首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Osteoporosis‐related fractures constitute a major health concern not only in women but also in men. Insulin‐like growth factor 1 (IGF‐1) is a key determinant of bone mass, but the association between serum IGF‐1 and incident fractures in men remains unclear. To determine the predictive value of serum IGF‐1 for fracture risk in men, older men (n = 2902, mean age of 75 years) participating in the prospective, population‐based Osteoporotic Fractures in Men (MrOS) Sweden study were followed for a mean of 3.3 years. Serum IGF‐1 was measured at baseline by radioimmunoassay. Fractures occurring after the baseline visit were validated. In age‐adjusted hazards regression analyses, serum IGF‐1 associated inversely with risk of all fractures [hazard ratio (HR) per SD decrease = 1.23, 95% confidence interval (CI) 1.07–1.41], hip fractures (HR per SD decrease = 1.45, 95% CI 1.07–1.97), and clinical vertebral fractures (HR per SD decrease = 1.40, 95% CI 1.10–1‐78). The predictive role of serum IGF‐1 for fracture risk was unaffected by adjustment for height, weight, prevalent fractures, falls, and major prevalent diseases. Further adjustment for bone mineral density (BMD) resulted in an attenuated but still significant association between serum IGF‐1 and fracture risk. Serum IGF‐1 below but not above the median was inversely related to fracture incidence. The population‐attributable risk proportion was 7.5% for all fractures and 22.9% for hip fractures. Taken together, older men with low serum IGF‐1 have an increased fracture risk, especially for the two most important fracture types, hip and vertebral fractures. The association between serum IGF‐1 and fracture risk is partly mediated via BMD. © 2011 American Society for Bone and Mineral Research.  相似文献   

2.
Predictive value of BMD for hip and other fractures.   总被引:36,自引:0,他引:36  
The relationship between BMD and fracture risk was estimated in a meta-analysis of data from 12 cohort studies of approximately 39,000 men and women. Low hip BMD was an important predictor of fracture risk. The prediction of hip fracture with hip BMD also depended on age and z score. INTRODUCTION: The aim of this study was to quantify the relationship between BMD and fracture risk and examine the effect of age, sex, time since measurement, and initial BMD value. MATERIALS AND METHODS: We studied 9891 men and 29,082 women from 12 cohorts comprising EVOS/EPOS, EPIDOS, OFELY, CaMos, Rochester, Sheffield, Rotterdam, Kuopio, DOES, Hiroshima, and 2 cohorts from Gothenburg. Cohorts were followed for up to 16.3 years and a total of 168,366 person-years. The effect of BMD on fracture risk was examined using a Poisson model in each cohort and each sex separately. Results of the different studies were then merged using weighted coefficients. RESULTS: BMD measurement at the femoral neck with DXA was a strong predictor of hip fractures both in men and women with a similar predictive ability. At the age of 65 years, risk ratio increased by 2.94 (95% CI = 2.02-4.27) in men and by 2.88 (95% CI = 2.31-3.59) in women for each SD decrease in BMD. However, the effect was dependent on age, with a significantly higher gradient of risk at age 50 years than at age 80 years. Although the gradient of hip fracture risk decreased with age, the absolute risk still rose markedly with age. For any fracture and for any osteoporotic fracture, the gradient of risk was lower than for hip fractures. At the age of 65 years, the risk of osteoporotic fractures increased in men by 1.41 per SD decrease in BMD (95% CI = 1.33-1.51) and in women by 1.38 per SD (95% CI = 1.28-1.48). In contrast with hip fracture risk, the gradient of risk increased with age. For the prediction of any osteoporotic fracture (and any fracture), there was a higher gradient of risk the lower the BMD. At a z score of -4 SD, the risk gradient was 2.10 per SD (95% CI = 1.63-2.71) and at a z score of -1 SD, the risk was 1.73 per SD (95% CI = 1.59-1.89) in men and women combined. A similar but less pronounced and nonsignificant effect was observed for hip fractures. Data for ultrasound and peripheral measurements were available from three cohorts. The predictive ability of these devices was somewhat less than that of DXA measurements at the femoral neck by age, sex, and BMD value. CONCLUSIONS: We conclude that BMD is a risk factor for fracture of substantial importance and is similar in both sexes. Its validation on an international basis permits its use in case finding strategies. Its use should, however, take account of the variations in predictive value with age and BMD.  相似文献   

3.
Although quantitative ultrasound (QUS) is known to be correlated with BMD and bone structure, its long‐term predictive power for fractures in comparison with DXA is unclear. We examined this in a sample of men and women in the European Prospective Investigation into Cancer (EPIC)‐Norfolk who had both heel QUS and hip DXA between 1995 and 1997. From 1455 participants (703 men) 65–76 yr of age at baseline, 79 developed a fracture over 10.3 ± 1.4 yr of follow‐up. In a sex‐stratified Cox proportional‐hazard model including age, height, body mass index, prior fracture, smoking, alcohol intake, and total hip BMD, a 1 SD decrease in BMD was associated with a hazard ratio (HR) for fracture of 2.26 (95% CI: 1.74–2.95). In the multivariable model with heel broadband ultrasound attenuation (BUA) in place of BMD, HR for a 1 SD decrease in BUA was 2.04 (95% CI: 1.55–2.69). Global measures of model fit showed relative superiority of the BMD model, whereas the area under the receiving operator characteristic (ROC) curve was slightly higher for the BUA model. Using both Cox models with BMD and BUA measures, we calculated exact 10‐yr absolute risk of fracture for all participants and categorized them in groups of <5%, 5% to <15%, and ≥15%. Comparison of groupings based on two models showed a total reclassification of 28.8% of participants, with the greatest reclassification (~40%) among the intermediate‐ and high‐risk groups. This study shows that the power of QUS for prediction of fractures among the elderly is at least comparable to that of DXA. Given the feasibility and lower cost of ultrasound measurement in primary care, further studies to develop and validate models for prediction of 10‐yr risk of fracture using clinical risk factors and QUS are recommended.  相似文献   

4.
Osteoporosis‐related fractures constitute a major health concern not only in women but also in men. To study the predictive role of serum sex steroids for fracture risk in men, serum sex steroids were analyzed by the specific gas chromatography‐mass spectrometry technique at baseline in older men (n = 2639; mean, 75 yr of age) of the prospective population‐based MrOS Sweden cohort. Fractures occurring after baseline were validated (average follow‐up of 3.3 yr). The incidence for having at least one validated fracture after baseline was 20.9/1000 person‐years. Estradiol (E2; hazard ratio [HR] per SD decrease, 1.34; 95% CI, 1.22–1.49), free estradiol (fE2; HR per SD decrease, 1.41; 95% CI, 1.28–1.55), testosterone (T; HR per SD decrease, 1.27; 95% CI, 1.16–1.39), and free testosterone (fT; HR per SD decrease, 1.32; 95% CI, 1.21–1.44) were all inversely, whereas sex hormone–binding globulin (SHBG; HR per SD increase, 1.41; 95% CI, 1.22–1.63) was directly related to fracture risk. Multivariable proportional hazards regression models, adjusted for age, suggested that fE2 and SHBG (p < 0.001), but not fT, were independently associated with fracture risk. Further subanalyses of fracture type showed that fE2 was inversely associated with clinical vertebral fractures (HR per SD decrease, 1.57; 95% CI, 1.36–1.80), nonvertebral osteoporosis fractures (HR per SD decrease, 1.42; 95% CI, 1.23–1.65), and hip fractures (HR per SD decrease, 1.44; 95% CI, 1.18–1.76). The inverse relation between serum E2 and fracture risk was nonlinear with a strong relation <16 pg/ml for E2 and 0.3 pg/ml for fE2. In conclusion, older Swedish men with low serum E2 and high SHBG levels have an increased risk of fractures.  相似文献   

5.
Although increasing body weight has been regarded as protective against osteoporosis and fractures, there is accumulating evidence that fat mass adversely affects skeletal health compared with lean mass. We examined skeletal health as a function of estimated total body lean and fat mass in 40,050 women and 3600 men age ≥50 years at the time of baseline dual‐energy X‐ray absorptiometry (DXA) testing from a clinical registry from Manitoba, Canada. Femoral neck bone mineral density (BMD), strength index (SI), cross‐sectional area (CSA), and cross‐sectional moment of inertia (CSMI) were derived from DXA. Multivariable models showed that increasing lean mass was associated with near‐linear increases in femoral BMD, CSA, and CSMI in both women and men, whereas increasing fat mass showed a small initial increase in these measurements followed by a plateau. In contrast, femoral SI was relatively unaffected by increasing lean mass but was associated with a continuous linear decline with increasing fat mass, which should predict higher fracture risk. During mean 5‐year follow‐up, incident major osteoporosis fractures and hip fractures were observed in 2505 women and 180 men (626 and 45 hip fractures, respectively). After adjustment for fracture risk assessment tool (FRAX) scores (with or without BMD), we found no evidence that lean mass, fat mass, or femoral SI affected prediction of major osteoporosis fractures or hip fractures. Findings were similar in men and women, without significant interactions with sex or obesity. In conclusion, skeletal adaptation to increasing lean mass was positively associated with BMD but had no effect on femoral SI, whereas increasing fat mass had no effect on BMD but adversely affected femoral SI. Greater fat mass was not independently associated with a greater risk of fractures over 5‐year follow‐up. FRAX robustly predicts fractures and was not affected by variations in body composition. © 2014 American Society for Bone and Mineral Research.  相似文献   

6.
Fracture risk assessment based solely on BMD has limitations. Additional risk factors include the presence of a previous low‐trauma fracture. We sought to quantify the fracture burden attributable to first versus repeat fracture. We studied 2179 men and 5269 women, 50–90 yr of age, participating in the Canadian Multicentre Osteoporosis Study (CaMos). We included all low‐trauma fractures that occurred over 8 yr of follow‐up and classified these as either first or repeat clinical low‐trauma fracture based on lifetime fracture history. Analyses were further stratified by sex, age, BMD risk categories (normal, osteopenia, osteoporosis), and vertebral deformity status. There were 128 fractures in men and 577 fractures in women. About 25% of fractures in men and 40% in women were repeat fractures. Just over one half of first fractures occurred in those with osteopenic BMD (58% in men, 54% in women). Just under one half of repeat fractures also occurred in those with osteopenic BMD (42% in men, 47% in women). The incidence of repeat fracture was, in most cases, nearly double, but sometimes nearly quadruple, the incidence of first fracture within a given BMD risk category in both men and women. Repeat fractures contribute substantially to overall fracture burden, and the contribution is independent of BMD. Furthermore, those with a combination of prior low‐trauma fracture and another risk factor were at especially high risk of future fracture.  相似文献   

7.
The aim of this study was to investigate the association between smoking and bone mineral density (BMD) and radiographically verified prevalent vertebral fractures and incident fractures in elderly men. At baseline 3003 men aged 69 to 80 years of age from the Swedish Mr Os Study completed a standard questionnaire concerning smoking habits and had BMD of the hip and spine measured using dual‐energy X‐ray absorptiometry (DXA); 1412 men had an X‐ray of the thoracic‐ and lumbar spine. Radiologic registers were used to confirm reported new fractures after the baseline visit. At baseline, 8.4% were current smokers. Current smokers had a 6.2% lower BMD at the total hip and a 5.4% lower BMD at the lumbar spine (p < .001). Current smoking remained independently inversely associated with BMD at the hip and lumbar spine after adjusting for age, height, weight, calcium intake, physical activity, and centers as covariates. Prevalent vertebral fractures among current smokers were increased in unadjusted analyses [odds ratio (OR) = 1.90, 95% confidence interval (CI) 1.26–2.87] and after adjustment for lumbar BMD (OR = 1.67, 95% CI 1.09–2.55). Smokers had a high risk for two or more prevalent vertebral fractures (OR = 3.18, 95% CI 1.88–5.36). During the average follow‐up of 3.3 years, 209 men sustained an X‐ray‐verified fracture. Incident fracture risk among smokers was calculated with Cox proportional hazard models. Current smokers had an increased risk of all new fractures [hazard ratio (HR) = 1.76, 95% CI 1.19–2.61]; nonvertebral osteoporotic fractures, defined as humerus, radius, pelvis, and hip fractures (HR = 2.14, 95% CI 1.18–3.88); clinical and X‐ray‐verified vertebral fractures (HR = 2.53, 95% CI 1.37–4.65); and hip fractures (HR = 3.16, 95% CI 1.44–6.95). After adjustment for BMD, including other covariates, no significant association between smoking and incident fractures was found. Current tobacco smoking in elderly men is associated with low BMD, prevalent vertebral fractures, and incident fractures, especially vertebral and hip fractures. © 2010 American Society for Bone and Mineral Research  相似文献   

8.
Previous prospective cohort studies have shown that serum levels of sex steroids and sex hormone‐binding globulin (SHBG) associate with nonvertebral fracture risk in men. The predictive value of sex hormones and SHBG for vertebral fracture risk specifically is, however, less studied. Elderly men (aged ≥65 years) from Sweden and Hong Kong participating in the Osteoporotic Fractures in Men (MrOS) study had baseline estradiol and testosterone analyzed by gas chromatography–mass spectrometry (GC‐MS) and SHBG by immunoradiometric assay (IRMA). Incident clinical vertebral fractures (n = 242 cases) were evaluated in 4324 men during an average follow‐up of 9.1 years. In a subsample of these men (n = 2256), spine X‐rays were obtained at baseline and after an average follow‐up of 4.3 years to identify incident radiographic vertebral fractures (n = 157 cases). The likelihood of incident clinical and radiographic vertebral fractures was estimated by Cox proportional hazards models and logistic regression models, respectively. Neither serum estradiol (hazard ratio [HR] per SD increase = 0.93, 95% confidence interval [CI] 0.80–1.08) nor testosterone (1.05, 0.91–1.21) predicted incident clinical vertebral fractures in age‐adjusted models in the combined data set. High serum SHBG, however, associated with increased clinical vertebral fracture risk (1.24, 1.12–1.37). This association remained significant after further adjustment for FRAX with or without bone mineral density (BMD). SHBG also associated with increased incident radiographic vertebral fracture risk (combined data set; odds ratio [OR] per SD increase = 1.23, 95% CI 1.05–1.44). This association remained significant after adjustment for FRAX with or without BMD. In conclusion, high SHBG predicts incident clinical and radiographic vertebral fractures in elderly men and adds moderate information beyond FRAX with BMD for vertebral fracture risk prediction. © 2015 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.  相似文献   

9.
Men who fracture have greater mean bone mineral density (BMD) than women who fracture, and to some this suggests that BMD fracture “thresholds” are greater in men than women, justifying use of a male BMD reference standard. Others disagree and argue that because BMD distribution in men is right-shifted (higher) compared with women, anything that occurs with equal probability for men and women will occur at a greater mean BMD in men. If the latter is true, it supports using a common (female) BMD reference standard. We directly tested this latter principle and, indirectly, the validity of using a constant BMD reference standard, in 51,326 women (3722 major fractures) and 4691 men (276 fractures), by comparing mean BMD in fracture vs nonfracture groups defined by sex, age, race and body mass index because these 4 factors affect both mean BMD and risk of fractures. Among those who fractured, mean BMD for all measurement sites were significantly greater in men vs women, youngest vs oldest, whites vs Asian, and heaviest vs the lightest (all p < 0.001). However, the same BMD pattern was seen in those who did not fracture and the absolute difference in BMD between those who fractured and those who did not was essentially constant regardless of sex, age, race, or weight class (all p-interaction nonsignificant). This finding suggests that use of a common reference standard for BMD (i.e., young white women) for men, and indeed all subgroups defined by osteoporosis risk factors, is reasonable and consistent with empiric observations.  相似文献   

10.
Previous fracture increases the risk of subsequent fractures regardless of the site of the initial fracture. Fracture risk assessment tools have been developed to guide clinical management; however, no discrimination is made as to the site of the prior fracture. Our objective was to determine which sites of previous nontraumatic fractures are most strongly associated with a diagnosis of osteoporosis, defined by a bone mineral density (BMD) T‐score of ≤ ?2.5 at the femoral neck, and an incident major osteoporotic fracture. Using administrative health databases, we conducted a retrospective historical cohort study of 39,991women age 45 years and older who had BMD testing with dual‐energy X‐ray absorptiometry (DXA). Logistic regression and Cox proportional multivariate models were used to test the association of previous fracture site with risk of osteoporosis and incident fractures. Clinical fractures at the following sites were strongly and independently associated with higher risk of an osteoporotic femoral neck T‐score after adjustment for age: hip (odds ratio [OR], 3.58; 95% confidence interval [CI], 3.04–4.21), pelvis (OR, 2.23; 95% CI, 1.66–3.0), spine (OR, 2.16; 95% CI, 1.77–2.62), and humerus (OR, 1.74; 95% CI, 1.49–2.02). Cox proportional hazards models, with adjustment for age and femoral neck BMD, showed the greatest increase in risk for a major osteoporotic fracture for women who had sustained previous fractures of the spine (hazard ratio [HR], 2.08; 95% CI, 1.72–2.53), humerus (HR, 1.70; 95% CI, 1.44–2.01), patella (HR, 1.54; 95% CI, 1.10–2.18), and pelvis (HR, 1.45; 95% CI, 1.04–2.02). In summary, our results confirm that nontraumatic fractures in women are associated with osteoporosis at the femoral neck and that the site of previous fracture impacts on future osteoporotic fracture risk, independent of BMD. © 2014 American Society for Bone and Mineral Research.  相似文献   

11.
In a prospective study of 1446 black and white adults 70-79 yr of age (average follow-up, 6.4 yr), vertebral TrvBMD from QCT predicted non-spine fracture in black and white women and black men, but it was not a stronger predictor than total hip aBMD from DXA. Hip aBMD predicted non-spine fracture in black men. INTRODUCTION: Areal BMD (aBMD) at multiple skeletal sites predicts clinical non-spine fractures in white and black women and white men. The predictive ability of vertebral trabecular volumetric BMD (TrvBMD) for all types of clinical non-spine fractures has never been tested or compared with hip aBMD. Also, the predictive accuracy of hip aBMD has never been tested prospectively for black men. MATERIALS AND METHODS: We measured vertebral TrvBMD with QCT and hip aBMD with DXA in 1446 elderly black and white adults (70-79 yr) in the Health, Aging, and Body Composition Study. One hundred fifty-two clinical non-spine fractures were confirmed during an average of 6.4 yr of >95% complete follow-up. We used Cox proportional hazards regression to determine the hazard ratio (HR) and 95% CIs of non-spine fracture per SD reduction in hip aBMD and vertebral TrvBMD. RESULTS: Vertebral TrvBMD and hip aBMD were both associated with risk of non-spine fracture in black and white women and black men. The age-adjusted HR of fracture per SD decrease in BMD was highest in black men (hip aBMD: HR = 2.04, 95% CI = 1.03, 4.04; vertebral TrvBMD: HR = 3.00, 95% CI = 1.29, 7.00) and lowest in white men (hip aBMD: HR = 1.23, 95% CI = 0.85, 1.78; vertebral TrvBMD: HR = 1.06, 95% CI = 0.73, 1.54). Adjusted for age, sex, and race, each SD decrease in hip aBMD was associated with a 1.67-fold (95% CI = 1.36, 2.07) greater risk of fracture, and each SD decrease in vertebral TrvBMD was associated with a 1.47-fold (95% CI = 1.18, 1.82) greater risk. Combining measurements of hip aBMD and vertebral TrvBMD did not improve fracture prediction. CONCLUSIONS: Low BMD measured by either spine QCT or hip DXA predicts non-spine fracture in older black and white women and black men. Vertebral TrvBMD is not a stronger predictor than hip aBMD of non-spine fracture.  相似文献   

12.
Epidemiological studies have shown low‐grade inflammation measured by high‐sensitivity C‐reactive protein (hs‐CRP) to be associated with fracture risk in women. However, it is still unclear whether hs‐CRP is also associated with fracture risk in men. We therefore measured serum levels of hs‐CRP in 2910 men, mean age 75 years, included in the prospective population‐based MrOS Sweden cohort. Study participants were divided into tertile groups based on hs‐CRP level. Fractures occurring after the baseline visit were validated (average follow‐up 5.4 years). The incidence for having at least one fracture after baseline was 23.9 per 1000 person‐years. In Cox proportional hazard regression analyses adjusted for age, hs‐CRP was related to fracture risk. The hazard ratio (HR) of fracture for the highest tertile of hs‐CRP, compared with the lowest and the medium tertiles combined, was 1.48 (95% CI, 1.20–1.82). Multivariate adjustment for other risk factors for fractures had no major effect on the associations between hs‐CRP and fracture. Results were essentially unchanged after exclusion of subjects with hs‐CRP levels greater than 7.5 mg/L, as well as after exclusion of subjects with a first fracture within 3 years of follow‐up, supporting that the associations between hs‐CRP and fracture risk were not merely a reflection of a poor health status at the time of serum sampling. Femoral neck bone mineral density (BMD) was not associated with hs‐CRP, and the predictive role of hs‐CRP for fracture risk was essentially unchanged when femoral neck BMD was added to the model (HR, 1.37; 95% CI, 1.09–1.72). Exploratory subanalyses of fracture type demonstrated that hs‐CRP was clearly associated with clinical vertebral fractures (HR, 1.61; 95% CI, 1.12–2.29). We demonstrate, using a large prospective population‐based study, that elderly men with high hs‐CRP have increased risk of fractures, and that these fractures are mainly vertebral. The association between hs‐CRP and fractures was independent of BMD. © 2014 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.  相似文献   

13.
In a prospective study of 5384 older men, hip BMD was a very strong predictor of hip fracture, much stronger than spine BMD. The relationship between hip BMD and hip fracture risk seemed to be stronger than observed in a large prospective study of women. Hip BMD is an excellent test for predicting fracture risk in men. INTRODUCTION: There have been few studies of the relationship between BMD and risk of fractures in men and none for the association between lumbar spine BMD and risk of hip and nonvertebral fractures. There is also controversy about whether the associations between BMD and risk of fracture are the same in men and women. MATERIALS AND METHODS: We measured proximal femur and lumbar spine BMD in 5384 men, 5384 men, >or= 65 years of age. We compared the results to the very similar cohort of 7871 women >or=65 of age. During 4.4 years of 99% complete follow-up, we validated 317 nonvertebral (59 hip) fractures in men and 1169 nonvertebral (208 hip) fractures in women. RESULTS: Total hip BMD was very strongly associated with risk hip fracture in men (3.2-fold increased risk per sex-specific SD decrease in BMD; 95% CI, 2.4-4.1). The association was stronger than observed in SOF (2.1; 95% CI, 1.8, 2.4; p < 0.001 for interaction). Among the men, lumbar spine BMD was weakly associated with risk of hip fracture (relative risk [RR] per sex-specific SD decrease in BMD: 1.5; 95% CI, 1.2, 2.0). The association between total hip BMD and risk of nonvertebral fractures was somewhat stronger for men (RR = 1.6; 95% CI, 1.5, 1.8) than found for women (p = 0.01 for interaction). The risk of nonvertebral fracture was substantially higher in women than in men for all T scores of hip BMD, regardless of whether sex-specific or female reference values were used. CONCLUSIONS: Hip BMD is strongly associated with risk of nonvertebral, and especially hip fracture, in older men. These associations are at least as strong as in women. As in women, lumbar spine BMD in men is only weakly associated with risk of hip fracture. Regardless of whether sex-specific or female reference values were used, T scores indicated different risks of fractures in men than in women.  相似文献   

14.
DXA is affected by skeletal size, with smaller bones giving lower areal BMD despite equal material density. Whether this size effect confounds the use of BMD as a diagnostic and fracture risk assessment tool is unclear. We identified 16,205 women of white ethnicity ≥50 yr of age undergoing baseline hip assessment with DXA (1998–2002) from a population‐based database that contains all clinical DXA test results for the Province of Manitoba, Canada. Total hip measurements were categorized according to quartile in total hip bone area (Q1 = smallest, Q4 = largest). Longitudinal health service records were assessed for the presence of nontraumatic osteoporotic fracture codes during a mean of 3.2 yr of follow‐up after BMD testing (757 osteoporotic fractures, 186 hip fractures). Total hip bone area strongly affected osteoporosis diagnosis with much higher rates in Q1 (14.4%) than Q4 (8.9%). However, incident fracture rates were constant across all area quartiles, and prevalent fractures were paradoxically fewer in smaller area quartiles (p < 0.001 for trend). Age was a potential confounder that correlated positively with area (r = 0.12, p < 0.0001). When age was not included in a Cox regression model, Q1 seemed to have a lower rate of incident osteoporotic fractures (HR = 0.80, 95% CI = 0.66–0.98, reference Q4) and hip fractures (HR = 0.63, 95% CI = 0.43–0.94) for a given level of BMD. In age‐adjusted regression models, total hip BMD was strongly predictive of incident osteoporotic fractures (HR per SD = 1.83, 95% CI = 1.68–1.99) and hip fractures (HR per SD = 2.80, 95% CI = 2.33–3.35), but there was no independent effect of bone area (categorical or continuous). Nested matched subgroup analysis and ROC analysis confirmed that bone area had no appreciable effect on incident fractures. We conclude that total hip areal BMD categorizes a substantially higher fraction of women with smaller bone area as being osteoporotic despite younger age. Incident fracture rates correlate equally well with BMD across all bone area quartiles when adjusted for age.  相似文献   

15.
Trabecular bone score (TBS) is a gray‐level textural index of bone microarchitecture derived from lumbar spine dual‐energy X‐ray absorptiometry (DXA) images. TBS is a bone mineral density (BMD)‐independent predictor of fracture risk. The objective of this meta‐analysis was to determine whether TBS predicted fracture risk independently of FRAX probability and to examine their combined performance by adjusting the FRAX probability for TBS. We utilized individual‐level data from 17,809 men and women in 14 prospective population‐based cohorts. Baseline evaluation included TBS and the FRAX risk variables, and outcomes during follow‐up (mean 6.7 years) comprised major osteoporotic fractures. The association between TBS, FRAX probabilities, and the risk of fracture was examined using an extension of the Poisson regression model in each cohort and for each sex and expressed as the gradient of risk (GR; hazard ratio per 1 SD change in risk variable in direction of increased risk). FRAX probabilities were adjusted for TBS using an adjustment factor derived from an independent cohort (the Manitoba Bone Density Cohort). Overall, the GR of TBS for major osteoporotic fracture was 1.44 (95% confidence interval [CI] 1.35–1.53) when adjusted for age and time since baseline and was similar in men and women (p > 0.10). When additionally adjusted for FRAX 10‐year probability of major osteoporotic fracture, TBS remained a significant, independent predictor for fracture (GR = 1.32, 95% CI 1.24–1.41). The adjustment of FRAX probability for TBS resulted in a small increase in the GR (1.76, 95% CI 1.65–1.87 versus 1.70, 95% CI 1.60–1.81). A smaller change in GR for hip fracture was observed (FRAX hip fracture probability GR 2.25 vs. 2.22). TBS is a significant predictor of fracture risk independently of FRAX. The findings support the use of TBS as a potential adjustment for FRAX probability, though the impact of the adjustment remains to be determined in the context of clinical assessment guidelines. © 2015 American Society for Bone and Mineral Research.  相似文献   

16.
This study reports on the association between DXA at age 8 and subsequent fractures in both male and female children. Bone densitometry at the total body and spine (but not hip) is a strong predictor of fracture (especially upper limb) during puberty. INTRODUCTION: The aim of this study was to determine if prepubertal DXA can predict fracture risk during puberty. MATERIALS AND METHODS: We studied 183 children who were followed for 8 yr (1460 person-years). Bone densitometry was measured at the total body, hip, and spine by DXA and reported as BMC, BMD, and bone mineral apparent density (BMAD). Fractures were self-reported at age 16 with X-ray confirmation, RESULTS: There were a total of 63 fractures (43 upper limb). In unadjusted analysis, only total body BMD showed an inverse relationship with upper limb fracture risk (p = 0.03). However, after adjustment for height, weight, age (all at age 8), and sex, total body BMC (HR/SD, 2.47; 95% CI, 1.52-4.02), spine BMC (HR/SD, 1.97: 95% CI, 1.30-2.98), total body BMD (HR/SD, 1.67; 95% CI, 1.18-2.36), total body BMAD (HR/SD, 1.54; 95% CI, 1.01-2.37), and spine BMD (HR/SD, 1.53; 95% CI, 1.10, 2.22) were all significantly associated with upper limb fracture risk. Similar, but weaker associations were present for total fractures. There was a trend for overweight/obesity to be associated with increased upper limb fracture risk (HR, 1.53/category; p = 0.08). CONCLUSIONS: Measurement of bone mass by DXA is a good predictor of upper limb fracture risk during puberty. Although we did not measure true BMD, the constancy of fracture prediction after a single measure suggests bone strength remains relatively constant during puberty despite the large changes in bone size.  相似文献   

17.
The structure of the femoral neck contributes to hip strength, but the relationship of specific structural features of the hip to hip fracture risk is unclear. The objective of this study is to determine the contribution of structural features and volumetric density of both trabecular and cortical bone in the proximal femur to the prediction of hip fracture in older men. Baseline QCT scans of the hip were obtained in 3347 men ≥65 yr of age enrolled in the Osteoporotic Fractures in Men Study (MrOS). All men were followed prospectively for an average of 5.5 yr. Areal BMD (aBMD) by DXA was also assessed. We determined the associations between QCT‐derived measures of femoral neck structure, volumetric bone density, and hip fracture risk. Forty‐two men sustained incident hip fractures during follow‐up: an overall rate of 2.3/1000 person‐years. Multivariable analyses showed that, among the QCT‐derived measures, lower percent cortical volume (hazard ratio [HR] per SD decrease: 3.2; 95% CI: 2.2–4.6), smaller minimal cross‐sectional area (HR: 1.6; 95% CI: 1.2–2.1), and lower trabecular BMD (HR: 1.7; 95% CI: 1.2–2.4) were independently related to increased hip fracture risk. Femoral neck areal BMD was also strongly related to hip fracture risk (HR: 4.1; 95% CI: 2.7–6.4). In multivariable models, percent cortical volume and minimum cross‐sectional area remained significant predictors of hip fracture risk after adjustment for areal BMD, but overall prediction was not improved by adding QCT parameters to DXA. Specific structural features of the proximal femur were related to an increased risk of hip fracture. Whereas overall hip fracture prediction was not improved relative to aBMD, by adding QCT parameters, these results yield useful information concerning the causation of hip fracture, the evaluation of hip fracture risk, and potential targets for therapeutic intervention.  相似文献   

18.
The diagnosis of osteoporosis in men is controversial, although most studies demonstrate similar fracture rates for men and women with the same level of hip bone mineral density (BMD). Whether this applies to the lumbar spine is currently uncertain and has important implications with respect to choice of reference population for T-score calculation and osteoporosis diagnosis. This question was specifically addressed in the population-based Canadian Multicentre Osteoporosis Study cohort of 4745 women and 1887 men ages 50+ yr at the time of baseline lumbar spine dual energy x-ray absorptiometry. In up to 10 yr of observation, incident clinical major osteoporotic fractures occurred in 110 men (5.8%) vs 543 women (11.4%) (p < 0.001). Mean lumbar spine BMD in men was greater than in women, both among those with and those without incident major osteoporotic fracture (p < 0.001). Men were at slightly lower risk for incident major osteoporotic fracture than women for an equivalent lumbar spine BMD (age- and BMD-adjusted rate ratio 0.75, 95% confidence interval 0.60–0.93, p = 0.008) with similar findings after adjustment for the World Health Organization fracture risk assessment clinical risk factors or competing mortality. No significant sex difference in the BMD relationship was seen for vertebral fractures (clinical or radiographic) or for all fractures. In summary, this large population-based longitudinal cohort study found similar or lower fracture risk for men vs women after adjustment for absolute lumbar spine BMD and additional covariates. The least complicated model for describing fracture risk is therefore to use the same reference lumbar spine data for generating T-scores in men and women.  相似文献   

19.
While accentuated kyphosis is associated with osteoporosis, it is unknown whether it increases risk of future fractures, independent of bone mineral density (BMD) and vertebral fractures. We examined the associations of baseline Cobb angle kyphosis and 15 year change in kyphosis with incident non‐spine fractures using data from the Study of Osteoporotic Fractures. A total of 994 predominantly white women, aged 65 or older, were randomly sampled from 9704 original participants to have repeated Cobb angle measurements of kyphosis measured from lateral spine radiographs at baseline and an average of 15 years later. Non‐spine fractures, confirmed by radiographic report, were assessed every 4 months for up to 21.3 years. Compared with women in the lower three quartiles of kyphosis, women with kyphosis greater than 53° (top quartile) had a 50% increased risk of non‐spine fracture (95% CI, 1.10–2.06 after adjusting for BMD, prevalent vertebral fractures, prior history of fractures, and other fracture risk factors. Cobb angle kyphosis progressed an average of 7° (SD = 6.8) over 15 years. Per 1 SD increase in kyphosis change, there was a multivariable adjusted 28% increased risk of fracture (95% CI, 1.06–1.55) that was attenuated by further adjustment for baseline BMD (HR per SD increase in kyphosis change, 1.19; 95% CI 0.99–1.44). Greater kyphosis is associated with an elevated non‐spine fracture risk independent of traditional fracture risk factors in older women. Furthermore, worsening kyphosis is also associated with increased fracture risk that is partially mediated by low baseline BMD that itself is a risk factor for kyphosis progression. These results suggest that randomized controlled fracture intervention trials should consider implementing kyphosis measures to the following: (1) further study kyphosis and kyphosis change as an additional fracture risk factor; and (2) test whether therapies may improve or delay its progression. © 2014 American Society for Bone and Mineral Research.  相似文献   

20.
Several cross‐sectional studies have shown that impairment of bone microarchitecture contributes to skeletal fragility. The aim of this study was to prospectively investigate the prediction of fracture (Fx) by bone microarchitecture assessed by high‐resolution peripheral computed tomography (HR‐ pQCT) in postmenopausal women. We measured microarchitecture at the distal radius and tibia with HR‐pQCT in the OFELY study, in addition to areal BMD with dual‐energy X‐ray absorptiometry (DXA) in 589 women, mean ± SD age 68 ± 9 years. During a median [IQ] 9.4 [1.0] years of follow‐up, 135 women sustained an incident fragility Fx, including 81 women with a major osteoporotic Fx (MOP Fx). After adjustment for age, women who sustained Fx had significantly lower total and trabecular volumetric densities (vBMD) at both sites, cortical parameters (area and thickness at the radius, vBMD at the tibia), trabecular number (Tb.N), connectivity density (Conn.D), stiffness, and estimated failure load at both sites, compared with control women. After adjustment for age, current smoking, falls, prior Fx, use of osteoporosis‐related drugs, and total hip BMD, each quartile decrease of several baseline values of bone microarchitecture at the radius was associated with significant change of the risk of Fx (HR of 1.39 for Tb.BMD [p = 0.001], 1.32 for Tb.N [p = 0.01], 0.76 for Tb.Sp.SD [p = 0.01], 1.49 [p = 0.01] for Conn.D, and 1.27 for stiffness [p = 0.02]). At the tibia, the association remained significant for stiffness and failure load in the multivariate model for all fragility Fx and for Tt.BMD, stiffness, and failure load for MOP Fx. We conclude that impairment of bone microarchitecture—essentially in the trabecular compartment of the radius—predict the occurrence of incident fracture in postmenopausal women. This assessment may play an important role in identifying women at high risk of fracture who could not be adequately detected by BMD measurement alone, to benefit from a therapeutic intervention. © 2017 American Society for Bone and Mineral Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号