首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 221 毫秒
1.
Genome-wide association studies (GWAS) have been used to establish thousands of genetic associations across numerous phenotypes. To improve the power of GWAS and generalize associations across ethnic groups, transethnic meta-analysis methods are used to combine the results of several GWAS from diverse ancestries. The goal of this study is to identify genetic associations for eight quantitative metabolic syndrome (MetS) traits through a meta-analysis across four ethnic groups. Traits were measured in the GENetics of Noninsulin dependent Diabetes Mellitus (GENNID) Study which consists of African-American (families = 73, individuals = 288), European-American (families = 79, individuals = 519), Japanese-American (families = 17, individuals = 132), and Mexican-American (families = 113, individuals = 610) samples. Genome-wide association results from these four ethnic groups were combined using four meta-analysis methods: fixed effects, random effects, TransMeta, and MR-MEGA. We provide an empirical comparison of the four meta-analysis methods from the GENNID results, discuss which types of loci (characterized by allelic heterogeneity) appear to be better detected by each of the four meta-analysis methods in the GENNID Study, and validate our results using previous genetic discoveries. We specifically compare the two transethnic methods, TransMeta and MR-MEGA, and discuss how each transethnic method's framework relates to the types of loci best detected by each method.  相似文献   

2.
Meta-analysis of multiple genome-wide association studies (GWAS) is effective for detecting single- or multimarker associations with complex traits. We develop a flexible procedure (subset testing and analysis of multiple phenotypes [STAMP]) based on mixture models to perform a region-based meta-analysis of different phenotypes using data from different GWAS and identify subsets of associated phenotypes. Our model framework helps distinguish true associations from between-study heterogeneity. As a measure of association, we compute for each phenotype the posterior probability that the genetic region under investigation is truly associated. Extensive simulations show that STAMP is more powerful than standard approaches for meta-analyses when the proportion of truly associated outcomes is between 25% and 50%. For other settings, the power of STAMP is similar to that of existing methods. We illustrate our method on two examples, the association of a region on chromosome 9p21 with the risk of 14 cancers, and the associations of expression of quantitative trait loci from two genetic regions with their cis-single-nucleotide polymorphisms measured in 17 tissue types using data from The Cancer Genome Atlas.  相似文献   

3.
Genome-wide association studies (GWAS) can identify common alleles that contribute to complex disease susceptibility. Despite the large number of SNPs assessed in each study, the effects of most common SNPs must be evaluated indirectly using either genotyped markers or haplotypes thereof as proxies. We have previously implemented a computationally efficient Markov Chain framework for genotype imputation and haplotyping in the freely available MaCH software package. The approach describes sampled chromosomes as mosaics of each other and uses available genotype and shotgun sequence data to estimate unobserved genotypes and haplotypes, together with useful measures of the quality of these estimates. Our approach is already widely used to facilitate comparison of results across studies as well as meta-analyses of GWAS. Here, we use simulations and experimental genotypes to evaluate its accuracy and utility, considering choices of genotyping panels, reference panel configurations, and designs where genotyping is replaced with shotgun sequencing. Importantly, we show that genotype imputation not only facilitates cross study analyses but also increases power of genetic association studies. We show that genotype imputation of common variants using HapMap haplotypes as a reference is very accurate using either genome-wide SNP data or smaller amounts of data typical in fine-mapping studies. Furthermore, we show the approach is applicable in a variety of populations. Finally, we illustrate how association analyses of unobserved variants will benefit from ongoing advances such as larger HapMap reference panels and whole genome shotgun sequencing technologies.  相似文献   

4.
Populations of non-European ancestry are substantially underrepresented in genome-wide association studies (GWAS). As genetic effects can differ between ancestries due to possibly different causal variants or linkage disequilibrium patterns, a meta-analysis that includes GWAS of all populations yields biased estimation in each of the populations and the bias disproportionately impacts non-European ancestry populations. This is because meta-analysis combines study-specific estimates with inverse variance as the weights, which causes biases towards studies with the largest sample size, typical of the European ancestry population. In this paper, we propose two empirical Bayes (EB) estimators to borrow the strength of information across populations although accounting for between-population heterogeneity. Extensive simulation studies show that the proposed EB estimators are largely unbiased and improve efficiency compared to the population-specific estimator. In contrast, even though the meta-analysis estimator has a much smaller variance, it yields significant bias when the genetic effect is heterogeneous across populations. We apply the proposed EB estimators to a large-scale trans-ancestry GWAS of stroke and demonstrate that the EB estimators reduce the variance of the population-specific estimator substantially, with the effect estimates close to the population-specific estimates.  相似文献   

5.
So HC  Li M  Sham PC 《Genetic epidemiology》2011,35(6):447-456
Genome-wide association studies (GWAS) have become increasingly popular recently and contributed to the discovery of many susceptibility variants. However, a large proportion of the heritability still remained unexplained. This observation raises queries regarding the ability of GWAS to uncover the genetic basis of complex diseases. In this study, we propose a simple and fast statistical framework to estimate the total heritability explained by all true susceptibility variants in a GWAS. It is expected that many true risk variants will not be detected in a GWAS due to limited power. The proposed framework aims at recovering the "hidden" heritability. Importantly, only the summary z-statistics are required as input and no raw genotype data are needed. The strategy is to recover the true effect sizes from the observed z-statistics. The methodology does not rely on any distributional assumptions of the effect sizes of variants. Both binary and quantitative traits can be handled and covariates may be included. Population-based or family-based designs are allowed as long as the summary statistics are available. Simulations were conducted and showed satisfactory performance of the proposed approach. Application to real data (Crohn's disease, HDL, LDL, and triglycerides) reveals that at least around 10-20% of variance in liability or phenotype can be explained by GWAS panels. This translates to around 10-40% of the total heritability for the studied traits.  相似文献   

6.
Large-scale meta-analyses of genome-wide association scans (GWAS) have been successful in discovering common risk variants with modest and small effects. The detection of lower frequency signals will undoubtedly require concerted efforts of at least similar scale. We investigate the sample size-dictated power limits of GWAS meta-analyses, in the presence and absence of modest levels of heterogeneity and across a range of different allelic architectures. We find that data combination through large-scale collaboration is vital in the quest for complex trait susceptibility loci, but that effect size heterogeneity across meta-analyzed studies drawn from similar populations does not appear to have a profound effect on sample size requirements.  相似文献   

7.
Genome‐wide association studies (GWAS) have been a standard practice in identifying single nucleotide polymorphisms (SNPs) for disease susceptibility. We propose a new approach, termed integrative GWAS (iGWAS) that exploits the information of gene expressions to investigate the mechanisms of the association of SNPs with a disease phenotype, and to incorporate the family‐based design for genetic association studies. Specifically, the relations among SNPs, gene expression, and disease are modeled within the mediation analysis framework, which allows us to disentangle the genetic effect on a disease phenotype into two parts: an effect mediated through a gene expression (mediation effect, ME) and an effect through other biological mechanisms or environment‐mediated mechanisms (alternative effect, AE). We develop omnibus tests for the ME and AE that are robust to underlying true disease models. Numerical studies show that the iGWAS approach is able to facilitate discovering genetic association mechanisms, and outperforms the SNP‐only method for testing genetic associations. We conduct a family‐based iGWAS of childhood asthma that integrates genetic and genomic data. The iGWAS approach identifies six novel susceptibility genes (MANEA, MRPL53, LYCAT, ST8SIA4, NDFIP1, and PTCH1) using the omnibus test with false discovery rate less than 1%, whereas no gene using SNP‐only analyses survives with the same cut‐off. The iGWAS analyses further characterize that genetic effects of these genes are mostly mediated through their gene expressions. In summary, the iGWAS approach provides a new analytic framework to investigate the mechanism of genetic etiology, and identifies novel susceptibility genes of childhood asthma that were biologically meaningful.  相似文献   

8.
Homocysteine is a risk factor for atherosclerosis, and the level of homocysteine in plasma is known to be strongly influenced by genetic factors—not only rare variants, but also common polymorphisms. This report describes a comprehensive postgenomic strategy for elucidating useful genetic information about homocysteine metabolism. The standard method for gathering such information is the candidate gene approach, which is an effective method based on known biological information. After collecting evidence from independent research projects, a critical epidemiological review permits a determination as to whether a putative association is true or not. A genome-wide association study (GWAS), which requires no biological information, can identify new candidates and confirm associations suggested by the candidate gene approach. The importance of methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism, which was shown in a randomized controlled trial conducted by the present author, and in other studies, was independently confirmed by a large-scale GWAS. GWASs have also identified new candidate genes, but these must be confirmed by independent studies. In homocysteine metabolism, the classical candidate gene approach was sufficiently robust to detect the true association. However, candidate markers newly discovered by GWAS need to be confirmed by well-designed epidemiological studies to determine their significance. International statements, such as CONSORT and STREGA, provide useful principles for conducting such research.Key words: homocysteine, metabolism, folate, single nucleotide polymorphism (SNP), genome wide association study (GWAS)  相似文献   

9.
Genome‐wide association studies (GWAS) are a popular approach for identifying common genetic variants and epistatic effects associated with a disease phenotype. The traditional statistical analysis of such GWAS attempts to assess the association between each individual single‐nucleotide polymorphism (SNP) and the observed phenotype. Recently, kernel machine‐based tests for association between a SNP set (e.g., SNPs in a gene) and the disease phenotype have been proposed as a useful alternative to the traditional individual‐SNP approach, and allow for flexible modeling of the potentially complicated joint SNP effects in a SNP set while adjusting for covariates. We extend the kernel machine framework to accommodate related subjects from multiple independent families, and provide a score‐based variance component test for assessing the association of a given SNP set with a continuous phenotype, while adjusting for additional covariates and accounting for within‐family correlation. We illustrate the proposed method using simulation studies and an application to genetic data from the Genetic Epidemiology Network of Arteriopathy (GENOA) study.  相似文献   

10.
Violation of Hardy-Weinberg equilibrium (HWE) can raise doubts about the validity of the conclusions from genetic association studies. However, for most currently performed gene-disease association studies, the available tests have low power to detect deviations from HWE. We consider this issue from a meta-analysis perspective, and suggest an approach to estimate the deviation and investigate its relationship with the observed genetic effects. Different degrees of deviation from HWE have previously been proposed as a potential source of heterogeneity across studies. We present a hierarchical meta-regression model that can be applied to test this assumption, using the concept of the fixation coefficient. We re-analyse seven meta-analyses to illustrate these methods. The uncertainty in the genetic effect estimate tended to increase once the fixation coefficient was taken into account. Dependence of the genetic effect size on the deviation from HWE was found in one meta-analysis, while in the other six examples, deviations from HWE did not clearly explain between-study heterogeneity in the genetic effects. The proposed hierarchical models allow the synthesis of data across gene-disease association studies with appropriate consideration of HWE issues.  相似文献   

11.
Linkage disequilibrium SCore regression (LDSC) has become a popular approach to estimate confounding bias, heritability, and genetic correlation using only genome-wide association study (GWAS) test statistics. SumHer is a newly introduced alternative with similar aims. We show using theory and simulations that both approaches fail to adequately account for confounding bias, even when the assumed heritability model is correct. Consequently, these methods may estimate heritability poorly if there was an inadequate adjustment for confounding in the original GWAS analysis. We also show that the choice of a summary statistic for use in LDSC or SumHer can have a large impact on resulting inferences. Further, covariate adjustments in the original GWAS can alter the target of heritability estimation, which can be problematic for test statistics from a meta-analysis of GWAS with different covariate adjustments.  相似文献   

12.
Genome-wide association studies (GWAS) have thus far achieved substantial success. In the last decade, a large number of common variants underlying complex diseases have been identified through GWAS. In most existing GWAS, the identified common variants are obtained by single marker-based tests, that is, testing one single-nucleotide polymorphism (SNP) at a time. Generally, the basic functional unit of inheritance is a gene, rather than a SNP. Thus, results from gene-level association test can be more readily integrated with downstream functional and pathogenic investigation. In this paper, we propose a general gene-based p-value adaptive combination approach (GPA) which can integrate association evidence of multiple genetic variants using only GWAS summary statistics (either p-value or other test statistics). The proposed method could be used to test genetic association for both continuous and binary traits through not only one study but also multiple studies, which would be helpful to overcome the limitation of existing methods that can only be applied to a specific type of data. We conducted thorough simulation studies to verify that the proposed method controls type I errors well, and performs favorably compared to single-marker analysis and other existing methods. We demonstrated the utility of our proposed method through analysis of GWAS meta-analysis results for fasting glucose and lipids from the international MAGIC consortium and Global Lipids Consortium, respectively. The proposed method identified some novel trait associated genes which can improve our understanding of the mechanisms involved in -cell function, glucose homeostasis, and lipids traits.  相似文献   

13.
Meta‐analysis of genome‐wide association studies (GWAS) has achieved great success in detecting loci underlying human diseases. Incorporating GWAS results from diverse ethnic populations for meta‐analysis, however, remains challenging because of the possible heterogeneity across studies. Conventional fixed‐effects (FE) or random‐effects (RE) methods may not be most suitable to aggregate multiethnic GWAS results because of violation of the homogeneous effect assumption across studies (FE) or low power to detect signals (RE). Three recently proposed methods, modified RE (RE‐HE) model, binary‐effects (BE) model and a Bayesian approach (Meta‐analysis of Transethnic Association [MANTRA]), show increased power over FE and RE methods while incorporating heterogeneity of effects when meta‐analyzing trans‐ethnic GWAS results. We propose a two‐stage approach to account for heterogeneity in trans‐ethnic meta‐analysis in which we clustered studies with cohort‐specific ancestry information prior to meta‐analysis. We compare this to a no‐prior‐clustering (crude) approach, evaluating type I error and power of these two strategies, in an extensive simulation study to investigate whether the two‐stage approach offers any improvements over the crude approach. We find that the two‐stage approach and the crude approach for all five methods (FE, RE, RE‐HE, BE, MANTRA) provide well‐controlled type I error. However, the two‐stage approach shows increased power for BE and RE‐HE, and similar power for MANTRA and FE compared to their corresponding crude approach, especially when there is heterogeneity across the multiethnic GWAS results. These results suggest that prior clustering in the two‐stage approach can be an effective and efficient intermediate step in meta‐analysis to account for the multiethnic heterogeneity.  相似文献   

14.
The power of genetic association analyses can be increased by jointly meta-analyzing multiple correlated phenotypes. Here, we develop a meta-analysis framework, Meta-MultiSKAT, that uses summary statistics to test for association between multiple continuous phenotypes and variants in a region of interest. Our approach models the heterogeneity of effects between studies through a kernel matrix and performs a variance component test for association. Using a genotype kernel, our approach can test for rare-variants and the combined effects of both common and rare-variants. To achieve robust power, within Meta-MultiSKAT, we developed fast and accurate omnibus tests combining different models of genetic effects, functional genomic annotations, multiple correlated phenotypes, and heterogeneity across studies. In addition, Meta-MultiSKAT accommodates situations where studies do not share exactly the same set of phenotypes or have differing correlation patterns among the phenotypes. Simulation studies confirm that Meta-MultiSKAT can maintain the type-I error rate at the exome-wide level of 2.5 × 10−6. Further simulations under different models of association show that Meta-MultiSKAT can improve the power of detection from 23% to 38% on average over single phenotype-based meta-analysis approaches. We demonstrate the utility and improved power of Meta-MultiSKAT in the meta-analyses of four white blood cell subtype traits from the Michigan Genomics Initiative (MGI) and SardiNIA studies.  相似文献   

15.
Imaging technology and machine learning algorithms for disease classification set the stage for high-throughput phenotyping and promising new avenues for genome-wide association studies (GWAS). Despite emerging algorithms, there has been no successful application in GWAS so far. We establish machine learning-based phenotyping in genetic association analysis as misclassification problem. To evaluate chances and challenges, we performed a GWAS based on automatically classified age-related macular degeneration (AMD) in UK Biobank (images from 135,500 eyes; 68,400 persons). We quantified misclassification of automatically derived AMD in internal validation data (4,001 eyes; 2,013 persons) and developed a maximum likelihood approach (MLA) to account for it when estimating genetic association. We demonstrate that our MLA guards against bias and artifacts in simulation studies. By combining a GWAS on automatically derived AMD and our MLA in UK Biobank data, we were able to dissect true association (ARMS2/HTRA1, CFH) from artifacts (near HERC2) and identified eye color as associated with the misclassification. On this example, we provide a proof-of-concept that a GWAS using machine learning-derived disease classification yields relevant results and that misclassification needs to be considered in analysis. These findings generalize to other phenotypes and emphasize the utility of genetic data for understanding misclassification structure of machine learning algorithms.  相似文献   

16.
In observational studies, misclassification of exposure is ubiquitous and can substantially bias the estimated association between an outcome and an exposure. Although misclassification in a single observational study has been well studied, few papers have considered it in a meta-analysis. Meta-analyses of observational studies provide important evidence for health policy decisions, especially when large randomized controlled trials are unethical or unavailable. It is imperative to account properly for misclassification in a meta-analysis to obtain valid point and interval estimates. In this paper, we propose a novel Bayesian approach to filling this methodological gap. We simultaneously synthesize two (or more) meta-analyses, with one on the association between a misclassified exposure and an outcome (main studies), and the other on the association between the misclassified exposure and the true exposure (validation studies). We extend the current scope for using external validation data by relaxing the “transportability” assumption by means of random effects models. Our model accounts for heterogeneity between studies and can be extended to allow different studies to have different exposure measurements. The proposed model is evaluated through simulations and illustrated using real data from a meta-analysis of the effect of cigarette smoking on diabetic peripheral neuropathy.  相似文献   

17.
18.
The curse of multiple testing has led to the adoption of a stringent Bonferroni threshold for declaring genome-wide statistical significance for any one SNP as standard practice. Although justified in avoiding false positives, this conservative approach has the potential to miss true associations as most studies are drastically underpowered. As an alternative to increasing sample size, we compare results from a typical SNP-by-SNP analysis with three other methods that incorporate regional information in order to boost or dampen an otherwise noisy signal: the haplotype method (Schaid et al. [2002] Am J Hum Genet 70:425-434), the gene-based method (Liu et al. [2010] Am J Hum Genet 87:139-145), and a new method (interaction count) that uses genome-wide screening of pairwise SNP interactions. Using a modestly sized case-control study, we conduct a genome-wide association studies (GWAS) of age-related macular degeneration, and find striking agreement across all methods in regions of known associated variants. We also find strong evidence of novel associated variants in two regions (Chromosome 2p25 and Chromosome 10p15) in which the individual SNP P-values are only suggestive, but where there are very high levels of agreement between all methods. We propose that consistency between different analysis methods may be an alternative to increasingly larger sample sizes in sifting true signals from noise in GWAS.  相似文献   

19.
Genome‐wide association studies (GWAS) of common disease have been hugely successful in implicating loci that modify disease risk. The bulk of these associations have proven robust and reproducible, in part due to community adoption of statistical criteria for claiming significant genotype‐phenotype associations. As the cost of sequencing continues to drop, assembling large samples in global populations is becoming increasingly feasible. Sequencing studies interrogate not only common variants, as was true for genotyping‐based GWAS, but variation across the full allele frequency spectrum, yielding many more (independent) statistical tests. We sought to empirically determine genome‐wide significance thresholds for various analysis scenarios. Using whole‐genome sequence data, we simulated sequencing‐based disease studies of varying sample size and ancestry. We determined that future sequencing efforts in >2,000 samples of European, Asian, or admixed ancestry should set genome‐wide significance at approximately P = 5 × 10?9, and studies of African samples should apply a more stringent genome‐wide significance threshold of P = 1 × 10?9. Adoption of a revised multiple test correction will be crucial in avoiding irreproducible claims of association.  相似文献   

20.
Results from association studies are traditionally corroborated by replicating the findings in an independent data set. Although replication studies may be comparable for the main trait or phenotype of interest, it is unlikely that secondary phenotypes will be comparable across studies, making replication problematic. Alternatively, there may simply not be a replication sample available because of the nature or frequency of the phenotype. In these situations, an approach based on complementary pairs stability selection for genome-wide association study (ComPaSS-GWAS), is proposed as an ad-hoc alternative to replication. In this method, the sample is randomly split into two conditionally independent halves multiple times (resamples) and a GWAS is performed on each half in each resample. Similar in spirit to testing for association with independent discovery and replication samples, a marker is corroborated if its p-value is significant in both halves of the resample. Simulation experiments were performed for both nongenetic and genetic models. The type I error rate and power of ComPaSS-GWAS were determined and compared to the statistical properties of a traditional GWAS. Simulation results show that the type I error rate decreased as the number of resamples increased with only a small reduction in power and that these results were comparable with those from a traditional GWAS. Blood levels of vitamin pyridoxal 5′-phosphate from the Trinity Student Study (TSS) were used to validate this approach. The results from the validation study were compared to, and were consistent with, those obtained from previously published independent replication data and functional studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号