首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Appropriate animal models are required to test medical countermeasures to bioterrorist threats. To that end, we characterized a nonhuman primate (NHP) inhalational anthrax therapeutic model for use in testing anthrax therapeutic medical countermeasures according to the U.S. Food and Drug Administration Animal Rule. A clinical profile was recorded for each NHP exposed to a lethal dose of Bacillus anthracis Ames spores. Specific diagnostic parameters were detected relatively early in disease progression, i.e., by blood culture (∼37 h postchallenge) and the presence of circulating protective antigen (PA) detected by electrochemiluminescence (ECL) ∼38 h postchallenge, whereas nonspecific clinical signs of disease, i.e., changes in body temperature, hematologic parameters (ca. 52 to 66 h), and clinical observations, were delayed. To determine whether the presentation of antigenemia (PA in the blood) was an appropriate trigger for therapeutic intervention, a monoclonal antibody specific for PA was administered to 12 additional animals after the circulating levels of PA were detected by ECL. Seventy-five percent of the monoclonal antibody-treated animals survived compared to 17% of the untreated controls, suggesting that intervention at the onset of antigenemia is an appropriate treatment trigger for this model. Moreover, the onset of antigenemia correlated with bacteremia, and NHPs were treated in a therapeutic manner. Interestingly, brain lesions were observed by histopathology in the treated nonsurviving animals, whereas this observation was absent from 90% of the nonsurviving untreated animals. Our results support the use of the cynomolgus macaque as an appropriate therapeutic animal model for assessing the efficacy of medical countermeasures developed against anthrax when administered after a confirmation of infection.  相似文献   

2.
Antibodies against the protective antigen (PA) component of anthrax toxin play an important role in protection against disease caused by Bacillus anthracis. In this study, we examined defined combinations of PA-specific monoclonal antibodies for their ability to neutralize anthrax toxin in cell culture assays. We observed additive, synergistic, and antagonistic effects of the antibodies depending on the specific antibody combination examined and the specific assay used. Synergistic toxin-neutralizing antibody interactions were examined in more detail. We found that one mechanism that can lead to antibody synergy is the bridging of PA monomers by one antibody, with resultant bivalent binding of the second antibody. These results may aid in optimal design of new vaccines and antibody therapies against anthrax.  相似文献   

3.
Bacillus anthracis is the causative agent of anthrax, and its spores have been developed into lethal bioweapons. To mitigate an onslaught from airborne anthrax spores that are maliciously disseminated, it is of paramount importance to develop a rapid-response anthrax vaccine that can be mass administered by nonmedical personnel during a crisis. We report here that intranasal instillation of a nonreplicating adenovirus vector encoding B. anthracis protective antigen could confer rapid and sustained protection against inhalation anthrax in mice in a single-dose regimen in the presence of preexisting adenovirus immunity. The potency of the vaccine was greatly enhanced when codons of the antigen gene were optimized to match the tRNA pool found in human cells. In addition, an adenovirus vector encoding lethal factor can confer partial protection against inhalation anthrax and might be coadministered with a protective antigen-based vaccine.  相似文献   

4.
The lung is the site of entry for Bacillus anthracis in inhalation anthrax, the deadliest form of the disease. Bacillus anthracis produces virulence toxins required for disease. Alveolar macrophages were considered the primary target of the Bacillus anthracis virulence factor lethal toxin because lethal toxin inhibits mouse macrophages through cleavage of MEK signaling pathway components, but we have reported that human alveolar macrophages are not a target of lethal toxin. Our current results suggest that, unlike human alveolar macrophages, the cells lining the respiratory units of the lung, alveolar epithelial cells, are a target of lethal toxin in humans. Alveolar epithelial cells expressed lethal toxin receptor protein, bound the protective antigen component of lethal toxin, and were subject to lethal-toxin-induced cleavage of multiple MEKs. These findings suggest that human alveolar epithelial cells are a target of Bacillus anthracis lethal toxin. Further, no reduction in alveolar epithelial cell viability was observed, but lethal toxin caused actin rearrangement and impaired desmosome formation, consistent with impaired barrier function as well as reduced surfactant production. Therefore, by compromising epithelial barrier function, lethal toxin may play a role in the pathogenesis of inhalation anthrax by facilitating the dissemination of Bacillus anthracis from the lung in early disease and promoting edema in late stages of the illness.  相似文献   

5.
Protective antigen (PA) of anthrax toxin is the major component of human anthrax vaccine. Currently available human vaccines in the United States and Europe consist of alum-precipitated supernatant material from cultures of toxigenic, nonencapsulated strains of Bacillus anthracis. Immunization with these vaccines requires several boosters and occasionally causes local pain and edema. We previously described the biological activity of a nontoxic mutant of PA expressed in Bacillus subtilis. In the present study, we evaluated the efficacy of the purified mutant PA protein alone or in combination with the lethal factor and edema factor components of anthrax toxin to protect against anthrax. Both mutant and native PA preparations elicited high anti-PA titers in Hartley guinea pigs. Mutant PA alone and in combination with lethal factor and edema factor completely protected the guinea pigs from B. anthracis spore challenge. The results suggest that the mutant PA protein may be used to develop an effective recombinant vaccine against anthrax.  相似文献   

6.
The antiphagocytic capsule of Bacillus anthracis is a major virulence factor. We hypothesized that it may also mediate virulence through inhibition of the host''s immune responses. During an infection, the capsule exists attached to the bacterial surface but also free in the host tissues. We sought to examine the impact of free capsule by assessing its effects on human monocytes and immature dendritic cells (iDCs). Human monocytes were differentiated into iDCs by interleukin-4 (IL-4) and granulocyte-macrophage colony-stimulating factor (GM-CSF) over 7 days in the presence of capsule derived from wild-type encapsulated B. anthracis Ames (WT) or a control preparation from an isogenic B. anthracis Ames strain that produces only 2% of the capsule of the WT (capA mutant). WT capsule consistently induced release of IL-8 and IL-6 while the capA mutant control preparation elicited either no response or only a minimal release of IL-8. iDCs that were differentiated in the presence of WT capsule had increased side scatter (SSC), a measure of cellular complexity, when assessed by flow cytometry. iDCs differentiated in the presence of WT capsule also matured less well in response to subsequent B. anthracis peptidoglycan (Ba PGN) exposure, with reduced upregulation of the chemokine receptor CCR7, reduced CCR7-dependent chemotaxis, and reduced release of certain cytokines. Exposure of naive differentiated control iDCs to WT capsule did not alter cell surface marker expression but did elicit IL-8. These results indicate that free capsule may contribute to the pathogenesis of anthrax by suppressing the responses of immune cells and interfering with the maturation of iDCs.  相似文献   

7.
《Research in microbiology》2023,174(6):104026
Bacillus anthracis is a spore-forming microbe that persists in soil and causes anthrax disease. The most natural route of infection is ingestion by grazing animals. Gastrointestinal (GI) anthrax also occurs in their monogastric predators, including humans. Exposure of carcasses to oxygen triggers sporulation and contamination of the surrounding soil completing the unusual life cycle of this microbe. The pathogenesis of GI anthrax is poorly characterized. Here, we use B. anthracis carrying the virulence plasmids pXO1 and pXO2, to model gastrointestinal disease in Guinea pigs and mice. We find that spores germinate in the GI tract and precipitate disease in a dose-dependent manner. Inoculation of vegetative bacilli also results in GI anthrax. Virulence is impacted severely by the loss of capsule (pXO2-encoded) but only moderately in absence of toxins (pXO1-encoded). Nonetheless, the lack of toxins leads to reduced bacterial replication in infected hosts. B. cereus Elc4, a strain isolated from a fatal case of inhalational anthrax-like disease, was also found to cause GI anthrax. Because transmission to new hosts depends on the release of large numbers of spores in the environment, we propose that the acquisition of pXO1- and pXO2-like plasmids may promote the successful expansion of members of the Bacillus cereus sensu lato group able to cause anthrax-like disease.  相似文献   

8.
Outbreaks of anthrax zoonose occurred in two regions of France in 1997. Ninety-four animals died, and there were three nonfatal cases in humans. The diagnosis of anthrax was rapidly confirmed by bacteriological and molecular biological methods. The strains of Bacillus anthracis in animal and soil samples were identified by a multiplex PCR assay. They all belonged to the variable-number tandem repeat (VNTR) group (VNTR)3. A penicillin-resistant strain was detected. Nonvirulent bacilli related to B. anthracis, of all VNTR types, were also found in the soil.  相似文献   

9.
The fatal inhalation infection caused by Bacillus anthracis results from a complex pathogenic cycle involving release of toxins by bacteria that germinate from spores. Currently available vaccines against anthrax consist of protective antigen (PA), one of the anthrax toxin components. However, these PA-based vaccines are only partially protective against spore challenge in mice. This shows that exclusive elicitation of high anti-PA titer does not directly correlate with protection. Here, we demonstrate that inclusion of GroEL of B. anthracis with PA elicits enhanced protection against anthrax spore challenge in mice. GroEL was included as it has been reported to be present both on the exosporium and in the secretome in addition to the cell surface of B. anthracis. It has also been found protective against other pathogens. In the present study, immunization with GroEL alone was also potent enough to induce high humoral and cell-mediated response and significantly prolonged the mean time to death in spore-challenged mice. As a surface antigen, opsonization of spores with anti-GroEL IgG showed increased uptake of treated spores and therefore accelerated rate of spore destruction by phagocytic cells leading to the protection of mice. We found that GroEL was able to enhance nitric oxide release from lymphocytes and also reduce bacterial load from the organs, probably through the activation of macrophages and over-expression of certain innate immunity receptors. Therefore, the present study emphasizes that GroEL is an effective immunomodulator against B. anthracis infection.  相似文献   

10.
A hybrid plasmid pUB110PA-1, which functions stably in cells of Bacillus strains and contains the gene for synthesis of the protective antigen of the anthrax microbe, Bacillus anthracis, has been constructed. Recombinant strains were obtained that surpass anthrax Bacillus cultures in the secretory synthesis of the protective antigen. Their immunologic effectiveness was assessed. A single immunization of guinea pigs with the recombinant strains in a dose of 5 × 107 spores provides effective protection from infection by the anthrax pathogen. The immune response is characterized by high values of the immunity indices and titers of antibodies against the protective antigen. The recombinant strains do not possess residual virulence for guinea pigs and BALB/mice, in contrast to anthrax vaccine preparations.  相似文献   

11.
The similarity of endospore surface antigens between bacteria of the Bacillus cereus group complicates the development of selective antibody-based anthrax detection systems. The surface of B. anthracis endospores exposes a tetrasaccharide containing the monosaccharide anthrose. Anti-tetrasaccharide monoclonal antibodies (MAbs) and anti-anthrose-rhamnose disaccharide MAbs were produced and tested for their fine specificities in a direct spore enzyme-linked immunosorbent assay (ELISA) with inactivated spores of a broad spectrum of B. anthracis strains and related species of the Bacillus genus. Although the two sets of MAbs had different fine specificities, all of them recognized the tested B. anthracis strains and showed only a limited cross-reactivity with two B. cereus strains. The MAbs were further tested for their ability to be implemented in a highly sensitive and specific bead-based Luminex assay. This assay detected spores from different B. anthracis strains and two cross-reactive B. cereus strains, correlating with the results obtained in direct spore ELISA. The Luminex assay (detection limit 103 to 104 spores per ml) was much more sensitive than the corresponding sandwich ELISA. Although not strictly specific for B. anthracis spores, the developed Luminex assay represents a useful first-line screening tool for the detection of B. anthracis spores.Anthrax is an acute zoonotic disease caused by the spore-forming bacterium Bacillus anthracis. It affects primarily herbivores in many countries of Southern Europe, South America, Asia, and Africa (24). Endospores are the infecting agent and remarkably resistant to extreme heat, dryness, chemicals, or irradiation, thus ensuring long-term survival. The principal virulence factors are a capsule and two exotoxins produced by the growing vegetative form. The major sources of human anthrax infection are direct or indirect contact with infected animals. A reliable identification of B. anthracis is challenging, due to the monomorphic nature of the B. cereus group, which comprises B. cereus, B. anthracis, B. thuringiensis, and B. mycoides (10). The similarity of spore cell surface antigens of the bacteria of this group makes it difficult to create selective, reliable, antibody-based detection systems. DNA-based assays and traditional phenotyping of bacteria are the most accurate detection systems but are also complex, expensive, or slow. The use of B. anthracis spores as a biological weapon has stressed the need to learn more about spore components that can be used for efficient vaccines and rapid detection systems.The B. anthracis endospore comprises a genome-containing core compartment and three protective layers called the cortex, coat, and exosporium (8). The glycoprotein Bacillus collagen-like protein of anthracis (BclA) is an immunodominant structural component of the exosporium that is extensively glycosylated with two O-linked carbohydrates, a 715-Da tetrasaccharide and a 324-Da disaccharide (6). The tetrasaccharide contains three rhamnose residues and an unusual terminal sugar, 2-O-methyl-4-(3-hydroxy-3-methylbutanamido)-4,6-dideoxy-d-glucopyranose, named anthrose. As anthrose was not found in spores of related strains of bacteria, it has been considered a potential biomarker for the detection of anthrax (6). In this study, the detection of B. anthracis spores was achieved by an assay based on the Luminex technology with monoclonal antibodies (MAbs) derived from mice immunized with anthrose-containing synthetic oligosaccharides.  相似文献   

12.
The immunogenicity of Bacillus anthracis capsule (poly-γ-d-glutamic acid [PGA]) conjugated to recombinant B. anthracis protective antigen (rPA) or to tetanus toxoid (TT) was evaluated in two anthrax-naive juvenile chimpanzees. In a previous study of these conjugates, highly protective monoclonal antibodies (MAbs) against PGA were generated. This study examines the polyclonal antibody response of the same animals. Preimmune antibodies to PGA with titers of >103 were detected in the chimpanzees. The maximal titer of anti-PGA was induced within 1 to 2 weeks following the 1st immunization, with no booster effects following the 2nd and 3rd immunizations. Thus, the anti-PGA response in the chimpanzees resembled a secondary immune response. Screening of sera from nine unimmunized chimpanzees and six humans revealed antibodies to PGA in all samples, with an average titer of 103. An anti-PA response was also observed following immunization with PGA-rPA conjugate, similar to that seen following immunization with rPA alone. However, in contrast to anti-PGA, preimmune anti-PA antibody titers and those following the 1st immunization were ≤300, with the antibodies peaking above 104 following the 2nd immunization. The polyclonal anti-PGA shared the MAb 11D epitope and, similar to the MAbs, exerted opsonophagocytic killing of B. anthracis. Most important, the PGA-TT–induced antibodies protected mice from a lethal challenge with virulent B. anthracis spores. Our data support the use of PGA conjugates, especially PGA-rPA targeting both toxin and capsule, as expanded-spectrum anthrax vaccines.  相似文献   

13.
Subunit vaccines against anthrax based on recombinant protective antigen (PA) potentially offer more consistent and less reactogenic anthrax vaccines but require adjuvants to achieve optimal immunogenicity. This study sought to determine in a murine model of pulmonary anthrax infection whether the polysaccharide adjuvant Advax or the innate immune adjuvant murabutide alone or together could enhance PA immunogenicity by comparison to an alum adjuvant. A single immunization with PA plus Advax adjuvant afforded significantly greater protection against aerosolized Bacillus anthracis Sterne strain 7702 than three immunizations with PA alone. Murabutide had a weaker adjuvant effect than Advax when used alone, but when murabutide was formulated together with Advax, an additive effect on immunogenicity and protection was observed, with complete protection after just two doses. The combined adjuvant formulation stimulated a robust, long-lasting B-cell memory response that protected mice against an aerosol challenge 18 months postimmunization with acceleration of the kinetics of the anamnestic IgG response to B. anthracis as reflected by ∼4-fold-higher anti-PA IgG titers by day 2 postchallenge versus mice that received PA with Alhydrogel. In addition, the combination of Advax plus murabutide induced approximately 3-fold-less inflammation than Alhydrogel as measured by in vivo imaging of cathepsin cleavage resulting from injection of ProSense 750. Thus, the combination of Advax and murabutide provided enhanced protection against inhalational anthrax with reduced localized inflammation, making this a promising next-generation anthrax vaccine adjuvanting strategy.  相似文献   

14.
Anthrax, caused by Bacillus anthracis, is primarily a zoonotic disease. Being a public health problem also in several developing countries, its early diagnosis is very important in human cases. In this study, we describe the use of an indirect enzyme-linked immunosorbent assay (ELISA) for detection of anti-lethal factor (anti-LF) IgG in human serum samples. A panel of 203 human serum samples consisting of 50 samples from patients with confirmed cutaneous anthrax, 93 samples from healthy controls from areas of India where anthrax is nonendemic, 44 samples from controls from an area of India where anthrax is endemic, and 16 patients with a disease confirmed not to be anthrax were evaluated with an anti-LF ELISA. The combined mean anti-LF ELISA titer for the three control groups was 0.136 ELISA unit (EU), with a 95% confidence interval (CI) of 0.120 to 0.151 EU. The observed sensitivity and specificity of the ELISA were 100% (95% CI, 92.89 to 100%) and 97.39% (95% CI, 93.44 to 99.28%), respectively, at a cutoff value of 0.375 EU, as decided by receiver operating characteristic (ROC) curve analysis. The likelihood ratio was found to be 49.98. The positive predictive value (PPV), negative predictive value (NPV), efficiency, and Youden''s index (J) for reliability of the assay were 92.5%, 100%, 98.02%, and 0.97, respectively. The false-positive predictive rate and false-negative predictive rate of the assay were 2.61% and 0%. The assay could be a very useful tool for early diagnosis of cutaneous anthrax cases, as antibodies against LF appear much earlier than those against other anthrax toxins in human serum samples.  相似文献   

15.
Antimicrobials administered postexposure can reduce the incidence or progression of anthrax disease, but they do not protect against the disease resulting from the germination of spores that may remain in the body after cessation of the antimicrobial regimen. Such additional protection may be achieved by postexposure vaccination; however, no anthrax vaccine is licensed for postexposure prophylaxis (PEP). In a rabbit PEP study, animals were subjected to lethal challenge with aerosolized Bacillus anthracis spores and then were treated with levofloxacin with or without concomitant intramuscular (i.m.) vaccination with anthrax vaccine adsorbed (AVA) (BioThrax; Emergent BioDefense Operations Lansing LLC, Lansing, MI), administered twice, 1 week apart. A significant increase in survival rates was observed among vaccinated animals compared to those treated with antibiotic alone. In preexposure prophylaxis studies in rabbits and nonhuman primates (NHPs), animals received two i.m. vaccinations 1 month apart and were challenged with aerosolized anthrax spores at day 70. Prechallenge toxin-neutralizing antibody (TNA) titers correlated with animal survival postchallenge and provided the means for deriving an antibody titer associated with a specific probability of survival in animals. In a clinical immunogenicity study, 82% of the subjects met or exceeded the prechallenge TNA value that was associated with a 70% probability of survival in rabbits and 88% probability of survival in NHPs, which was estimated based on the results of animal preexposure prophylaxis studies. The animal data provide initial information on protective antibody levels for anthrax, as well as support previous findings regarding the ability of AVA to provide added protection to B. anthracis-infected animals compared to antimicrobial treatment alone.  相似文献   

16.
Whereas DNA provides the information to design life and proteins provide the materials to construct it, the metabolome can be viewed as the physiology that powers it. As such, metabolomics, the field charged with the study of the dynamic small-molecule fluctuations that occur in response to changing biology, is now being used to study the basis of disease. Here, we describe a comprehensive metabolomic analysis of a systemic bacterial infection using Bacillus anthracis, the etiological agent of anthrax disease, as the model pathogen. An organ and blood analysis identified approximately 400 metabolites, including several key classes of lipids involved in inflammation, as being suppressed by B. anthracis. Metabolite changes were detected as early as 1 day postinfection, well before the onset of disease or the spread of bacteria to organs, which testifies to the sensitivity of this methodology. Functional studies using pharmacologic inhibition of host phospholipases support the idea of a role of these key enzymes and lipid mediators in host survival during anthrax disease. Finally, the results are integrated to provide a comprehensive picture of how B. anthracis alters host physiology. Collectively, the results of this study provide a blueprint for using metabolomics as a platform to identify and study novel host-pathogen interactions that shape the outcome of an infection.  相似文献   

17.
《Research in microbiology》2023,174(5):104052
Bacillus anthracis is the zoonotic causal agent of anthrax. Its infectious form is the spore, which can persist in soil. Herbivores usually acquire the disease from grazing in spore-contaminated sites. There are two schools of thought regarding B. anthracis activities in soil. One contends the bacteria are obligate animal parasites and soil-based spores remain inert until taken up by another animal host. Others contend that spores can germinate in soil and the bacteria replicate and re-sporulate to maintain and/or increase spore numbers. This review discusses whether soil replication of B. anthracis is an important part of its life cycle.  相似文献   

18.
Purpose: There is an urgent need to detect a rapid field-based test to detect anthrax. We have developed a rapid, highly sensitive DNA-based method to detect the anthrax toxin lethal factor gene located in pXO1, which is necessary for the pathogenicity of Bacillus anthracis. Materials and Methods: We have adopted the enzyme-linked immunosorbent assay (ELISA) so that instead of capturing antibodies we capture the DNA of the target sequence by a rapid oligo-based hybridization and then detect the captured DNA with another oligoprobe that binds to a different motif of the captured DNA sequences at a dissimilar location. We chose anthrax lethal factor endopeptidase sequences located in pXO1 and used complementary oligoprobe, conjugated with biotin, to detect the captured anthrax specific sequence by the streptavidin-peroxidase-based colorimetric assay. Result: Our system can detect picomoles (pMoles) of anthrax (approximately 33 spores of anthrax) and is >1000 times more sensitive than the current ELISA, which has a detection range of 0.1 to 1.0 ng/mL. False positive results can be minimized when various parameters and the colour development steps are optimized. Conclusion: Our results suggest that this assay can be adapted for the rapid detection of minuscule amounts of the anthrax spores that are aerosolized in the case of a bioterrorism attack. This detection system does not require polymerase chain reaction (PCR) step and can be more specific than the antibody method. This method can also detect genetically engineered anthrax. Since, the antibody method is so specific to the protein epitope that bioengineered versions of anthrax may not be detected.  相似文献   

19.
In Bacillus anthracis, an alternative to the use of chelating agents (siderophores) for acquiring iron consists in using a system of hemophores and transporter proteins for scavenging hemes from hemoglobin and delivering them into the bacterial cell. B. anthracis utilizes the siderophore-mediated mechanism of acquiring iron predominantly at the intracellular stage of its development, with the system of hemophores and transporter proteins being used at the extracellular stage of anthrax infection. The structure, genetic organization, and functions of the system for heme iron acquisition in B. anthracis, understanding of which may facilitate the development of new therapies for anthrax, are discussed.  相似文献   

20.
The protective efficacy of several live, recombinant anthrax vaccines given in a single-dose regimen was assessed with Hartley guinea pigs. These live vaccines were created by transforming ΔANR and ΔSterne, two nonencapsulated, nontoxinogenic strains of Bacillus anthracis, with four different recombinant plasmids that express the anthrax protective antigen (PA) protein to various degrees. This enabled us to assess the effect of the chromosomal background of the strain, as well as the amount of PA produced, on protective efficacy. There were no significant strain-related effects on PA production in vitro, plasmid stability in vivo, survival of the immunizing strain in the host, or protective efficacy of the immunizing infection. The protective efficacy of the live, recombinant anthrax vaccine strains correlated with the anti-PA antibody titers they elicited in vivo and the level of PA they produced in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号