首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

Previous studies suggested that estrogen receptor alpha (ERα) plays an important role in the chemoresistance of breast cancers. However, large random trials failed to demonstrate any benefit of the concurrent estrogen antagonist tamoxifen on the chemotherapy efficacy. Thus, in the present study, the importance of the role of ERα in the chemoresistance of breast cancer cells was investigated.

Methods

The ERα-transfected Bcap37 cells and natural ERα-positive T47D breast cancer cells were treated using chemotherapeutic agents with or without 17-beta estradiol (E2) pretreatment. Their viabilities were assessed using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assays. The dead cell rates were determined using propidium iodide dye exclusion tests, and the expression levels of Bcl-2 and Bax were detected through Western blot analysis. The effects of E2 on the growth of breast cancer cells were also determined via cell growth curve and cell cycle analysis.

Results

ERα activation by E2 increased the sensitivity of natural ERα-positive T47D breast cancer cells to chemotherapeutic agents. However, the increase in ERα expression in ERα-negative Bcap37 breast cancer cells also significantly increased their resistance. These phenomena cannot be explained by asserting that ERα mediated the chemoresistance of breast cancer cells by regulating the expression of Bcl-2 and Bax. Our findings show that ERα activation upregulated the expression of Bcl-2 in natural ERα-positive T47D breast cancer cells, whereas ERα activation by E2 downregulated and upregulated the Bcl-2 and Bax expression levels, respectively, in ERα-transfected Bcap37 cells. This phenomenon was due to the influence of ERα on the growth of breast cancer cells. Specifically, ERα activation enhanced the growth of natural ERα-positive breast cancer cells and thus increased their sensitivity to chemotherapeutic agents. However, ERα activation also inhibited the growth of ERα-transfected Bcap37 cells and increased the resistance of cancer cells to chemotherapeutic agents. Chemoresistance of ERα-transfected Bcap37 cells was only due to the specific growth inhibition by E2, which is not applicable to common ERα-positive breast cancer cells.

Conclusions

Although ERα was associated with chemoresistance of breast cancers, ERα itself did not mediate this resistance process.  相似文献   

2.
3.
4.
5.
6.
Estrogens are related with the growth and development of target tissues and play a critical role in breast cancer progression. The effects of estrogens are mediated by the estrogen receptors ERα and ERβ, which are members of the nuclear steroid receptor superfamily. To date, it is not known how these hormones elicit many of their effects on extracellular matrix molecules and how these effects can be connected with ER expression. For this purpose, the effect of estradiol on ER expression as well as on proteoglycan and metalloproteinase expression was studied. The effect of E2 on extracellular matrix molecule expression has been studied using ERα suppression in breast cancer cells. Our studies using ERα‐positive MCF‐7 cells show that estradiol affects the expression of syndecan‐2, but not of syndecan‐4, through ERα. Furthermore, the ability of estradiol to affect MMP‐9 and TIMP‐1 expression is connected with ERα status. Together, these data demonstrate the significant role of ERα on mediating the effect of estradiol on extracellular matrix molecules.  相似文献   

7.
8.
Estrogen receptor (ER) is a major therapeutic target for the treatment of breast cancer, because of the crucial role of estrogen signaling deregulation in the development and progression of breast cancer. In this study, we report the identification of a novel ERα binding compound, cryptotanshinone (CPT), by screening the CADD database. We also show that CPT effectively inhibits estrogen-induced ER transactivation and gene expression of ER target genes. Furthermore, we showed that CPT suppressed breast cancer cell growth mainly in an ERα dependent manner. Finally, we confirmed the potential therapeutic efficiency of CPT using xenograft experiments in vivo. Taken together, our results describe a novel mechanism for the anticancer activity of CPT and provide supporting evidence for its use as a potential therapeutic agent to treat patients with ERα positive breast cancer.  相似文献   

9.
10.

Introduction

Epidemiological and clinical studies indicate that obesity is associated with a worse postmenopausal breast cancer prognosis and an increased risk of endocrine therapy resistance. However, the mechanisms mediating these effects remain poorly understood. Here we investigate the molecular pathways by which obesity-associated circulating factors in the blood enhance estrogen receptor alpha (ERα) positive breast cancer cell viability and growth.

Methods

Blood serum was collected from postmenopausal breast cancer patients and pooled by body mass index (BMI) category (Control: 18.5 to 24.9 kg/m2; Obese: ≥30.0 kg/m2). The effects of patient sera on MCF-7 and T47D breast cancer cell viability and growth were examined by MTT and colony formation assays, respectively. Insulin-like growth factor receptor 1(IGF-1R), Akt, and ERK1/2 activation and genomic ERα activity were assessed to determine their possible contribution to obese patient sera-induced cell viability and growth. To further define the relative contribution of these signaling pathways, cells grown in patient sera were treated with various combinations of ERα, PI3K/Akt and MAPK targeted therapies. Comparisons between cells exposed to different experimental conditions were made using one-way analysis of variance (ANOVA) and Student''s t test.

Results

Cells grown in media supplemented with obese patient sera displayed greater cell viability and growth as well as IGF-1R, Akt and ERK1/2 activation relative to control sera. Despite the lack of a significant difference in genomic ERα activity following growth in obese versus control patient sera, we observed a dramatic reduction in cell viability and growth after concurrent inhibition of the ERα and PI3K/Akt signaling pathways. Further, we demonstrated that ERα inhibition was sufficient to attenuate obese serum-induced Akt and ERK1/2 activation. Together, these data suggest that obesity promotes greater ERα positive breast cancer cell viability and growth through enhanced crosstalk between nongenomic ERα signaling and the PI3K/Akt and MAPK pathways.

Conclusions

Circulating factors in the serum of obese postmenopausal women stimulate ERα positive breast cancer cell viability and growth by facilitating non-genomic ERα crosstalk with the PI3K/Akt and MAPK signaling pathways. These findings provide valuable insight into one mechanism by which obesity may promote ERα positive postmenopausal breast cancer progression and endocrine therapy resistance.  相似文献   

11.
NOP14, which is functionally conserved among eukaryotes, has been implicated in cancer development. Here, we show that NOP14 is poorly expressed in breast cancer cells and invasive breast cancer tissues. In vivo and in vitro studies indicated that NOP14 suppressed the tumorigenesis and metastasis of breast cancer cells. Further investigations revealed that NOP14 enhanced ERα expression and inhibited the Wnt/β-catenin pathway by up-regulating NRIP1 expression. Survival analysis indicated that low NOP14 expression was significantly associated with poor overall survival (P = 0.0006) and disease-free survival (P = 0.0007), suggesting that NOP14 is a potential prognostic factor in breast cancer. Taken together, our findings reveal that NOP14 may suppress breast cancer progression and provide new insights into the development of targeted therapeutic agents for breast cancer.  相似文献   

12.
13.
Controversy surrounds the potential clinical importance of oestrogen receptor (ER)β in breast cancer, and three recent papers have sought to resolve this. In the present issue of Breast Cancer Research Novelli and colleagues explored the significance of ERβ1 expression in 936 breast cancer patients, and they showed diverse relationships according to lymph node status. A second paper examined 442 breast cancers in which ERβ1 was an independent predictor of recurrence, disease-free survival and overall survival. Finally a third paper showed that ERβ2 was a powerful prognostic indicator in 757 breast cancers but this was dependent on cellular location, with nuclear ERβ2 expression predicting good survival whilst cytoplasmic expression predicted worse outcome. These papers point to a clinical role for ERβ in breast cancer and shall be discussed.  相似文献   

14.

Introduction

RhoB has been reported to exert positive and negative effects on cancer pathophysiology but an understanding of its role in breast cancer remains incomplete. Analysis of data from the Oncomine database showed a positive correlation between RhoB expression and positivity for both estrogen receptor alpha (ERα) and progesterone receptor (PR).

Methods

This finding was validated by our analysis of a tissue microarray constructed from a cohort of 113 patients and then investigated in human cell models.

Results

We found that RhoB expression in tissue was strongly correlated with ERα and PR expression and inversely correlated with tumor grade, tumor size and count of mitosis. In human breast cancer cell lines, RhoB attenuation was associated with reduced expression of both ERα and PR, whereas elevation of RhoB was found to be associated with ERα overexpression. Mechanistic investigations suggested that RhoB modulates ERα expression, controlling both its protein and mRNA levels, and that RhoB modulates PR expression by accentuating the recruitment of ERα and other major co-regulators to the promoter of PR gene. A major consequence of RhoB modulation was that RhoB differentially regulated the proliferation of breast cancer cell lines. Interestingly, we documented crosstalk between RhoB and ERα, with estrogen treatment leading to RhoB activation.

Conclusion

Taken together, our findings offer evidence that in human breast cancer RhoB acts as a positive function to promote expression of ERα and PR in a manner correlated with cell proliferation.  相似文献   

15.
A significant proportion of the genes regulated by 17-beta-estradiol (E2) via estrogen receptor alpha (ERα) have roles in vesicle trafficking in breast cancer. Intracellular vesicle trafficking and extracellular vesicles have important roles in tumourigenesis. Here we report the discovery of giant (3-42μm) intracellular and extracellular vesicles (GVs) and the role of E2 on vesicle formation in breast cancer (BC) cell lines using three independent live cell imaging techniques. Large diameter vesicles, GVs were also identified in a patient-derived xenograft BC model, and in invasive breast carcinoma tissue. ERα-positive (MCF-7 and T47D) BC cell lines demonstrated a significant increase in GV formation after stimulation with E2 which was reversed by tamoxifen. ERα-negative (MDA-MB-231 and MDA-MB-468) BC cell lines produced GVs independently of E2 and tamoxifen. These results indicate the existence of both intracellular and extracellular vesicles with considerably larger dimensions than generally recognised with BC cells and suggest that the GVs are regulated by E2 via ERα in ERα-positive BC but by E2-independent mechanisms in ER-ve BC.  相似文献   

16.
17.
ObjectiveChromosomal instability (CIN) is a hallmark of cancer characterized by cell-to-cell variability in the number or structure of chromosomes, frequently observed in cancer cell populations and is associated with poor prognosis, metastasis, and therapeutic resistance. Breast cancer (BC) is characterized by unstable karyotypes and recent reports have indicated that CIN may influence the response of BC to chemotherapy regimens. However, paradoxical associations between extreme CIN and improved outcome have been observed.MethodsThis study aimed to 1) evaluate CIN levels and clonal heterogeneity (CH) in MCF7, ZR-751, MDA-MB468, BT474, and KPL4 BC cells treated with low doses of tamoxifen (TAM), docetaxel (DOC), doxorubicin (DOX), Herceptin (HT), and combined treatments (TAM/DOC, TAM/DOX, TAM/HT, HT/DOC, and HT/DOX) by using fluorescence in situ hybridization (FISH), and 2) examine the association with response to treatments by comparing FISH results with cell proliferation.ResultsIntermediate CIN was linked to drug sensitivity according to three characteristics: estrogen receptor α (ERα) and HER2 status, pre-existing CIN level in cancer cells, and the CIN induced by the treatments. ERα+/HER2− cells with intermediate CIN were sensitive to treatment with taxanes (DOC) and anthracyclines (DOX), while ERα−/HER2−, ERα+/HER2+, and ERα-/HER2+ cells with intermediate CIN were resistant to these treatments.ConclusionsA greater understanding of CIN and CH in BC could assist in the optimization of existing therapeutic regimens and/or in supporting new strategies to improve cancer outcomes.  相似文献   

18.
The role of estrogen signaling in regulating prostate tumorigenesis is relatively underexplored. Although, an increasing body of evidence has linked estrogen receptor beta (ERβ) to prostate cancer, the function of estrogen receptor alpha (ERα) in prostate cancer is not very well studied. We have discovered a novel role of ERα in the pathogenesis of prostate tumors. Here, we show that prostate cancer cells express ERα and estrogen induces oncogenic properties in prostate cancer cells through ERα. Importantly, ERα knockdown in the human prostate cancer PacMetUT1 cells as well as pharmacological inhibition of ERα with ICI 182,780 inhibited osteoblastic lesion formation and lung metastasis in vivo. Co-culture of pre-osteoblasts with cancer cells showed a significant induction of osteogenic markers in the pre-osteoblasts, which was attenuated by knockdown of ERα in cancer cells suggesting that estrogen/ERα signaling promotes crosstalk between cancer and osteoblastic progenitors to stimulate osteoblastic tumorigenesis. These results suggest that ERα expression in prostate cancer cells is essential for osteoblastic lesion formation and lung metastasis. Thus, inhibition of ERα signaling in prostate cancer cells may be a novel therapeutic strategy to inhibit the osteoblastic lesion development as well as lung metastasis in patients with advanced prostate cancer.  相似文献   

19.
The high intra- and inter-tumor heterogeneity of many types of cancers, including breast cancer (BC), poses great challenge to development of subtype-specific prognosis. In BC, the classification of tumors as either ERα+ (Luminal A and Luminal B), HER2+ (ERα+ or ERα) or triple-negative (TNBC)(Basal-like, claudin-low) guides both prognostication and therapy. Indeed, prognostic signatures for ERα+ BC are being incorporated into clinical use. However, these signatures distinguish between luminal A (low risk) and Luminal B (high risk) BC; signatures that identify low/high risk patients with luminal B BC are yet to be developed. Likewise, no signature is in clinical use for HER2+ or TNBC. The major obstacles to development of robust signatures stem from diversity of BC, clonal evolution and heterogeneity within each subtype. We have recently generated a prognostic signature for HER2+:ERα BC based on the identification of genes that were differentially expressed in a tumor-initiating cell (TIC)-enriched fraction versus non-TIC fraction from a mouse model of HER2+ BC (MMTV-Hers/Neu). Here we describe the rationale behind development of this prognosticator, and present new features of the signature, including elevated PI3K pathway activity and low TNFalpha and IFNgamma signaling in high-risk tumors. In addition, we address controversies in the field such as whether random gene expression signatures significantly associate with cancer outcome. Finally, we suggest a guideline for development of prognostic signatures and discuss future directions.  相似文献   

20.

Purpose

G-protein coupled estrogen receptor 1 (GPER) probably play important roles in the progression of breast cancer including endocrine therapeutic resistance. We evaluated GPER in primary breast cancers.

Methods

Immunohistochemistry was used to detect GPER in paraffin-embedded tissues of primary breast cancers from 423 patients and GPER expression was correlated with clinicopathological factors.

Results

GPER was expressed in 63.8% of specimens, coexpressed with estrogen receptor alpha (ERα) in 36.6% of tumors and was positive in 62.5% of the ERα-negative tumors. The expression of GPER had no relationship with the status of ERα, progesterone receptor and HER2. Although the expression of GPER was significantly inversely related with nodal status (p=0.045), no correlation between GPER expression and other clinicopathological variables (age, menstruation status, tumor size, stage, histologic grade, Nottingham Prognostic Index or pathological type) was found.

Conclusion

GPER and ERα exhibited independent expression pattern of distribution in primary breast cancers. A long-term follow-up and a more definite molecular phenotype for ER are necessary in confirming studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号