首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Angiogenesis is becoming a major target for antitumor therapies, and identifying new angiogenic factors and their specific inhibitors may provide new avenues for tumor management. Here we identify gastrin-releasing peptide (GRP) as a new angiogenic molecule that is secreted by tumors and acts directly upon GRP receptors in the endothelial cells. Addition of GRP increases endothelial cell migration and cord formation in vitro, and induces angiogenesis in an in vivo assay. We have recently identified a small molecule GRP blocker, compound 77427. This inhibitor significantly reduced endothelial cell cord formation in vitro and angiogenesis in vivo. Conversely, when applied to VEGF-induced angiogenesis, the small molecule did not have any effect, demonstrating its specificity. Furthermore, this GRP blocker was able to reduce lung tumor cell growth in vitro as demonstrated by MTT and clonogenic assays. When applied to a xenograft model with lung cancer cells, compound 77427 reduced tumor volume to undetectable sizes, although when the treatment was suspended, tumors began to grow again at normal rates. Our collective observations indicate that GRP is a new angiogenic peptide and that its inhibition offers an attractive tool to reduce tumor burden.  相似文献   

2.
The transplantation of neural stem cells (NSCs) offers a new potential therapeutic approach as a cell-based delivery system for gene therapy in brain tumors. This is based on the unique capacity of NSCs to migrate throughout the brain and to target invading tumor cells. However, the signals controlling the targeted migration of transplanted NSCs are poorly defined. We analyzed the in vitro and in vivo effects of angiogenic growth factors and protein extracts from surgical specimens of brain tumor patients on NSC migration. Here, we demonstrate that vascular endothelial growth factor (VEGF) is able to induce a long-range attraction of transplanted human NSCs from distant sites in the adult brain. Our results indicate that tumor-upregulated VEGF and angiogenic-activated microvasculature are relevant guidance signals for NSC tropism toward brain tumors.  相似文献   

3.
肿瘤血管研究及其在肝癌领域的进展   总被引:8,自引:0,他引:8  
肿瘤生长与转移依赖新生血管形成,其过程受到血管形成激活因子和抑制因子的双重调节。评价肿瘤血管形成能力可判断预后,而抗血管形成治疗有望成为肿瘤治疗的新方法,肿瘤血管形成能力的基础调节及寻找新的血管形成抑制因子是今后肿瘤治疗领域需要解决的问题。肝癌是典型的多血管肿瘤,多数学者肯定微血管密度是肝癌病人预后的影响因素。本文还综述了血管内皮细胞生长因子、碱性纤维母细胞生长因子在肝癌诱导新生血管形成中的作用。针对肿瘤血和的肝癌实验必干预治疗表明抗肿瘤血管治疗是治疗肝癌的有效方法。  相似文献   

4.
Malignant gliomas are highly lethal cancers dependent on angiogenesis. Critical tumor subpopulations within gliomas share characteristics with neural stem cells. We examined the potential of stem cell-like glioma cells (SCLGC) to support tumor angiogenesis. SCLGC isolated from human glioblastoma biopsy specimens and xenografts potently generated tumors when implanted into the brains of immunocompromised mice, whereas non-SCLGC tumor cells isolated from only a few tumors formed secondary tumors when xenotransplanted. Tumors derived from SCLGC were morphologically distinguishable from non-SCLGC tumor populations by widespread tumor angiogenesis, necrosis, and hemorrhage. To determine a potential molecular mechanism for SCLGC in angiogenesis, we measured the expression of a panel of angiogenic factors secreted by SCLGC. In comparison with matched non-SCLGC populations, SCLGC consistently secreted markedly elevated levels of vascular endothelial growth factor (VEGF), which were further induced by hypoxia. In an in vitro model of angiogenesis, SCLGC-conditioned medium significantly increased endothelial cell migration and tube formation compared with non-SCLGC tumor cell-conditioned medium. The proangiogenic effects of glioma SCLGC on endothelial cells were specifically abolished by the anti-VEGF neutralizing antibody bevacizumab, which is in clinical use for cancer therapy. Furthermore, bevacizumab displayed potent antiangiogenic efficacy in vivo and suppressed growth of xenografts derived from SCLGC but limited efficacy against xenografts derived from a matched non-SCLGC population. Together these data indicate that stem cell-like tumor cells can be a crucial source of key angiogenic factors in cancers and that targeting proangiogenic factors from stem cell-like tumor populations may be critical for patient therapy.  相似文献   

5.
Angiogenesis is the formation of capillaries from pre-existing blood vessels. Angiogenesis occurs in many developmental, physiologic, and pathologic processes including tumor growth. Previous studies have shown that angiogenesis is required for growth and metastasis of solid tumors. Fibroblast growth factors (FGF-1, -2) and vascular endothelial growth factor (VEGF) are extremely potent angiogenesis inducers by stimulating the proliferation and migration of capillary endothelial cells. Expression of these factors is upregulated in many solid tumors and correlates with high vascularity, lymph node metastasis, and poor clinical prognosis. Few studies have examined whether established head and neck squamous cell carcinoma (SCC) lines produce biologically active angiogenic factors. By immunoprecipitation, we detected FGF and VEGF proteins in cellular lysates of SCC lines. We also detected FGF-1 and -2 proteins in serum-free-conditioned medium from these lines. Conditioned medium from SCC lines significantly increased proliferation of human umbilical vein endothelial cells (HUVEC). This increased proliferation was abrogated by pre-incubation of conditioned medium with neutralizing antibodies to FGFs and VEGF. Conditioned medium from SCC lines also significantly stimulated HUVEC invasion across a reconstituted basement membrane. We concluded that head and neck SCC lines secrete biologically active angiogenic factors.  相似文献   

6.
We have found through ex vivo and in vivo angiogenesis models that the adrenomedullin gene-related peptide, proadrenomedullin NH2-terminal 20 peptide (PAMP), exhibits a potent angiogenic potential at femtomolar concentrations, whereas classic angiogenic factors such as vascular endothelial growth factor and adrenomedullin mediate a comparable effect at nanomolar concentrations. We found that human microvascular endothelial cells express PAMP receptors and respond to exogenous addition of PAMP by increasing migration and cord formation. Exposure of endothelial cells to PAMP increases gene expression of other angiogenic factors such as adrenomedullin, vascular endothelial growth factor, basic fibroblast growth factor, and platelet-derived growth factor C. In addition, the peptide fragment PAMP(12-20) inhibits tumor cell-induced angiogenesis in vivo and reduces tumor growth in xenograft models. Together, our data demonstrate PAMP to be an extremely potent angiogenic factor and implicate this peptide as an attractive molecular target for angiogenesis-based antitumor therapy.  相似文献   

7.
Angiogenesis is essential for tumor growth and metastasis and depends on the production of angiogenic factors by tumor cells. Neuroblastoma (NB) is a common pediatric tumor of neural crest origin, which is biologically and clinically heterogeneous. Increased tumor vascular index correlates with poor outcome of NB. To determine which angiogenic factors contribute to NB angiogenesis and thereby support tumor progression, we examined the expression of eight angiogenic factors [vascular endothelial growth factor (VEGF), VEGF-B, VEGF-C, basic fibroblast growth factor, angiopoietin (Ang)-1, Ang-2, transforming growth factor alpha, and platelet-derived growth factor (PDGF)] by semiquantitative RT-PCR in 37 NB primary tumors and in 22 NB cell lines. We also analyzed the relationship between angiogenic factor expression and clinicopathological factors as well as patient survival. All eight angiogenic factors examined were expressed at various levels in NB cell lines and tumors, suggesting their involvement in NB angiogenesis. The expression levels of most angiogenic factors were correlated with each other, suggesting their synergy in regulating the angiogenic process. Significantly higher expression levels of VEGF, VEGF-B, VEGF-C, basic fibroblast growth factor, Ang-2, transforming growth factor alpha, and PDGF-A (P < 0.0001-0.026) were found in advanced-stage tumors (stages 3 and 4) compared with low-stage tumors (stages 1, 2, and 4S). Expression of PDGF-A was significantly associated with patient survival (P = 0.04). The redundancy in angiogenic factor expression suggests that inhibition of VEGF bioactivity alone might not be a sufficient approach for antiangiogenic therapy of human NB.  相似文献   

8.
血管抑素是血浆纤维蛋白溶酶原裂解片段,肿瘤的血管生成与体内血管生成抑制因子/促进因子的调节失衡有关,患者体液及肿瘤中血管抑素的测定有望用于恶性肿瘤的诊断及预后判断。动物实验表明,血管抑素对多种肿瘤的新生血管生成,肿瘤生长及转移具有抑制作用,与放疗,免疫治疗等联合应用具有协同抗肿瘤作用。  相似文献   

9.
Cyclooxygenase-2 upregulation as a perigenetic change in carcinogenesis   总被引:8,自引:0,他引:8  
The present paper reviews current concepts on the role of cyclooxygenase (COX) in the development of malignant tumors. An inducible isoform of cyclooxygenase is expressed in neoplastic, pre-neoplastic, and peri-neoplastic cells by mutation of oncogenes (such as ras), tumor promoters, mitogens, cytokines, their receptors, and pathogenic factors such as Helicobacter. Cells overexpressing cox-2 escape apoptosis, have abnormal cell-to-cell interactions, and acquire invasive phenotypes. On the other hand, angiogenesis plays a key role in the development of malignant tumors. Both in vitro and in vivo studies indicate that cox-2 overexpression upregulates angiogenic factors in neoplastic cells and promotes tumor angiogenesis. It is also possible that cox-2 expression upregulates angiogenic factors in peri-neoplastic cells that express the isozyme. Interestingly, cox-1, the other isozyme that is expressed in tumor vascular endothelia, participates in tumor angiogenesis, because an anti-sense oligonucleotide of cox-1 suppresses in vitro angiogenesis induced by cox-2-overexpressing cells. A non-specific COX inhibitor, not a specific COX-2 inhibitor, reduced growth and angiogenesis in cancer xenografts by inhibition of COX-1 in vascular endothelial cells, even when the tumor did not express COX-2. These results demonstrate that COX inhibitors suppress angiogenesis and tumor growth by inhibiting expression of angiogenic factors and vascular endothelial cell migration. Furthermore, another concept is emerging to indicate that prostaglandins (COX-2 products and mediators of classic inflammation) suppress host immunity against tumors. This evidence supports the hypothesis that COX is an important perigenetic factor in the development of cancer growth, and offers a new strategy against cancer using COX inhibitors (nonsteroidal anti-inflammatory drugs).  相似文献   

10.
Overexpression of the epidermal growth factor receptor (EGFR) is thought to play a key role in the development of head and neck squamous cell carcinoma (HNSCC) primarily through its effect on promoting uncontrolled cell proliferation. Blocking EGFR ligand binding might also inhibit angiogenesis and down-regulate the production of angiogenic factors. Angiogenesis is increased in various human tumors, including head and neck squamous cell carcinoma (HNSCC), and correlates with tumor progression and metastasis. The vascular endothelial growth factor (VEGF) is thought to be the most important angiogenic factor. We determined whether VEGF antisense oligonucleotide treatment can decrease angiogenic activity of HNSCC cell lines in vitro. By using a 21-mer antisense phosphorothioate oligonucleotide targeting the translation start site of human EGFR mRNA, we examined modulation of VEGF expression in cell line supernatants by capture ELISA, and in cell lysates by Western blotting. Human umbilica vein endothelial cells (HUVEC) were grown in conditioned medium produced from the treated tumor cells. Endothelial cell migration was measured using a modified Boyden chamber. EGFR antisense oligonucleotide treatment resulted in a significant reduction of VEGF protein expression compared to sense oligonucleotide control. Addition of conditioned medium from EGFR antisense-treated tumor cells resulted in decreased endothelial cell migration. In conclusion, therapeutic strategies targeting EGFR signaling in head and neck cancer might have an antitumor effect mediated in part by inhibition of tumor angiogenesis.  相似文献   

11.
李颖嘉  王东  高奉浔 《中国癌症杂志》2001,11(6):485-487,492
目的:研究人骨肉瘤细胞系OS-732血管生成相关作用。方法:应用鸡胚绒毛尿囊膜模型,通过解剖显微镜及透射电镜观察该细胞系促血管生成特点,并以免疫组化方法检测人骨肉瘤细胞系OS-732鸡胚绒毛尿囊膜移植瘤中血管内皮生长因子(vascular endothelial growth factor,VEGF),碱性成纤维细胞生长因子(Basic fibroblast growth factor,bFGF)的表达。结果:该细胞系具较强的诱导血管生成能力,解剖显微镜下可见血管辐辏现象,透射电镜下可见新生血管壁由单层内皮细胞构成,内皮细胞裂隙增宽,基底膜不完整,缺乏平滑肌成分,移植瘤组织发VEGF和bFGF均呈阳性表达,其中VEGF呈高表达。结论:肿瘤诱导的新生血管在病理,生理及形态功能方面都具有特征性,其诱导血管生成过程中可能有多种血管生长因子的共同参与,针对血管生长因子为靶点进行抗血管生成治疗对改善骨肉瘤预后可能具有重要意义。  相似文献   

12.
Bevacizumab (BV), a monoclonal antibody against vascular endothelial growth factor (VEGF), is currently used in the treatment of malignant glioma. To understand mechanisms of resistance to BV, we investigated morphological changes in tumor vessels and expression of angiogenic factors, such as VEGF, Flt-1, basic fibroblast growth factor (bFGF), and platelet-derived growth factor-BB (PDGF-BB), in four autopsied tumors after BV treatment. Three patients had glioblastomas; the fourth had a secondary glioblastoma that developed from a diffuse astrocytoma. BV was administered because of recurrence following the use of the Stupp regimen in these four patients. We compared the initial surgical specimen with that obtained after death following BV treatment. Immunohistochemical staining of the autopsied tumors showed that Flt-1 expression increased while VEGF expression was significantly reduced. Additionally, other angiogenic factors, particularly bFGF, were enhanced. Interestingly, the proliferation of endothelial cells was reduced, but remarkable proliferation of pericytes was observed. These results suggest that following BV treatment, glioblastomas can grow tumor vessels by expressing various angiogenic factors. These mechanisms might be important for rapid regrowth and blood brain barrier repair after BV treatment. Inhibition of multiple angiogenic factors will be required to control tumor vessels in glioblastoma.  相似文献   

13.
Decorin suppresses tumor cell-mediated angiogenesis   总被引:7,自引:0,他引:7  
Grant DS  Yenisey C  Rose RW  Tootell M  Santra M  Iozzo RV 《Oncogene》2002,21(31):4765-4777
The progressive growth of most neoplasms is dependent upon the establishment of new blood vessels, a process regulated by tumor-secreted factors and matrix proteins. We examined the in vitro and in vivo angiogenic ability of conditioned media obtained from fibrosarcoma, carcinoma, and osteosarcoma cells and their decorin-transfected counterparts. Human endothelial cells were investigated in vitro by evaluating three essential steps of angiogenesis: migration, attachment, and differentiation. On the whole, wild-type tumor cell-secretions enhanced endothelial cell attachment, migration, and differentiation, whereas their decorin-expressing forms inhibited these processes. Similarly, decorin-containing media suppressed endothelial cell sprouting in an ex vivo aortic ring assay. Since angiogenesis is an important component of tumor expansion, the growth rate of these cells as tumor xenografts was examined by implantation in nude mice. In vivo, the decorin-expressing tumor xenografts grew at markedly lower rates and showed a significant suppression of neovascularization. Immunohistochemical, Northern and Western blot analyses indicated that the decorin-expressing cells produced vascular endothelial growth factor (VEGF) at markedly reduced rates vis-á-vis their wild-type counterparts. Specificity of this process was confirmed by experiments where addition of recombinant decorin to the wild-type tumor cells caused 80-95% suppression of VEGF mRNA and protein. These results provide a novel mechanism of action for decorin, and indicate that decorin could adversely affect in vivo tumor growth by suppressing the endogenous tumor cell production of a powerful angiogenic stimulus.  相似文献   

14.
15.
Elevated expression of Eph receptors has long been correlated with the growth of solid tumors. However, the functional role of this family of receptor tyrosine kinases in carcinogenesis and tumor angiogenesis has not been well characterized. Here we report that soluble EphA receptors inhibit tumor angiogenesis and tumor progression in vivo in the RIP-Tag transgenic model of vascular endothelial growth factor (VEGF)-dependent multistage pancreatic islet cell carcinoma. Soluble EphA receptors delivered either by a transgene or an osmotic minipump inhibited the formation of angiogenic islet, a premalignant lesion, and reduced tumor volume of solid islet cell carcinoma. EphA2-Fc or EphA3-Fc treatment resulted in decreased tumor volume but increased tumor and endothelial cell apoptosis in vivo. In addition, soluble EphA receptors inhibited VEGF and betaTC tumor cell-conditioned medium-induced endothelial cell migration in vitro and VEGF-induced cornea angiogenesis in vivo. A dominant negative EphA2 mutant inhibited--whereas a gain-of-function EphA2 mutant enhanced--tumor cell-induced endothelial cell migration, suggesting that EphA2 receptor activation is required for tumor cell-endothelial cell interaction. These data provide functional evidence for EphA class receptor regulation of VEGF-dependent tumor angiogenesis, suggesting that the EphA signaling pathway may represent an attractive novel target for antiangiogenic therapy in cancer.  相似文献   

16.
VEGF as a target     
Since 1971, when Judah Folkman postulated that tumor progression relies on the tumor’s ability to meet its requirements in oxygen and nutriments by releasing so-called tumor angiogenic factors (TAF), most researchers working in the growth factor field have been searching for TAF. Today, almost 50 angiogenic growth factors have been discovered, but only one has proven its role in tumor angiogenesis. In 1989, the purification of a growth factor specific for endothelial vascular cells, called vascular endothelial growth factor (VEGF), raised great expectations that it would meet the criteria of the so-called TAF. The prophecy that inhibiting TAF would be sufficient to eradicate the tumor burden has not yet been demonstrated in human tumors. Meanwhile anti-VEGF therapy has proven its efficacy in combination with chemotherapy, and this strategy may be more efficient on patients treated at early stage.  相似文献   

17.
Gene transfer delivery of endogenous angiogenesis inhibitors such as angiostatin would circumvent problems associated with long-term administration of proteins. Kaposi's sarcoma (KS), a highly vascular neoplasm, is an excellent model for studying tumor angiogenesis and antiangiogenic agent efficacy. We investigated the effects of angiostatin gene transfer in in vitro and in vivo models of KS-induced neovascularization and tumor growth. A eukaryotic expression plasmid and a Moloney leukemia virus-based retroviral vector for expression of murine angiostatin were generated harboring the angiostatin cDNA with cleavable leader signals under the control of either the strong cytomegalovirus promoter/enhancer or the Moloney leukemia virus long terminal repeat. Angiostatin secretion was confirmed by radioimmunoprecipitation and Western blot analysis. Supernatants of angiostatin-transfected cells inhibited endothelial cell migration in vitro. Stable gene transfer of the angiostatin cDNA by retroviral vectors in KS-IMM cells resulted in sustained angiostatin expression and delayed tumor growth in nude mice, which was associated with reduced vascularization. These findings suggest that gene therapy with angiostatin might be useful for treatment of KS and possibly other highly angiogenic tumors.  相似文献   

18.
Despite improvements in the early diagnosis, prognosis and therapeutic strategies for gastric cancer (GC), human GC remains one of the most frequently diagnosed malignant tumors in the world, and the survival rate of GC patients remains very poor. Thus, a suitable therapeutic strategy for GC is important for prolonging survival. Both tumor cells themselves and the tumor microenvironment play an important role in tumorigenesis, including angiogenesis, inflammation, immunosuppression and metastasis. Importantly, these cells contribute to gastric carcinogenesis by altering the angiogenic phenotype switch. The development, relapse and spreading of tumors depend on new vessels that provide the nutrition, growth factors and oxygen required for continuous tumor growth. Therefore, a state of tumor dormancy could be induced by blocking tumor-associated angiogenesis. Recently, several antiangiogenic agents have been identified, and their potential for the clinical management of GC has been tested. Here, we provide an up-to-date summary of angiogenesis and the angiogenic factors associated with tumor progression in GC. We also review antiangiogenic agents with a focus on the anti-vascular endothelial growth factor receptor (VEGFR)-mediated pathway for endothelial cell growth and their angiogenesis ability in GC. However, most antiangiogenic agents have reported no benefit to overall survival (OS) compared to chemotherapy alone in local or advanced GC. In phase III clinical trials, only ramucirumab (anti-VEGFR blocker) and apatinib (VEGFR-TKI blocker) have reported an improved median overall response rate and prolonged OS and progression-free survival outcomes as a 2nd-line agent combined with chemotherapy treatment in advanced GC. By providing insights into the molecular mechanisms of angiogenesis associated with tumor progression in GC, this review will hopefully aid the optimization of antiangiogenesis strategies for GC therapy in combination with chemotherapy and adjuvant treatment.  相似文献   

19.
Angiogenesis is essential for tumor growth and metastasis and depends on the production of angiogenic factors. Mechanisms regulating the expression of angiogenic factors in tumor cells are largely unknown. High expression of the neurotrophin receptor TrkA in neuroblastomas (NBs) is associated with a favorable prognosis, whereas TrkB is mainly expressed on aggressive, MYCN-amplified NBs. To investigate the biological effects of TrkA and TrkB expression on angiogenesis in NB, we examined the expression of angiogenic factors in the human NB cell line SY5Y and its TrkA and TrkB transfectants. In comparison with parental SY5Y cells, mRNA and protein levels of the examined angiogenic factors were significantly reduced in SY5Y-TrkA cells, whereas SY5Y-TrkB cells did not demonstrate a significant change. Conditioned medium of TrkB transfectants and parental SY5Y cells induced endothelial cell proliferation and migration, but this effect was completely absent in SY5Y-TrkA cells. TrkA expression also resulted in severely impaired tumorigenicity in a mouse xenograft model and was associated with reduced angiogenic factor expression and vascularization of tumors, as determined by immunohistochemistry and an in vivo Matrigel assay. TrkA expression inhibits angiogenesis and tumor growth in SY5Y NB cells by down-regulation of angiogenic factors, whereas expression of TrkB does not down-regulate the production of these angiogenic factors. The biologically different behavior of TrkA- and TrkB-expressing NBs may be explained in part by their effects on angiogenesis.  相似文献   

20.
Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are well-known factors that induce neovascularization in many tumors. The molecular mechanisms that regulate tumor angiogenesis in human chondrosarcoma are not clear. We assessed in this work the angiogenic activities of a human chondrosarcoma cell line (OUMS-27) in vivo and determined the efficacies of angiogenic factors derived from OUMS-27 cells on human umbilical vein endothelial cells (HUVECs) in vitro. Tumor xenografts induced an increase in the formation of neovessels, but the distributions of Ki-67 antigen, VEGF and bFGF were unaffected. We also demonstrated that OUMS-27 cells secreted VEGF(165) into the culture medium and that it was the maximal angiogenic factor to stimulate endothelial proliferation and migration in chondrosarcoma. Anti-VEGF antibodies induced an approximately 70% inhibition of these responses of HUVECs, but did not have any effect on OUMS-27 cells. Anti-bFGF antibodies suppressed not only the activities of HUVECs but also the growth of tumor cells in vitro. We indicate that angiogenesis is principally elicited by VEGF(165) and that tumorigenesis is mainly regulated by bFGF stored in the extracellular matrix of OUMS-27 cells. The present study may offer the availability of combination therapies for inhibition of VEGF and bFGF action on vascular endothelial cells and chondrosarcoma cells, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号