitor cells was measured serially after cancer chemotherapy in 4 patients with non-Hodgkin's lymphoma and one patient with rhabdomyosarcoma who received recombinant human granulocyte colony-stimulating factor (rG-CSF). This study was composed of two independent phases: in the first phase, patients received a course of cytotoxic chemotherapy only, and in the second phase, they received the same chemotherapy followed by subcutaneous injection of rG-CSF (2 micrograms/kg/day) for 10-14 days. In the control phase, the levels of granulocyte-macrophage colony-forming units (CFU-GM) and erythroid burst-forming units (BFU-E) per milliliter increased during the early recovery phase, but rG-CSF treatment increased the number of CFU-GM 3 to 18-folds, and the number of BFU-E increased 1.3 to 4.6-folds. An overshoot in the blood progenitor levels occurred at the day 8-10 of rG-CSF administration. And then, the peak of neutrophil count followed 3-5 days later. After the discontinuation of rG-CSF, the number of blood CFU-GM and BFU-E fell rapidly. This results suggest that in vivo expansion of circulating hemopoietic progenitors can be achieved by the administration of rG-CSF, and this approach might be clinically applicable to cancer patients who are a candidate of peripheral blood stem cell autotransplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号