首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The purpose of this study was to evaluate the feasibility of an eight‐channel dual‐tuned transceiver surface RF coil array for combined 1H/19F MR of the human knee at 7.0 T following application of 19F‐containing drugs. The 1H/19F RF coil array includes a posterior module with two 1H loop elements and two anterior modules, each consisting of one 1H and two 19F elements. The decoupling of neighbor elements is achieved by a shared capacitor. Electromagnetic field simulations were performed to afford uniform transmission fields and to be in accordance with RF safety guidelines. Localized 19F MRS was conducted with 47 and 101 mmol/L of flufenamic acid (FA) – a 19F‐containing non‐steroidal anti‐inflammatory drug – to determine T1 and T2 and to study the 19F signal‐to‐dose relationship. The suitability of the proposed approach for 1H/19F MR was examined in healthy subjects. Reflection coefficients of each channel were less than ?17 dB and coupling between channels was less than ?11 dB. QL/QU was less than 0.5 for all elements. MRS results demonstrated signal stability with 1% variation. T1 and T2 relaxation times changed with concentration of FA: T1/T2 = 673/31 ms at 101 mmol/L and T1/T2 = 616/26 ms at 47 mmol/L. A uniform signal and contrast across the patella could be observed in proton imaging. The sensitivity of the RF coil enabled localization of FA ointment administrated to the knee with an in‐plane spatial resolution of (1.5 × 1.5) mm2 achieved in a total scan time of approximately three minutes, which is well suited for translational human studies. This study shows the feasibility of combined 1H/19F MRI of the knee at 7.0 T and proposes T1 and T2 mapping methods for quantifying fluorinated drugs in vivo. Further technological developments are necessary to promote real‐time bioavailability studies and quantification of 19F‐containing medicinal compounds in vivo. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
In ultrahigh‐field MRI, such as 7 T, the signal‐to‐noise ratio (SNR) increases while transmit (Tx) field (B1+) can be degraded due to inhomogeneity and elevated specific absorption rate (SAR). By applying new array coil concepts to both Tx and receive (Rx) coils, the B1+ homogeneity and SNR can be improved. In this study, we developed and tested in vivo a new RF coil system for 7 T breast MRI. An RF coil system composed of an eight‐channel Tx‐only array based on a tic‐tac‐toe design (can be combined to operate in single‐Tx mode) in conjunction with an eight‐channel Rx‐only insert was developed. Characterizations of the B1+ field and associated SAR generated by the developed RF coil system were numerically calculated and empirically measured using an anatomically detailed breast model, phantom and human breasts. In vivo comparisons between 3 T (using standard commercial solutions) and 7 T (using the newly developed coil system) breast imaging were made. At 7 T, about 20% B1+ inhomogeneity (standard deviation over the mean) was measured within the breast tissue for both the RF simulations and 7 T experiments. The addition of the Rx‐only array enhances the SNR by a factor of about three. High‐quality MR images of human breast were acquired in vivo at 7 T. For the in vivo comparisons between 3 T and 7 T, an approximately fourfold increase of SNR was measured with 7 T imaging. The B1+ field distributions in the breast model, phantom and in vivo were in reasonable agreement. High‐quality 7 T in vivo breast MRI was successfully acquired at 0.6 mm isotropic resolution using the newly developed RF coil system.  相似文献   

3.
The aim of this study was to investigate the signal‐to‐noise ratio (SNR) gain in early‐stage cervical cancer at ultrahigh‐field MRI (e.g. 7 T) using a combination of multiple external antennas and a single endorectal antenna. In particular, we used an endorectal monopole antenna to increase the SNR in cervical magnetic resonance imaging (MRI). This should allow high‐resolution, T2‐weighted imaging and magnetic resonance spectroscopy (MRS) for metabolic staging, which could facilitate the local tumor status assessment. In a prospective feasibility study, five healthy female volunteers and six patients with histologically proven stage IB1–IIB cervical cancer were scanned at 7 T. We used seven external fractionated dipole antennas for transmit–receive (transceive) and an endorectally placed monopole antenna for reception only. A region of interest, containing both normal cervix and tumor tissue, was selected for the SNR measurement. Separated signal and noise measurements were obtained in the region of the cervix for each element and in the near field of the monopole antenna (radius < 30 mm) to calculate the SNR gain of the endorectal antenna in each patient. We obtained high‐resolution, T2‐weighted images with a voxel size of 0.7 × 0.8 × 3.0 mm3. In four cases with optimal placement of the endorectal antenna (verified on the T2‐weighted images), a mean gain of 2.2 in SNR was obtained at the overall cervix and tumor tissue area. Within a radius of 30 mm from the monopole antenna, a mean SNR gain of 3.7 was achieved in the four optimal cases. Overlap between the two different regions of the SNR calculations was around 24%. We have demonstrated that the use of an endorectal monopole antenna substantially increases the SNR of 7‐T MRI at the cervical anatomy. Combined with the intrinsically high SNR of ultrahigh‐field MRI, this gain may be employed to obtain metabolic information using MRS and to enhance spatial resolutions to assess tumor invasion.  相似文献   

4.
Capecitabine (Cap) is an often prescribed chemotherapeutic agent, successfully used to cure some patients from cancer or reduce tumor burden for palliative care. However, the efficacy of the drug is limited, it is not known in advance who will respond to the drug and it can come with severe toxicity. 19 F Magnetic Resonance Spectroscopy (MRS) and Magnetic Resonance Spectroscopic Imaging (MRSI) have been used to non‐invasively study Cap metabolism in vivo to find a marker for personalized treatment. In vivo detection, however, is hampered by low concentrations and the use of radiofrequency (RF) surface coils limiting spatial coverage. In this work, the use of a 7T MR system with radiative multi‐channel transmit–receive antennas was investigated with the aim of maximizing the sensitivity and spatial coverage of 19 F detection protocols. The antennas were broadband optimized to facilitate both the 1H (298 MHz) and 19 F (280 MHz) frequencies for accurate shimming, imaging and signal combination. B1+ simulations, phantom and noise measurements showed that more than 90% of the theoretical maximum sensitivity could be obtained when using B1+ and B1? information provided at the 1H frequency for the optimization of B1+ and B1? at the 19 F frequency. Furthermore, to overcome the limits in maximum available RF power, whilst ensuring simultaneous excitation of all detectable conversion products of Cap, a dual‐band RF pulse was designed and evaluated. Finally, 19 F MRS(I) measurements were performed to detect 19 F metabolites in vitro and in vivo. In two patients, at 10 h (patient 1) and 1 h (patient 2) after Cap intake, 19 F metabolites were detected in the liver and the surrounding organs, illustrating the potential of the set‐up for in vivo detection of metabolic rates and drug distribution in the body. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Magnetic resonance elastography (MRE) is a powerful technique to assess the mechanical properties of living tissue. However, it suffers from reduced sensitivity in regions with short T2 and T2* such as in tissue with high concentrations of paramagnetic iron, or in regions surrounding implanted devices. In this work, we exploit the longer T2* attainable at ultra‐low magnetic fields in combination with Overhauser dynamic nuclear polarization (DNP) to enable rapid MRE at 0.0065 T. A 3D balanced steady‐state free precession based MRE sequence with undersampling and fractional encoding was implemented on a 0.0065 T MRI scanner. A custom‐built RF coil for DNP and a programmable vibration system for elastography were developed. Displacement fields and stiffness maps were reconstructed from data recorded in a polyvinyl alcohol gel phantom loaded with stable nitroxide radicals. A DNP enhancement of 25 was achieved during the MRE sequence, allowing the acquisition of 3D Overhauser‐enhanced MRE (OMRE) images with (1.5 × 2.7 × 9) mm3 resolution over eight temporal steps and 11 slices in 6 minutes. In conclusion, OMRE at ultra‐low magnetic field can be used to detect mechanical waves over short acquisition times. This new modality shows promise to broaden the scope of conventional MRE applications, and may extend the utility of low‐cost, portable MRI systems to detect elasticity changes in patients with implanted devices or iron overload. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
The objective of this work was to examine the feasibility of three‐dimensional (3D) and whole heart coverage 23Na cardiac MRI at 7.0 T including single‐cardiac‐phase and cinematic (cine) regimes. A four‐channel transceiver RF coil array tailored for 23Na MRI of the heart at 7.0 T (f = 78.5 MHz) is proposed. An integrated bow‐tie antenna building block is used for 1H MR to support shimming, localization and planning in a clinical workflow. Signal absorption rate simulations and assessment of RF power deposition were performed to meet the RF safety requirements. 23Na cardiac MR was conducted in an in vivo feasibility study. 3D gradient echo (GRE) imaging in conjunction with Cartesian phase encoding (total acquisition time TAQ = 6 min 16 s) and whole heart coverage imaging employing a density‐adapted 3D radial acquisition technique (TAQ = 18 min 20 s) were used. For 3D GRE‐based 23Na MRI, acquisition of standard views of the heart using a nominal in‐plane resolution of (5.0 × 5.0) mm2 and a slice thickness of 15 mm were feasible. For whole heart coverage 3D density‐adapted radial 23Na acquisitions a nominal isotropic spatial resolution of 6 mm was accomplished. This improvement versus 3D conventional GRE acquisitions reduced partial volume effects along the slice direction and enabled retrospective image reconstruction of standard or arbitrary views of the heart. Sodium cine imaging capabilities were achieved with the proposed RF coil configuration in conjunction with 3D radial acquisitions and cardiac gating. Cardiac‐gated reconstruction provided an enhancement in blood–myocardium contrast of 20% versus the same data reconstructed without cardiac gating. The proposed transceiver array enables 23Na MR of the human heart at 7.0 T within clinical acceptable scan times. This capability is in positive alignment with the needs of explorations that are designed to examine the potential of 23Na MRI for the assessment of cardiovascular and metabolic diseases. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
In this study, the performance of an integrated body-imaging array for 7 T with 32 radiofrequency (RF) channels under consideration of local specific absorption rate (SAR), tissue temperature, and thermal dose limits was evaluated and the imaging performance was compared with a clinical 3 T body coil. Thirty-two transmit elements were placed in three rings between the bore liner and RF shield of the gradient coil. Slice-selective RF pulse optimizations for B1 shimming and spokes were performed for differently oriented slices in the body under consideration of realistic constraints for power and local SAR. To improve the B1+ homogeneity, safety assessments based on temperature and thermal dose were performed to possibly allow for higher input power for the pulse optimization than permissible with SAR limits. The results showed that using two spokes, the 7 T array outperformed the 3 T birdcage in all the considered regions of interest. However, a significantly higher SAR or lower duty cycle at 7 T is necessary in some cases to achieve similar B1+ homogeneity as at 3 T. The homogeneity in up to 50 cm-long coronal slices can particularly benefit from the high RF shim performance provided by the 32 RF channels. The thermal dose approach increases the allowable input power and the corresponding local SAR, in one example up to 100 W/kg, without limiting the exposure time necessary for an MR examination. In conclusion, the integrated antenna array at 7 T enables a clinical workflow for body imaging and comparable imaging performance to a conventional 3 T clinical body coil.  相似文献   

8.
The two main challenges that prevent the translation of fluorine‐19 (19F) MRI for inflammation monitoring or cell tracking into clinical practice are (i) the relatively low signal‐to‐noise ratio generated by the injected perfluorocarbon (PFC), which necessitates long scan times, and (ii) the need for regulatory approval and a high biocompatibility of PFCs that are also suitable for MRI. ABL‐101, an emulsion of perfluoro(t‐butylcyclohexane), is a third‐generation PFC that is already used in clinical trials, but has not yet been used for 19F MRI. The objective of this study was therefore to assess the performance of ABL‐101 as a 19F MRI tracer. At magnetic field strengths of 3, 9.4 and 14.1 T, the CF3 groups of ABL‐101 generated a large well‐separated singlet with T2/T1 ratios of >0.27, >0.14 and > 0.05, respectively. All relaxation times decreased with the increase in magnetic field strength. The detection limit of ABL‐101 in a 0.25 mm3 voxel at 3 T, 37°C and with a 3‐minute acquisition time was 7.21mM. After intravenous injection, the clearance half‐lives of the ABL‐101 19F MR signal in mouse (n = 3) spleen and liver were 6.85 ± 0.45 and 3.20 ± 0.35 days, respectively. These results demonstrate that ABL‐101 has 19F MR characteristics that are similar to those of PFCs developed specifically for MRI, while it has clearance half‐lives similar to PFCs that have previously been used in large doses in non‐MRI clinical trials. Overall, ABL‐101 is thus a very promising candidate tracer for future clinical trials that use 19F MRI for cell tracking or the monitoring of inflammation.  相似文献   

9.
This study was performed to investigate if glycogen loading of skeletal muscles, by binding water, would effect the cross‐sectional area (CSA) and if an altered water content would alter the transverse relaxation time (T2) measured by magnetic resonance imaging (MRI). Five healthy volunteers participated in a programme with 4 days of extremely carbohydrate‐restricted meals followed by 4 days of extremely high carbohydrate intake. The CSA and T2 of thigh and calf muscles were related to the intramuscular glycogen content evaluated at days 4 and 8. An increase in glycogen content from 281 to 634 mmol kg–1 dry wt increased the CSA of the vastus muscles by 3.5% from 78 ± 11 to 80 ± 12 cm2 and the thigh circumference by 2.5% from 146 ± 20 to 150 ± 23 cm2. Calf circumference increased non‐significantly by 4% from 78 ± 15 to 82 ± 19 cm2. Mono‐exponential T2 decreased in m tibialis anterior from 27.8 ± 1.2 to 26.9 ± 1.7 ms, did not change in m. vastus lateralis 26.5 ± 1.9 ms/26.6 ± 1.3 ms or in m. gastrocnemius 29.5 ± 1.0 ms/29.8 ± 1.9 ms. Glycogen loading increased the signal intensity mainly at different echo times (TE) 15 and 30 ms. The study shows that increased glycogen filling in the muscles increases muscle CSA and that this can be detected by MRI. The signal intensity increased the most at shorter TEs suggesting a more tight intracellular binding of water in glycogen loaded muscles.  相似文献   

10.
Widespread use of ultrahigh‐field 31P MRSI in clinical studies is hindered by the limited field of view and non‐uniform radiofrequency (RF) field obtained from surface transceivers. The non‐uniform RF field necessitates the use of high specific absorption rate (SAR)‐demanding adiabatic RF pulses, limiting the signal‐to‐noise ratio (SNR) per unit of time. Here, we demonstrate the feasibility of using a body‐sized volume RF coil at 7 T, which enables uniform excitation and ultrafast power calibration by pick‐up probes. The performance of the body coil is examined by bench tests, and phantom and in vivo measurements in a 7‐T MRI scanner. The accuracy of power calibration with pick‐up probes is analyzed at a clinical 3‐T MR system with a close to identical 1H body coil integrated at the MR system. Finally, we demonstrate high‐quality three‐dimensional 31P MRSI of the human body at 7 T within 5 min of data acquisition that includes RF power calibration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
The purpose of this study is to develop and evaluate a custom‐designed 7  T MRI coil and explore its use for upper extremity applications. An RF system composed of a transverse electromagnetic transmit coil and an eight‐channel receive‐only array was developed for 7  T upper extremity applications. The RF system was characterized and evaluated using scattering parameters and B1+ mapping. Finite difference time domain simulations were performed to evaluate the B1+ field distribution and specific absorption rate for the forearm region of the upper extremity. High‐resolution 7  T images were acquired and compared with those at 3 T. The simulation and experimental results show very good B1+ field homogeneity across the forearm. High‐resolution images of musculotendinous, osseocartilaginous, and neurovascular structures in the upper extremity are presented with T1 volumetric interpolated breath‐hold examination, T2 double‐echo steady state, T2* susceptibility weighted imaging (SWI), diffusion tensor imaging, and time‐of‐flight sequences. Comparison between 3  T and 7  T is shown. Intricate contextual anatomy can be delineated in synovial, fibrocartilaginous, interosseous, and intraosseous trabecular structures of the forearm, as well as palmar and digital vascular anatomy (including microvascular detail in SWI). Ultra‐high‐field 7  T imaging holds great potential in improving the sensitivity and specificity of upper extremity imaging, especially in wrist and hand pathology secondary to bone, ligament, nerve, vascular, and other soft or hard tissue etiology.  相似文献   

12.
Skin sodium (Na+) storage, as a physiologically important regulatory mechanism for blood pressure, volume regulation and, indeed, survival, has recently been rediscovered. This has prompted the development of MRI methods to assess Na+ storage in humans (23Na MRI) at 3.0 T. This work examines the feasibility of high in‐plane spatial resolution 23Na MRI in skin at 7.0 T. A two‐channel transceiver radiofrequency (RF) coil array tailored for skin MRI at 7.0 T (f = 78.5 MHz) is proposed. Specific absorption rate (SAR) simulations and a thorough assessment of RF power deposition were performed to meet the safety requirements. Human skin was examined in an in vivo feasibility study using two‐dimensional gradient echo imaging. Normal male adult volunteers (n = 17; mean ± standard deviation, 46 ± 18 years; range, 20–79 years) were investigated. Transverse slices of the calf were imaged with 23Na MRI using a high in‐plane resolution of 0.9 × 0.9 mm2. Skin Na+ content was determined using external agarose standards covering a physiological range of Na+ concentrations. To assess the intra‐subject reproducibility, each volunteer was examined three to five times with each session including a 5‐min walk and repositioning/preparation of the subject. The age dependence of skin Na+ content was investigated. The 23Na RF coil provides improved sensitivity within a range of 1 cm from its surface versus a volume RF coil which facilitates high in‐plane spatial resolution imaging of human skin. Intra‐subject variability of human skin Na+ content in the volunteer population was <10.3%. An age‐dependent increase in skin Na+ content was observed (r = 0.78). The assignment of Na+ stores with 23Na MRI techniques could be improved at 7.0 T compared with current 3.0 T technology. The benefits of such improvements may have the potential to aid basic research and clinical applications designed to unlock questions regarding the Na+ balance and Na+ storage function of skin. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
High‐field (≥ 3T) MRI provides a means to increase the signal‐to‐noise ratio, due to its higher tissue magnetization compared with 1.5T. However, both the static magnetic field (B0) and the transmit radio‐frequency (RF) field (B) inhomogeneities are comparatively higher at higher field strengths than those at 1.5T. These challenging factors at high‐field strengths make it more difficult to accurately calibrate the transmit RF gain using standard RF calibration procedures. An image‐based RF calibration procedure was therefore developed, in order to accurately calibrate the transmit RF gain within a specific region‐of‐interest (ROI). Using a turbo fast low‐angle shot (TurboFLASH) pulse sequence with centric k‐space reordering, a series of ‘saturation‐no‐recovery’ images was acquired by varying the flip angle of the preconditioning pulse. In the resulting images, the signal null occurs in regions where the flip angle of the preconditioning pulse is 90°. For a given ROI, the mean signal can be plotted as a function of the nominal flip angle, and the resulting curve can be used to quantitatively identify the signal null. This image‐guided RF calibration procedure was evaluated through phantom and volunteer imaging experiments at 3T and 7T. The image‐guided RF calibration results in vitro were consistent with standard B0 and B maps. The standard automated RF calibration procedure produced approximately 20% and 15–30% relative error in the transmit RF gain in the left kidney at 3T and brain at 7T, respectively. For initial application, a T2 mapping pulse sequence was applied at 7T. The T2 measurements in the thalamus at 7T were 60.6 ms and 48.2 ms using the standard and image‐guided RF calibration procedures, respectively. This rapid, image‐guided RF calibration procedure can be used to optimally calibrate the flip angle for a given ROI and thus minimize measurement errors for quantitative MRI and MR spectroscopy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Several well‐resolved 4D Flow MRI acquisitions of an idealized rigid flow phantom featuring an aneurysm, a curved channel as well as a bifurcation were performed under pulsatile regime. The resulting hemodynamics were processed to remove MRI artifacts. Subsequently, they were compared with CFD predictions computed on the same flow domain, using an in‐house high‐order low dissipative flow solver. Results show that reaching a good agreement is not straightforward but requires proper treatments of both techniques. Several sources of discrepancies are highlighted and their impact on the final correlation evaluated. While a very poor correlation (r2 = 0.63) is found in the entire domain between raw MRI and CFD data, correlation as high as r2 = 0.97 is found when artifacts are removed by post‐processing the MR data and down sampling the CFD results to match the MRI spatial and temporal resolutions. This work demonstrates that, in a well‐controlled environment, both PC‐MRI and CFD might bring reliable and correlated flow quantities when a proper methodology to reduce the errors is followed.  相似文献   

15.
In vivo 13C MRS at high field benefits from an improved SNR and spectral resolution especially when using surface coils in combination with adiabatic pulses, such as the adiabatic half‐passage (AHP) pulse for 13C excitation. However, the excitation profile of the AHP pulse is asymmetric relative to the carrier frequency, which could lead to asymmetric excitation of the spectral lines relative to the center of the spectrum. In this study, a pulse‐acquire sequence was designed for adiabatic 13C excitation with a symmetric bandwidth, utilizing a combination of two AHP pulses with inverted phases in alternate scans. Magnetization and phase behavior as a function of frequency offset and RF amplitude of the B1 field, as well as the steady‐state transverse magnetization response to off‐resonance, were simulated. Excitation properties of the combined pulse sequence were studied by 23Na imaging and 13C spectroscopy in vitro on a phantom and in vivo on the human calf at 7 T. Simulations demonstrated symmetric transverse magnetization and phase with respect to positive and negative frequency offsets when using two AHP pulses with inverted phases in alternate scans, thereby minimizing baseline distortion and achieving symmetric T1 weighting, as confirmed by in vitro measurements. The intensities of the lipid peaks at 15, 30, 62, 73, and 130 ppm were in agreement with those theoretically predicted using two AHP pulses with inverted phases in alternate scans. We conclude that using two phase‐inverted AHP pulses improves the symmetry of the 13C excitation profile and phase response to off‐resonance effects at 7 T in comparison with using a single AHP pulse.  相似文献   

16.
Proton MRSI has great clinical potential for metabolic mapping of the healthy and pathological human brain. Unfortunately, the promise has not yet been fully achieved due to numerous technical challenges related to insufficient spectral quality caused by magnetic field inhomogeneity, insufficient RF transmit power and incomplete lipid suppression. Here a robust, novel method for lipid suppression in 1H MRSI is presented. The method is based on 2D spatial localization of an elliptical region of interest using pulsed second‐order spherical harmonic (SH) magnetic fields. A dedicated, high‐amplitude second‐order SH gradient setup was designed and constructed, containing coils to generate Z2, X2Y2 and XY magnetic fields. Simulations and phantom MRI results are used to demonstrate the principles of the method and illustrate the manifestation of chemical shift displacement. 1H MRSI on human brain in vivo demonstrates high quality, robust suppression of extracranial lipids. The method allows a wide range of inner or outer volume selection or suppression and should find application in MRSI, reduced‐field‐of‐view MRI and single‐volume MRS.  相似文献   

17.
Longitudinally orientated dipoles and microstrip antennas have both demonstrated superior results as RF transmit elements for body imaging at 7 T MRI, and are as of today the most commonly used transmit elements. In this study, the performances of the two antenna concepts were compared for use in local RF antenna arrays by numerical simulations. Antenna elements investigated are the fractionated dipole and the microstrip line with meander structures. Phantom simulations with a single antenna element were performed and evaluated with regard to specific absorption rate (SAR) efficiency in the center of the subject. Simulations of array configurations with 8 and 16 elements were performed with anatomical body models. Both antenna elements were combined with a loop coil to compare hybrid configurations. Singular value decomposition of the B1+ fields, RF shimming, and calculation of the voxel-wise power and SAR efficiencies were performed in regions of interest with varying sizes to evaluate the transmit performance. The signal-to-noise ratio (SNR) was evaluated to estimate the receive performance. Simulated data show similar transmit profiles for the two antenna types in the center of the phantom (penetration depth > 20 mm). For body imaging, no considerable differences were determined for the different antenna configurations with regard to the transmit performance. Results show the advantage of 16 transmit channels compared with today's commonly used 8-channel systems (minimum RF shimming excitation error of 4.7% (4.3%) versus 2.7% (2.8%) for the 8-channel and 16-channel configurations with the microstrip antennas in a (5 cm)3 cube in the center of a male (female) body model). Highest SNR is achieved for the 16-channel configuration with fractionated dipoles. The combination of either fractionated dipoles or microstrip antennas with loop coils is more favorable with regard to the transmit performance compared with only increasing the number of elements.  相似文献   

18.

Purpose

To design a forward view antenna for prostate imaging at 7 T, which is placed between the legs of the subject in addition to a dipole array.

Materials and methods

The forward view antenna is realized by placing a cross‐dipole antenna at the end of a small rectangular waveguide. Quadrature drive of the cross‐dipole can excite a circularly polarized wave propagating along the axial direction to and from the prostate region. Functioning of the forward view antenna is validated by comparing measurements and simulations. Antenna performance is evaluated by numerical simulations and measurements at 7 T.

Results

Simulations of B1+ on a phantom are in good correspondence with measurements. Simulations on a human model indicate that the signal‐to‐noise ratio (SNR), specific absorption rate (SAR) efficiency and SAR increase when adding the forward view antenna to a previously published dipole array. The SNR increases by up to 18% when adding the forward view antenna as a receive antenna to an eight‐channel dipole array in vivo.

Conclusions

A design for a forward view antenna is presented and evaluated. SNR improvements up to 18% are demonstrated when adding the forward view antenna to a dipole array.  相似文献   

19.
Multi‐channel phased receive arrays have been widely adopted for magnetic resonance imaging (MRI) and spectroscopy (MRS). An important step in the use of receive arrays for MRS is the combination of spectra collected from individual coil channels. The goal of this work was to implement an improved strategy termed OpTIMUS (i.e., op timized t runcation to i ntegrate m ulti‐channel MRS data u sing rank‐R s ingular value decomposition) for combining data from individual channels. OpTIMUS relies on spectral windowing coupled with a rank‐R decomposition to calculate the optimal coil channel weights. MRS data acquired from a brain spectroscopy phantom and 11 healthy volunteers were first processed using a whitening transformation to remove correlated noise. Whitened spectra were then iteratively windowed or truncated, followed by a rank‐R singular value decomposition (SVD) to empirically determine the coil channel weights. Spectra combined using the vendor‐supplied method, signal/noise2 weighting, previously reported whitened SVD (rank‐1), and OpTIMUS were evaluated using the signal‐to‐noise ratio (SNR). Significant increases in SNR ranging from 6% to 33% (P ≤ 0.05) were observed for brain MRS data combined with OpTIMUS compared with the three other combination algorithms. The assumption that a rank‐1 SVD maximizes SNR was tested empirically, and a higher rank‐R decomposition, combined with spectral windowing prior to SVD, resulted in increased SNR.  相似文献   

20.
The purpose of this work was to explore the origin of oscillations of the T*2 decay curve of 39K observed in studies of 39K magnetic resonance imaging of the human thigh. In addition to their magnetic dipole moment, spin‐3/2 nuclei possess an electric quadrupole moment. Its interaction with non‐vanishing electrical field gradients leads to oscillations in the free induction decay and to splitting of the resonance. All measurements were performed on a 7T whole‐body MRI scanner (MAGNETOM 7T, Siemens AG, Erlangen, Germany) with customer‐built coils. According to the theory of quadrupolar splitting, a model with three Lorentzian‐shaped peaks is appropriate for 39K NMR spectra of the thigh and calf. The frequency shifts of the satellites depend on the angle between the calf and the static magnetic field. When the leg is oriented parallel to the static magnetic field, the satellites are shifted by about 200 Hz. In the thigh, rank‐2 double quantum coherences arising from anisotropic quadrupolar interaction are observed by double‐quantum filtration with magic‐angle excitation. In addition to the spectra, an image of the thigh with a nominal resolution of (16 × 16 × 32) mm3 was acquired with this filtering technique in 1:17 h. From the line width of the resonances, 39K transverse relaxation time constants T*2, fast = (0.51 ± 0.01) ms and T*2, slow = (6.21 ± 0.05) ms for the head were determined. In the thigh, the left and right satellite, both corresponding to the short component of the transverse relaxation time constant, take the following values: T*2, fast = (1.56 ± 0.03) ms and T*2, fast = (1.42 ± 0.03) ms. The centre line, which corresponds to the slow component, is T*2, slow = (9.67 ± 0.04) ms. The acquisition time of the spectra was approximately 10 min. Our results agree well with a non‐vanishing electrical field gradient interacting with 39K nuclei in the intracellular space of muscle tissue. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号