首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite global efforts to control influenza viruses, they have taken a heavy toll on human public health worldwide. Among particular threats is highly pathogenic avian H5N1 influenza virus (HPAI) due to not only its high mortality in humans but also possible human-to-human transmission either through reassortment with other human influenza viruses such as 2009 pandemic H1N1 influenza virus, or by genetic mutations. With the aim of developing effective vaccines against the H5N1 viruses, we generated two live attenuated H5N1 vaccine candidates against A/Indonesia/05/2005 (clade 2.1) and A/chicken/Korea/ES/2003 (clade 2.5) strains, in the genetic background of the cold-adapted donor strain of X-31. In mice, a single dose of immunization with each of the two vaccines was highly immunogenic inducing high titers of serum viral-neutralizing and hemagglutinin-inhibiting antibodies against the homologous H5N1 strain. Furthermore, significant levels of cross-clade antibody responses were induced by the vaccines, suggesting a broad-spectrum cross-reactivity against the heterologous H5N1 strains. The immunizations provided solid protections against heterologous lethal challenges with H5N2 virus, significantly reducing the morbidity and challenge virus replications in the respiratory tracts. The robustness of the antibody responses against both the homologous and heterologous strains, together with efficient protection against the lethal H5N2 challenge, strongly support the protection against wild type H5N1 infections. These results could serve as an experimental basis for the development of safe and effective H5N1 pre-pandemic vaccines while further addressing the biosecurity concerns associated with H5N1 HPAI.  相似文献   

2.
Highly pathogenic avian influenza viruses of the H5N1 subtype are responsible for an increasing number of infections in humans since 2003. More than 60% of the infections is lethal and new infections are reported frequently. In the light of the pandemic threat caused by these events the rapid availability of safe and effective vaccines is desirable. Modified vaccinia virus Ankara (MVA) expressing the HA gene of an influenza A/H5N1 virus is a promising candidate vaccine that induced protective immunity against infection with homologous and heterologous influenza A/H5N1 viruses in mice. We also evaluated the recombinant MVA vector expressing the HA of influenza A/H5N1 virus A/Vietnam/1194/04 (MVA-HA-VN/04) in non-human primates. Cynomolgus macaques were immunized twice and then challenged with influenza virus A/Vietnam/1194/04 (clade 1) or A/Indonesia/5/05 (clade 2.1) to assess the level of protective immunity. Immunization with MVA-HA-VN/04 induced (cross-reactive) antibodies and prevented virus replication in the upper and lower respiratory tract and the development of severe necrotizing bronchointerstitial pneumonia. Therefore MVA-HA-VN/04 is a promising vaccine candidate for the induction of protective immunity against highly pathogenic avian influenza A/H5N1 viruses.  相似文献   

3.
In this study, we evaluated the immunogenicity and protective efficacy of a candidate attenuated H5N1 pre-pandemic influenza vaccine of clade 2.3.4, rgAnhui, which was reverse genetically generated from highly virulent A/Anhui/01/2005 (H5N1) wild-type virus. When a low-dose antigen (0.3 μg HA) vaccine was combined with aluminum hydroxide adjuvant, virus neutralization and anti-HA IgG antibodies induced in the sera of vaccinated mice showed similar levels as those in mice vaccinated with non-adjuvanted high-dose antigen (3 μg HA) vaccine. Serum antibodies had broad reactivity against highly pathogenic H5N1 viruses of both homologous and heterologous clades. All mice vaccinated with adjuvanted and non-adjuvanted rgAnhui vaccines at low and high antigen doses survived, without any significant weight loss, lethal challenge infection with homologous clade 2.3.4 viruses, including antigenic variant virus and heterologous clade 2.1.3. Mice vaccinated with low-dose antigen without adjuvant, however, exhibited 20% and 60% survival rates against clade 1 and clade 2.2 viruses, respectively; but, addition of adjuvant improved these rates to 80% and 100%, respectively. The data strongly suggest that aluminum hydroxide-adjuvanted rgAnhui vaccine can elicit broad cross-reactive and protective immunities against homologous and heterologous clades, and that the rgAnhui vaccine is a useful pre-pandemic H5N1 vaccine.  相似文献   

4.
《Vaccine》2017,35(24):3162-3170
BackgroundCross-clade immunogenic stockpiled H5N1 vaccines may decrease the morbidity and transmission of infection during the initial phase of influenza pandemic. Meta-analysis of cross-reactive antibodies induced by oil-in-water emulsion adjuvanted (OWEA) influenza H5N1 virus monovalent vaccines with circulating heterologous H5N1 virus strains, isolated from human infections was performed.MethodsLiterature search of MEDLINE, EMBASE, Web of Knowledge, The Cochrane Library, ClinicalTrials.gov, and International Standard Randomised Controlled Trial Number registry was conducted up through December 1, 2015. Methodologically qualified studies were included for (1) use of two doses of licensed OWEA (AS03 or MF59) egg-derived, inactivated influenza H5N1 virus monovalent vaccine, (2) participant age between 18 and 64 years, and (3) evaluation of immunogenicity outcome for one or more subclade. Meta-analysis assessed the cross-reactivity of antibodies elicited by clade 1 adjuvanted vaccine strain against clade 2.1 virus strain (A/Vietnam/1194/2004 vs. A/Indonesia/05/2005); and separately against clade 2.2 virus strain (A/Vietnam/1194/2004 vs. A/turkey/Turkey/1/05); and clade 2.1 adjuvanted vaccine strain against clade 1 virus strain (A/Indonesia/05/2005 vs. A/Vietnam/1194/2004). Quantitative publication bias and influence analysis was conducted to evaluate potential impact of unpublished or new studies on the robustness of meta-analysis.ResultsOf 960 articles, 53 qualified for quality assessment and 15 studies met the inclusion criteria. All assessed clade pairs elicited cross-reactive antibodies (clade 1 against clade 2.1 and 2.2; clade 2.1 against clade 1, 2.2, and 2.3). Heterologous strains of same sub-clade are likely to elicit higher cross-reactive antibodies.ConclusionsOWEA influenza H5N1 virus monovalent vaccines exhibit broad cross-clade immunogenicity, a desired feature for vaccine stockpiling not yet demonstrated by unadjuvanted vaccines. In case of an impending H5N1 virus pandemic, stockpiled OWEA influenza H5N1 virus monovalent vaccines may allow population priming that could slow down the course of pandemic and could offer additional time needed for development of an effective strain specific vaccine supply.  相似文献   

5.
The poultry populations of Egypt are endemically infected by highly pathogenic avian influenza viruses (HPAIV) of subtype H5N1. Vaccination was chosen as an auxiliary tool to control HPAIV in poultry. Potency of commercial vaccines regarding emerging variants is under discussion. In the current study efficacy of four different inactivated whole H5 virus vaccines representing different sublineages of HPAIV H5N1 were tested in chickens against challenge viruses currently co-circulating in Egypt and representing two antigenically widely distinct HPAIV H5N1 lineages, i.e., “variant” (clade 2.2.1var) and “proper” (clade 2.2.1pro) viruses. All vaccines induced clinical protection against challenge with 2.2.1pro Egyptian strains. In contrast, when challenged with a variant strain, only chickens vaccinated with the homologous Egyptian clade 2.2.1var virus or an inactivated re-assorted H5N1 strain (Re-5, clade 2.3) were protected. However, only the homologous virus induced sterile immunity whereas chickens clinically protected after Re-5 vaccination shed virus at day two after infection indistinguishable to H5N2 vaccines. In conclusion, monitoring vaccine-driven evolution of HPAIV H5N1 by surveillance, antigenic characterization, and challenge studies is essential to assess efficacy of AIV vaccination campaigns.  相似文献   

6.
Preparation for an H5N1 influenza pandemic in humans may involve priming the population with a vaccine produced from an existing, available H5N1 strain. We have used a mouse challenge model to compare the immunogenicity and efficacy of inactivated, Vero cell-derived, whole virus H5N1 vaccines in single immunization and homologous or heterologous prime-boost regimes. A single immunization was sufficient to protect against a lethal challenge with strains from matched and unmatched H5N1 clades. Homologous and heterologous prime-boost regimes induced cross-neutralizing antibodies and cross-protection against representative viruses of H5N1 clade 1, clade 2.1, clade 2.2 and clade 2.3. Moreover, the results indicate that heterologous prime-boost immunization regimes might broaden the specificity of the anti-H5N1 antibody response.  相似文献   

7.
《Vaccine》2019,37(42):6162-6170
BackgroundFlu vaccines administered intramuscularly (IM) have shown seasonally fluctuating efficacy, 20–60%, throughout the last 15 years. We formulated a recombinant H5 (rH5) in our Nanovax® (NE01) (rH5/NE01) adjuvant for intranasal vaccination in ferrets. We evaluated the regimen, one vs two immunization, and cross clade protection a ferret challenge model.MethodsPlant derived recombinant H5 (rH5) antigen was formulated with NE01 and administered intranasally to ferrets. Immunogenicity (IgG), hemagglutination inhibition (HI), and protection against lethal challenge, were measured following one or two immunizations. Protection against homologous (strain A/Indo) and heterologous (strain A/Vn) was evaluated in ferrets following two immunizations.ResultsIN immunization with rH5/NE01 induced significant IgG levels after one and two immunizations. One vaccination did not induce any HI while low HI was measured after two immunizations. Homologous challenge with H5N1 A/ Indonesia showed 100% survival, with minimal weight loss in animals vaccinated twice compared to the unvaccinated controls. Analysis of nasal wash from these challenged ferrets vaccinated twice showed decreased viral shedding compared to unvaccinated controls. Interestingly, animals that received one vaccination showed 88% survival with moderate weight loss. Cross clade protection was evaluated using an increased antigen dose (45 µg rH5). Vaccinated animals demonstrated increased IgG and HAI antibody responses. Both homologous (A/Indo) and heterologous challenge (A/Vietnam) following two immunizations showed 100% survival with no loss of body weight. However viral clearance was more rapid against the homologous (day 3) compared to the heterologous (day 5) post challenge.ConclusionIntranasal administration of NE01 adjuvant-formulated rH5 vaccine elicited systemic and probably mucosal immunity that conferred protection against lethal challenge with homologous or heterologous viral strains. It also enhanced viral clearance with decreased shedding. These outcomes strongly suggest that intranasal immunization using NE01 against flu infections warrants clinical testing.  相似文献   

8.
The rapid evolution, genetic diversity, broad host range, and increasing human infection with avian influenza A (H5N1) viruses highlight the need for an efficacious cross-clade vaccine. Using the ferret model, we compared induction of cross-reactive immunity and protective efficacy of three single-clade H5N1 vaccines and a novel multiple-clade H5N1 vaccine, with and without MF59 adjuvant. Reverse genetics (rg) was used to generate vaccine viruses containing the hemagglutinin (HA) and neuraminidase genes of wild-type H5N1 viruses. Ferrets received two doses of inactivated whole-virus vaccine separated by 3 weeks. Single-clade vaccines (7.5 μg HA per dose) included rg-A/Vietnam/1203/04 (clade 1), rg-A/Hong Kong/213/03 (clade 1), and rg-A/Japanese White Eye/Hong Kong/1038/06 (clade 2.3). The multiple-clade vaccine contained 3.75 μg HA per dose of each single-clade vaccine and of rg-A/Whooper Swan/Mongolia/244/05 (clade 2.2). Two doses of vaccine were required to substantially increase anti-HA and virus neutralizing antibody titers to H5N1 viruses. MF59 adjuvant enhanced induction of clade-specific and cross-clade serum antibody responses, reduced frequency of infection (as determined by upper respiratory tract virus shedding and seroconversion data), and eliminated disease signs. The rg-A/Hong Kong/213/03 vaccine induced the highest antibody titers to homologous and heterologous H5N1 viruses, while rg-A/Japanese White Eye/Hong Kong/1038/06 vaccine induced the lowest. The multiple-clade vaccine was broadly immunogenic against clade 1 and 2 viruses. The rg-A/Vietnam/1203/04 vaccine (the currently stockpiled H5N1 vaccine) most effectively reduced upper respiratory tract virus shedding after challenge with clade 1 and 2 viruses. Importantly, all vaccines protected against lethal challenge with A/Vietnam/1203/04 virus and provided cross-clade protection.  相似文献   

9.
《Vaccine》2016,34(3):350-357
BackgroundH5N1 highly pathogenic avian influenza (HPAI) has raised global concern for causing huge economic losses in poultry industry, and an effective vaccine against HPAI is highly desirable. Live attenuated influenza vaccine with trunctated NS1 protein as a potential strategy will be extremely useful for improving immune efficacy.MethodsA series of H5N1 avian influenza virus reassortants harboring amino-terminal 48, 70, 73, and 99 aa in NS1 proteins, along with a modified low pathogenic HA protein was generated, and named as S-HALo/NS48, S-HALo/NS70, S-HALo/NS73, and S-HALo/NS99, respectively. In addition, their biological and immunological characteristics were further analyzed.ResultsThe viruses S-HALo/NS70, S-HALo/NS73, and S-HALo/NS99, but not S-HALo/NS48, had a comparable growth property with the full-length NS1 virus, S-HALo/NSFu. Mice and chickens studies demonstrated that the viruses with truncated NS1 protein were further attenuated when compared to the virus S-HALo/NSFu. Vaccination with the virus S-HALo/NS73 in chickens induced significant cross-protection against homologous clade 2.3.4 H5 virus and heterologous clade 7.2, 2.3.2.1, and 2.3.4.4 H5 viruses.ConclusionA 70-aa amino-terminal fragment of NS1 protein may be long enough for viral replication. The recombinant virus S-HALo/NS73 is a broad-spectrum live attenuated H5N1 avian influenza vaccine candidate in chickens.  相似文献   

10.
In this study, recombinant virus-like particles (VLPs) were evaluated as a candidate vaccine against emerging influenza viruses with pandemic potential. The VLPs are composed of the hemagglutinin (HA), neuraminidase (NA), and matrix 1 (M1) proteins of the H5N1 A/Indonesia/05/2005 (clade 2.1; [Indo/05]) virus, which were expressed using baculovirus in Spodoptera frugiperda (Sf9) cells. Ferrets received either 2 injections of the VLP vaccine at escalating doses (based on HA content), recombinant HA, or were mock vaccinated. Vaccinated ferrets were then challenged with either H5N1 Indo/05 or H5N1 A/Viet Nam 1203/2004 (VN/04) wild-type viruses. All ferrets that received the VLP vaccine survived regardless of the VLP dose or challenge strain, whereas seven of eight mock vaccinated ferrets died. The VLP vaccine induced HAI antibodies against the homologous H5N1 clade 2.1 strain, as well as heterologous strains from H5N1 clades 1, 2.2, and 2.3. The magnitude of the HAI titers correlated with VLP dose. Neutralizing antibody responses against the Indo/05 and VN/04 strains showed a similar pattern. Affinity of the anti-HA antibodies raised by the H5N1 Indo/05 VLPs had a higher association rate to the homologous clade 2.1 HA than to the clade 1 (VN/04) HA; however, once bound, antibodies had similar slow disassociation rates. These results provide support for continued development of the H5N1 VLPs as a candidate vaccine against pandemic influenza. Exploration of immunologic correlates of protection for H5N1 vaccines beyond HAI and neutralizing antibody responses is warranted.  相似文献   

11.
《Vaccine》2017,35(25):3318-3325
Sporadic, yet frequent human infections with avian H5N1 influenza A viruses continue to pose a potential pandemic threat. Poor immunogenicity of unadjuvanted H5N1 vaccines warrants developing novel adjuvants and formulations as well as alternate delivery systems to improve their immunogenicity and efficacy. Here, we show that Protollin, a nasal adjuvant composed of Neisseria meningitides outer membrane proteins non-covalently linked to Shigella flexneri 2a lipopolysaccharide, is a potent nasal adjuvant for an inactivated split virion H5N1 clade 1 A/Viet Nam1203/2004 (A/VN/1203/04) vaccine in a mouse model. Protollin-adjuvanted vaccines elicited enhanced serum protective hemagglutination inhibition titers, mucosal IgA responses, and H5N1-specific cell-mediated immunity that resulted in complete protection against a lethal challenge with a homologous virus as well as a heterologous clade 2 virus A/Indonesia/05/2005 (A/IN/05/05). Detailed analysis of adaptive immunity revealed that Protollin increased the frequency of lymphoid- as well as local tissue-resident antibody-secreting cells, local germinal center reaction of B cells, broad-spectrum of CD4 T cell response. Our findings suggest that nasal delivery of H5N1 vaccine with Protollin adjuvant can overcome the poor immunogenicity of H5N1 vaccines, induce both cellular and humoral immune responses, enhance protection against challenge with clade 1 and clade 2 H5N1 viruses and achieve significant antigen dose-sparing.  相似文献   

12.
The highly pathogenic avian H5N1 influenza virus has the potential to incite a global pandemic. Therefore, there is an urgent need to develop effective vaccines against these viruses. Because it is difficult to predict which strain of influenza will cause a pandemic, it is advantageous to develop vaccines that will confer cross-protective immunity against variants of the influenza virus. Recently, we reported that the Toll-like receptor 3 agonist, polyI:polyC12U (Ampligen®), has been proven to be safe in a Phase III human trial, and is an effective mucosal adjuvant for intranasal H5N1 influenza vaccination. Intranasal administration of an Ampligen® adjuvanted pre-pandemic H5N1 vaccine (NIBRG14), which was derived from the A/Vietnam/1194/2004 strain, resulted in the secretion of vaccine-specific IgA and IgG in nasal mucosa and serum, respectively, and protected mice against homologous A/Vietnam/1194/2004 and heterologous A/Hong Kong/483/97 and A/Indonesia/6/2005 viral challenge.  相似文献   

13.
《Vaccine》2017,35(46):6336-6344
During December 2014–June 2015, the U.S. experienced a high pathogenicity avian influenza (HPAI) outbreak caused by clade 2.3.4.4 H5Nx Goose/Guangdong lineage viruses with devastating consequences for the poultry industry. Three vaccines, developed based on updating existing registered vaccines or currently licensed technologies, were evaluated for possible use: an inactivated reverse genetics H5N1 vaccine (rgH5N1) and an RNA particle vaccine (RP-H5), both containing the hemagglutinin gene of clade 2.3.4.4 strain, and a recombinant herpesvirus turkey vectored vaccine (rHVT-H5) containing the hemagglutinin gene of clade 2.2 strain. The efficacy of the three vaccines, alone or in combination, was assessed in White Leghorn chickens against clade 2.3.4.4 H5N2 HPAI virus challenge. In Study 1, single (rHVT-H5) and prime-boost (rHVT-H5 + rgH5N1 or rHVT-H5 + RP-H5) vaccination strategies protected chickens with high levels of protective immunity and significantly reduced virus shedding. In Study 2, single vaccination with either rgH5N1 or RP-H5 vaccines provided clinical protection in adult chickens and significantly reduced virus shedding. In Study 3, double rgH5N1 vaccination protected adult chickens from clinical signs and mortality when challenged 20 weeks post-boost, with high levels of long-lasting protective immunity and significantly reduced virus shedding. These studies support the use of genetically related vaccines, possibly in combination with a broad protective priming vaccine, for emergency vaccination programs against clade 2.3.4.4 H5Nx HPAI virus in young and adult layer chickens.  相似文献   

14.
《Vaccine》2018,36(40):5990-5998
We previously demonstrated that intramuscular immunization with virus-like particles (VLPs) composed of the haemagglutinin (HA), neuraminidase (NA), and matrix (M1) proteins of A/meerkat/Shanghai/SH-1/2012 (clade 2.3.2.1) protected mice from lethal challenge with viruses from other H5 HPAI clades. The inclusion of additional proteins that can serve as immunological adjuvants in VLPs may enhance adaptive immune responses following vaccination, and oral vaccines may represent the safest choice. Here, we report the generation of H5N1 VLPs composed of the viral HA, NA, and M1 proteins and membrane-anchored forms of the Escherichia coli heat-labile enterotoxin B subunit protein (LTB) or the Toll-like receptor 5 ligand flagellin (Flic). Mice intramuscularly or orally immunized with VLPs containing LTB or Flic generated greater humoural and cellular immune responses than those administered H5N1 VLPs without LTB or Flic. Intramuscular immunization with VLPs protected mice from lethal challenge with homologous or heterologous H5N1 viruses irrespective of whether the VLPs additionally included LTB or Flic. In contrast, oral immunization of mice with LTB- or Flic-VLPs conferred substantial protection against lethal challenge with both homologous and heterologous H5N1 influenza viruses, whereas mice immunized orally with VLPs lacking LTB and Flic universally succumbed to infection. Mice immunized orally with LTB- or Flic-VLPs showed 10-fold higher virus-specific IgG titres than mice immunized with H5N1-VLPs lacking LTB or Flic. Collectively, these results indicate that the inclusion of immunostimulatory proteins, such as LTB and Flic, in VLP-based vaccines may represent a promising new approach for the control of current H5N1 HPAI outbreaks by eliciting higher humoural and cellular immune responses and conferring improved cross-clade protection.  相似文献   

15.
H5N1 highly pathogenic avian influenza viruses evolved into several clades, leading to appreciably distinct antigenicities of their hemagglutinins. As such, candidate H5N1 pre-pandemic vaccines for human use should be sought. Here, to evaluate fundamental immunogenic variations between H5N1 vaccines, we prepared four inactivated H5N1 test vaccines from different phylogenetic clades (clade 1, 2.1, 2.2, and 2.3.4) in accordance with the WHO recommendation, and tested their cross-clade immunity in a mouse model by vaccination followed by challenge with heterologous virulent viruses. All H5N1 vaccines tested provided full or partial cross-clade protective immunity, except one clade 2.2-based vaccine, which did not protect mice from clade 2.3.4 virus challenge. Among the test vaccines, a clade 2.1-based vaccine possessed the broadest-spectrum cross-immunity. These results suggest that currently stockpiled pre-pandemic vaccines, especially clade 2.1-based vaccines, will likely be useful as backup vaccines in a pandemic situation, even one involving antigenic-drifted viruses.  相似文献   

16.
Because H5N1 influenza viruses continuously threaten the public health, the WHO has prepared various clades of H5N1 mock-up vaccines as one of the measures for pandemic preparedness. The recent worldwide outbreak of H5Nx virus which belongs to clade 2.3.4.4 and of which H5N6 subtype belongs and already caused human infection also increases the need of pandemic vaccine for such novel emerging viruses. In this study, we evaluated the protective efficacy and immunogenicity of an egg-based and inactivated whole-virus H5N8 (IDCDC-RG43A) developed by CDC containing HA and NA gene of the parent virus A/gyrfalcon/Washington/41088-6/2014. Mice vaccinated two times elicited low to moderate antibody titer in varying amount of antigen doses against the homologous H5N8 vaccine virus and heterologous intra–clade 2.3.4.4 H5N6 (A/Sichuan/26221/2014) virus. Mice immunized with at least 3.0?µg/dose of IDCDC-RG43A with aluminum hydroxide adjuvant were completely protected from lethal challenge with the mouse-adapted H5N8 (A/Environment/Korea/ma468/2015, maH5N8) as well as cleared the viral replication in tissues including lung, brain, spleen, and kidney. Vaccinated ferrets induced high antibody titers against clade 2.3.4.4 H5N8/H5N6 viruses and the antibody showed high cross-reactivity to clade 2.2 H5N1 but not to clade 1 and 2.3.4 viruses as measured by hemagglutinin inhibition and serum neutralization assays. Furthermore, administration of the vaccine in ferrets resulted in attenuation of clinical disease signs and virus spread to peripheral organs including lung, spleen, and kidney from high dose challenge with maH5N8 virus. The protective and immunogenic characteristic of the candidate vaccine are essential attributes to be considered for further clinical trials as a pre-pandemic vaccine for a potential pandemic virus.  相似文献   

17.
Domestic ducks are the second most abundant poultry species in many Asian countries including Vietnam, and play a critical role in the epizootiology of H5N1 highly pathogenic avian influenza (HPAI) [FAO]. In this study, we examined the protective efficacy in ducks of two commercial H5N1 vaccines widely used in Vietnam; Re-1 containing A/goose/Guangdong/1/1996 hemagglutinin (HA) clade 0 antigens, and Re-5 containing A/duck/Anhui/1/2006 HA clade 2.3.4 antigens. Ducks received two doses of either vaccine at 7 and at 14 or 21 days of age followed by challenge at 30 days of age with viruses belonging to the HA clades 1.1, 2.3.4.3, 2.3.2.1.A and 2.3.2.1.B isolated between 2008 and 2011 in Vietnam. Ducks vaccinated with the Re-1 vaccine were protected after infection with the two H5N1 HPAI viruses isolated in 2008 (HA clades 1.1 and 2.3.4.3) showing no mortality and limited virus shedding. The Re-1 and Re-5 vaccines conferred 90–100% protection against mortality after challenge with the 2010 H5N1 HPAI viruses (HA clade 2.3.2.1.A); but vaccinated ducks shed virus for more than 7 days after challenge. Similarly, the Re-1 and Re-5 vaccines only showed partial protection against the 2011 H5N1 HPAI viruses (HA clade 2.3.2.1.A and 2.3.2.1.B), with a high proportion of vaccinated ducks shedding virus for more than 10 days. Furthermore, 50% mortality was observed in ducks vaccinated with Re-1 and challenged with the 2.3.2.1.B virus. The HA proteins of the 2011 challenge viruses had the greatest number of amino acid differences from the two vaccines as compared to the viruses from 2008 and 2009, which correlates with the lesser protection observed with these viruses. These studies demonstrate the suboptimal protection conferred by the Re-1 and Re-5 commercial vaccines in ducks against H5N1 HPAI clade 2.3.2.1 viruses, and underscore the importance of monitoring vaccine efficacy in the control of H5N1 HPAI in ducks.  相似文献   

18.
《Vaccine》2018,36(33):5097-5103
Current influenza vaccines do not provide effective protection against heterologous influenza viruses. The ability of the novel M2SR influenza vaccine to protect against drifted influenza viruses was evaluated in naïve ferrets and in ferrets with pre-existing immunity to influenza. In naïve ferrets, M2SR provided similar protection against drifted challenge viruses as the comparator vaccine, FluMist®. However, in ferrets with pre-existing immunity, M2SR provided superior protection than FluMist in two model systems.In the first model, ferrets were infected with influenza A H1N1pdm and influenza B viruses to mimic the diverse influenza exposure in humans. The pre-infected ferrets, seropositive to H1N1pdm and influenza B but seronegative to H3N2, were then vaccinated with H3N2 M2SR or monovalent H3N2 FluMist virus (A/Brisbane/10/2007, clade 1) and challenged 6 weeks later with a drifted H3N2 virus (clade 3C.2a). Antibody titers to Brisbane/10/2007 were higher in M2SR vaccinated ferrets than in FluMist vaccinated ferrets in the pre-infected ferrets whereas the opposite was observed in naïve ferrets. After challenge with drifted H3N2 virus, M2SR provided superior protection than FluMist monovalent vaccine.In the second model, the impact of homologous pre-existing immunity upon vaccine-induced protection was evaluated. Ferrets, pre-infected with H1N1pdm virus, were vaccinated 90 days later with H1N1pdm M2SR or FluMist monovalent vaccine and challenged 6 weeks later with a pre-pandemic seasonal H1N1 virus, A/Brisbane/59/2007 (Bris59). While cross-reactive serum IgG antibodies against the Bris59 HA were detected after vaccination, anti-Bris59 hemagglutination inhibition antibodies were only detected post-challenge. M2SR provided better protection against Bris59 challenge than FluMist suggesting that homologous pre-existing immunity affected FluMist virus to a greater degree than M2SR.These results suggest that the single replication intranasal M2SR vaccine provides effective protection against drifted influenza A viruses not only in naïve ferrets but also in those with pre-existing immunity in contrast to FluMist viruses.  相似文献   

19.
A non-egg, non-culture based influenza vaccine that intervenes large influenza outbreaks and protects against heterosubtypic infections is needed. Candidates of such vaccine are likely to be conserved influenza virus proteins or their coding DNA. The vaccine must be conveniently produced at reasonable cost, safe, highly immunogenic and should be able to recall rapidly the immunological memory upon the antigenic re-exposure. In this study vaccines made of full length recombinant NP and M2 of the H5N1 influenza A virus were entrapped either alone or together into liposome (L) made of phosphatidylcholine and cholesterol. The vaccines (L-NP, L-M2 or L-NP + M2) and mocks (L or PBS) were safe without causing any adverse reaction in the intramuscularly injected mice. They were readily immunogenic at a single dose and a recalled response could be detected within one day post booster. Cytokine and antibody data indicated that the vaccines induced a Th1 bias immune response. NP containing vaccines stimulated a marked increase of cytotoxic lymphocytes, i.e., CD8+, intracellular IFNγ+ cells, while M2 containing vaccines elicited good antibody response which neutralized infectivity of heterologous influenza viruses. Although the three vaccines elicited different immunological defense factors; nevertheless, they similarly and readily abrogated lung histopathology mediated by viruses belonging to different H5N1 clade/subclade and heterosubtypes including swine H1N1 and human H1N1/2009 viruses. They protected the vaccinated mice against lethal challenges with mouse adapted avian H5N1 virus. The liposome adjuvanted vaccines which demonstrated high protective efficacy in mice warrant testing further in a non-rodent model as well as in humans.  相似文献   

20.
The development of pre-pandemic influenza A H5N1 vaccines that confer both antigen-sparing and cross-clade protection are a high priority given the limited worldwide capacity for influenza vaccine production, and the antigenic and genetic heterogeneity of circulating H5N1 viruses. The inclusion of potent adjuvants in vaccine formulations may achieve both of these aims. Here we show that the addition of JVRS-100, an adjuvant consisting of cationic liposome-DNA complexes (CLDC) to a clade 1-derived H5N1 split vaccine induced significantly higher virus-specific antibody than unadjuvanted formulations, with a >30-fold dose-sparing effect and induction of increased antigen-specific CD4+ T-cell responses in mice. All mice that received one dose of adjuvanted vaccine and subsequent H5N1 viral challenges exhibited mild illness, lower lung viral titers, undetectable spleen and brain viral titers, and 100% survival after either homologous clade 1 or heterologous clade 2 H5N1 viral challenges, whereas unadjuvanted vaccine recipients showed significantly increased weight loss, viral titers, and mortality. The protective immunity induced by JVRS-100 adjuvanted H5N1 vaccine was shown to last for over one year without significant waning. Thus, JVRS-100 adjuvanted H5N1 vaccine elicited enhanced humoral and T-cell responses, dose-sparing, and cross-clade protection in mice. CLDC holds promise as an adjuvant for human pre-pandemic inactivated H5N1 vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号