首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypokalemic periodic paralysis (HOPP) is a rare disease characterized by reversible attacks of muscle weakness accompanied by episodic hypokalemia. Recent molecular work has revealed that the majority of familial HOPP is due to mutations in a skeletal muscle voltage-dependent calcium-channel: the dihydropyridine receptor. We report a 13-yr old boy with HOPP from a family in which 6 members are affected in three generations. Genetic examination identified a nucleotide 3705 C to G mutation in exon 30 of the calcium channel gene, CACNA1S. This mutation predicts a codon change from arginine to glycine at the amino acid position #1239 (R1239G). Among the three known mutations of the CACNA1S gene, the R1239G mutation was rarely reported. This boy and the other family members who did not respond to acetazolamide, showed a marked improvement of the paralytic symptoms after spironolactone treatment.  相似文献   

2.
目的筛查家族性低钾型周期性麻痹(hypokalaemic periodic paralysis,HOKPP)相关基因突变位点,总结该病基因型和临床表型的相关性。方法应用PCR和DNA测序技术,对1个HOKPP家系(包括2例患者共11名成员)进行候选基因CACNA1S和SCN4A的筛查,并总结该家系患者的临床特点。结果此家系的2例患者符合HOKPP的诊断标准,突出特点为:儿童期发病,青春期加重,成年后病情减轻;女性在月经前期好发,而妊娠期无发作;钾剂和乙酰唑胺治疗有效。DNA测序结果发现2例患者的CACNA1S基因第30外显子上均存在3716(G→A)杂合突变,导致氨基酸序列改变R1239H,家族其他成员未见此突变。结论中国家族性HOKPP存在CACNA1S基因R1239H突变。  相似文献   

3.
Familial hypokalemic periodic paralysis (hypoPP) is an autosomal dominant disorder characterised by episodic attacks of paralysis of varying severity. Recently, linkage was found to markers in 1q31–32 and to the gene encoding the muscle DHP-sensitive calcium channel α 1-subunit (CACNL1A3). Subsequently, three mutations in this gene were identified in patients with hypoPP: Arg528His, Arg1239His and Arg1239Gly. In this study, two different mutations were found in the CACNL1A3 gene in 13 Scandinavian families, 10 of whom have the Arg528His mutation while 3 families have the Arg1239His. Furthermore, there is evidence of a founder effect in 8 of the 9 Danish hypoPP families investigated, consisting of haplotypes of microsatellite markers close to and within the CACNL1A3 gene and of the geographic origin of the families. For the first time, reduced penetrance in males with the Arg528His mutation was found in several cases. Am. J. Med. Genet. 69:102–106, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
Hypokalemic periodic paralysis (HypoPP) is an autosomal dominant disorder which is characterized by periodic attacks of muscle weakness associated with a decrease in the serum potassium level. The skeletal muscle calcium channel -subunit gene CACNA1S is a major disease-causing gene for HypoPP, however, only three specific HypoPP-causing mutations, Arg528His, Arg1,239His and Arg1,239Gly, have been identified in CACNA1S to date. In this study, we studied a four-generation Chinese family with HypoPP with 43 living members and 19 affected individuals. Linkage analysis showed that the causative mutation in the family is linked to the CACNA1S gene with a LOD score of 6.7. DNA sequence analysis revealed a heterozygous C to G transition at nucleotide 1,582, resulting in a novel 1,582CG (Arg528Gly) mutation. The Arg528Gly mutation co-segregated with all affected individuals in the family, and was not present in 200 matched normal controls. The penetrance of the Arg528Gly mutation was complete in male mutation carriers, however, a reduced penetrance of 83% (10/12) was observed in female carriers. No differences were detected for age-at-onset and severity of the disease (frequency of symptomatic attacks per year) between male and female patients. Oral intake of KCl is effective in blocking the symptomatic attacks. This study identifies a novel Arg528Gly mutation in the CACNA1S gene that causes HypoPP in a Chinese family, expands the spectrum of mutations causing HypoPP, and demonstrates a gender difference in the penetrance of the disease.Qiufen Wang and Mugen Liu contributed equally to this work  相似文献   

5.
Non-dystrophic myotonias (NDMs) are caused by mutations in CLCN1 or SCN4A. The purpose of the present study was to optimize the genetic characterization of NDM in The Netherlands by analysing CLCN1 and SCN4A in tandem. All Dutch consultant neurologists and the Dutch Patient Association for Neuromuscular Diseases (Vereniging Spierziekten Nederland) were requested to refer patients with an initial diagnosis of NDM for clinical assessment and subsequent genetic analysis over a full year. Based on clinical criteria, sequencing of either CLCN1 or SCN4A was performed. When previously described mutations or novel mutations were identified in the first gene under study, the second gene was not sequenced. If no mutations were detected in the first gene, the second gene was subsequently also analysed. Underlying NDM mutations were explored in 54 families. In total, 20% (8 of 40) of our probands with suspected chloride channel myotonia showed no CLCN1 mutations but subsequent SCN4A screening revealed mutations in all of them. All 14 probands in whom SCN4A was primarily sequenced showed a mutation. In total, CLCN1 mutations were identified in 32 families (59%) and SCN4A in 22 (41%), resulting in a diagnostic yield of 100%. The yield of mutation detection was 93% with three recessive and three sporadic cases not yielding a second mutation. Among these mutations, 13 in CLCN1 and 3 in SCN4A were novel. In conclusion, the current results show that in tandem analysis of CLCN1 and SCN4A affords high-level mutation ascertainment in families with NDM.  相似文献   

6.
Familial hemiplegic migraine (FHM) is a rare subtype of migraine with aura inherited with an autosomal dominant pattern. Here, we report the genetic analysis of four families and one sporadic case with hemiplegic migraine (HM) in whom we searched for mutations in the three genes associated with the disease CACNA1A, ATP1A2 and SCN1A. Two novel amino acid changes p.Arg65Trp and p.Tyr9Asn, in the Na,K-adenosine triphosphatase (ATPase) alpha-2 subunit encoded by the ATP1A2 gene, were found in one FHM family and in the sporadic case, respectively. These mutations are peculiar for their location in the extreme N-terminus, an uncommon mutation target in this protein. Low frequency of migraine attacks in all our mutant patients with low complexity of the associated aura symptoms in the sporadic case is also observed. Besides the two novel mutations, the data here reported confirm the involvement of ATP1A2 gene in the sporadic form of HM, while the negative results on the other families tested for all genes known in HM strengthen the hypothesis of the existence of at least another locus involved in FHM.  相似文献   

7.
Mutations in the CLDN14 gene are known to cause autosomal recessive (AR) non-sydromic hearing loss (NSHL) at the DFNB29 locus on chromosome 21q22.13. As part of an ongoing study to localize and identify NSHL genes, the ARNSHL segregating in four Pakistani consanguineous families were mapped to the 21q22.13 region with either established or suggestive linkage. Given the known involvement of CLDN14 gene in NSHL, DNA samples from hearing-impaired members from the four families were sequenced to potentially identify causal variants within this gene. Three novel CLDN14 mutations, c.167G>A (p.Trp56*), c.242G>A (p.Arg81His), and c.694G>A (p.Gly232Arg), segregate with hearing loss (HL) in three of the families. The previously reported CLDN14 mutation c.254T>A (p.Val85Asp) was observed in the fourth family. None of the mutations were detected in 400 Pakistani control chromosomes and all were deemed damaging based on bioinformatics analyses. The non-sense mutation c.167G>A (p.Trp56*) is the first stop codon mutation in CLDN14 gene to be identified to cause NSHL. The c.242G>A (p.Arg81His) and c.694G>A (p.Gly232Arg) mutations were identified within the first extracellular loop and the carboxyl-tail of claudin-14, respectively, which highlights the importance of the extracellular domains and phosphorylation of cytoplasmic tail residues to claudin function within the inner ear. The HL due to novel CLDN14 mutations is prelingual, severe-to-profound with greater loss in the high frequencies.  相似文献   

8.
Mutations in LMNA gene produce a wide spectrum of disorders called laminopathies. In this article, the first cases of laminopathies from Russia are reported. In 10 unrelated families, 9 different mutations were identified: Asp47His, Gly232Arg, c.[781_783delAAG, 781insGTGGAGCAGTATAAGAAA], Arg249Gln (in two families), Arg377His, Arg541His, Ala350Pro, Leu52Pro, and Gly635Asp. Mutations Arg249Gln, Arg377His, and Arg541His were reported previously, others are novel. Four cases present de novo mutations, among them two cases with Arg249Gln are found. Because this mutation occurred de novo also in other reported cases, a mutational 'hot spot' was supposed. Three phenotypes were observed: autosomal dominant (AD) Emery–Dreifuss muscular dystrophy (EDMD), limb-girdle MD type 1B, and AD dilated cardiomyopathy with conduction defect type 1A (DCM1A). Atypical clinical presentations were a very severe EDMD and an infantile DCM1A.  相似文献   

9.
Familial hemiplegic migraine (FHM) is a severe subtype of migraine with hemiparesis during attacks. We scanned 10 families with FHM without mutations in the CACNA1A (FHM1) and ATP1A2 (FHM2) genes. We identified the novel p.L1649Q mutation (c.4946T>A) in Na(v)1.1 sodium channel gene SCN1A (FHM3) in a North American kindred with FHM without associated ataxia or epilepsy. Functional analysis of the mutation, introduced in the highly homologous human SCN5A, revealed markedly slowed inactivation and a two-fold faster recovery from fast inactivation predicting enhanced neuronal excitation. Our findings establish the role of neuronal Na(v)1.1 sodium channels in FHM and reinforce the involvement of ion channel dysfunction in the pathogenesis of this episodic brain disorder.  相似文献   

10.
Cho HJ  Sung DH  Kim BJ  Ki CS 《Clinical genetics》2007,71(3):267-272
Charcot-Marie-Tooth disease (CMT) is classified into two types, the demyelinating (CMT1) and axonal forms (CMT2). CMT2 is further subdivided by linkage analysis into eight subgroups. Recently, mutations in the MFN2 gene, which encodes the mitochondrial GTPase mitofusin 2 (Mfn2) that regulates the mitochondrial network architecture by fusing the mitochondria, were identified in CMT2A patients. This study carried out mutation analysis of the MFN2 gene in 12 unrelated Korean patients suspected of having CMT2 and identified four mutations (Arg94Trp, His165Arg, Ser263Pro, and Ser350Pro). Three mutations were found within the highly conserved GTPase domain that is essential for the function of Mfn2, and one mutation (Ser350Pro) was observed between the GTPase domain and the downstream coiled-coil domain. This suggests that mutations in the MFN2 gene are an important causative gene underlying Korean patients with CMT2, and screening for a mutation in the MFN2 gene is strongly recommended for making a molecular diagnosis of CMT2.  相似文献   

11.
X-linked congenital stationary night blindness (CSNBX) is a genetically and phenotypically heterogeneous non-progressive disorder, characterised by impaired night vision but grossly normal retinal appearance. Other more variable features include reduction in visual acuity, myopia, nystagmus and strabismus. Genetic mapping studies by other groups, and our own studies of British patients, identified key recombination events indicating the presence of at least 2 disease genes on Xp11. Two causative genes (CACNA1F and NYX) for CSNBX have now been identified through positional cloning strategies. In this report, we present the results of comprehensive mutation screening in 14 CSNBX families, three with mutations in the CACNA1F gene and 10 with mutations in the NYX gene. In one family we failed to identify the mutation after testing RP2, RPGR, NYX and CACNA1F. NYX gene mutations are a more frequent cause of CSNBX, although there is evidence for founder mutations. Our report of patient population mutation screening for both CSNBX genes, and our exclusion of RP2 and RGPR, indicates that mutations in CACNA1F and NYX are likely to account for all CSNBX.  相似文献   

12.
Long QT syndrome (LQTS) is a heterogeneous disorder caused by mutations of at least five different loci. Three of these, LQT1, LQT2, and LQT5, encode potassium channel subunits. LQT3 encodes the cardiac-specific sodium channel, SCN5A. Previously reported LQTS-associated mutations of SCN5A include a recurring three amino acid deletion (DeltaKPQ1505-1507) in four different families, and four different missense mutations. We have examined the SCN5A gene in 88 index cases with LQTS, including four with Jervell and Lange-Nielsen syndrome and the remainder with Romano-Ward syndrome. Screening portions of DIII-DIV, where mutations have previously been found, showed that none of these patients has the three amino acid deletion, DeltaKPQ1505-1507, or the other four known mutations. We identified a novel missense mutation, T1645M, in the DIV; S4 voltage sensor immediately adjacent to the previously reported mutation R1644H. We also examined all of the additional pore-forming regions and voltage-sensing regions and discovered another novel mutation, T1304M, at the voltage-sensing region DIII; S4. Neither T1645M nor T1304M were seen in a panel of unaffected control individuals. Five of six T1304M gene carriers were symptomatic. In contrast to previous studies, QT(onset-c) was not a sensitive indicator of SCN5A-associated LQTS, at least in this family. These data suggest that mutations of SCN5A are responsible for only a small proportion of LQTS cases.  相似文献   

13.
Of the 18 missense mutations in the CACNA1A gene, which are associated with familial hemiplegic migraine type 1 (FHM1), only mutations S218L, R583Q and T666M were identified in more than two independent families. Including the four novel families presented here, of which two represent de novo cases, the R1347Q mutation has now been identified in six families. A genotype-phenotype comparison of R1347Q mutation carriers revealed a wide clinical spectrum ranging from (trauma triggered) hemiplegic migraine with and without ataxia, loss of consciousness and epilepsy. R1347Q is the third most frequent mutation in hemiplegic migraine patients and should therefore be screened with priority for confirmation of clinical diagnosis. This study clearly demonstrates that the availability of multiple families better reflects the full clinical spectrum associated with FHM1 mutations.  相似文献   

14.
15.
Eight mutations in the gene (the RYR1 gene) encoding the calcium release channel of sarcoplasmic reticulum (SR) in skeletal muscle are so far known to be very closely linked to malignant hyperthermia susceptibility in man and are regarded to be causative. We have examined 41 Swedish families where malignant hyperthermia had occurred in at least one member during anaesthesia, with respect to three of the known mutations. The mutations were Arg163Cys; Ile403Met and Arg614Cys (also known as the "pig mutation"). In three (i.e. 7%) of the families we detected the Arg614Cys mutation, and this was the only one of the mutations searched for that was observed. This indicates that other mutations than those searched for in this study must cause malignant hyperthermia susceptibility in most Swedish malignant hyperthermia susceptible families.  相似文献   

16.
The aim of this study was to identify mutations in the TRPM1, GRM6, NYX and CACNA1F genes in patients with congenital stationary night blindness (CSNB). Twenty-four unrelated patients with CSNB were ascertained. Sanger sequencing was used to analyze the coding exons and adjacent intronic regions of TRPM1, GRM6, NYX and CACNA1F. Six mutations were identified in six unrelated patients, including five novel and one known. Of the six, three novel hemizygous mutations, c.92G>A (p.Cys31Tyr), c.149G>C (p.Ary50Pro), and c.[272T>A;1429G>C] (p.[Leu91Gln;Gly477Arg]), were found in NYX in three patients, respectively. A novel c.[1984_1986delCTC;3001G>A] (p.[Leu662del;Gly1001Arg]) mutation was detected in CACNA1F in one patient. One novel and one known heterozygous variation, c.1267T>C (p.Cys423Arg) and c.1537G>A (p.Val513Met), were detected in GRM6 in two patients, respectively. No variations were found in TRPM1. The results expand the mutation spectrum of NYX, CACNA1F and GRM6. They also suggest that NYX mutations are a common cause of CSNB.  相似文献   

17.
Tammaro A, Di Martino A, Bracco A, Cozzolino S, Savoia G, Andria B, Cannavo A, Spagnuolo M, Piluso G, Aurino S, Nigro V. Novel missense mutations and unexpected multiple changes of RYR1 gene in 75 malignant hyperthermia families. Malignant hyperthermia (MH) is an autosomal dominant pharmacogenetic disorder of skeletal muscle characterized by disturbance of intracellular calcium homeostasis in the sarcoplasmic reticulum. Mutations of the ryanodine receptor 1 (RYR1) gene account for most cases, with some studies claiming up to 86% of mutations in this locus. However, RYR1 gene is large and variants are common even in the normal population. We examined 54 families with MH susceptibility and 21 diagnosed with equivocal MH. Thirty‐five were selected for an anesthetic reaction, whereas the remainder for hyperCKemia. In these, we studied all 106 exons of the RYR1 gene. When no mutation was found, we also screened: sodium channel voltage‐gated, type IV alpha subunit (SCN4A), calcium channel voltage‐dependent, L type, alpha 1S subunit (CACNA1S), and L‐type voltage‐gated calcium channel alpha 2/delta‐subunit (CACNL2A). Twenty‐nine different RYR1 mutations were discovered in 40 families. Three other MH genes were tested in negative cases. Fourteen RYR1 amino acid changes were novel, of which 12 were located outside the mutational ‘hot spots'. In two families, the known mutation p.R3903Q was also observed in malignant hyperthermia‐nonsusceptible (MHN) individuals. Unexpectedly, four changes were also found in the same family and two in another. Our study confirms that MH is genetically heterogeneous and that a consistent number of cases are not due to RYR1 mutations. The discordance between in vitro contracture test status and the presence of a proven causative RYR1 mutation suggests that the penetrance may vary due to as yet unknown factors.  相似文献   

18.
Individuals from a large North American population were screened for the presence of the mutation in the alpha1 subunit of the voltage-dependent calcium channel (CACNA1S) that has recently been associated with malignant hyperthermia (MH). This Arg1086His mutation was screened for in 154 MH normal (MHN) individuals and 112 MH susceptible (MHS) individuals, who were diagnosed by the North American protocol of the in vitro contracture test. PCR and restriction enzyme analysis was used to test for the mutation. The Arg1086His mutation in the CACNA1S was not found in any of the MHN individuals. In contrast, two related individuals (grandfather and grandson, father and son of the MH proband) among the MHS group exhibited this mutation. However, a third MHS individual in the same family (granddaughter, cousin of the grandson) did not exhibit this mutation. These results indicate that this mutation may be associated with MH in this family. Genetic alterations in the CACNA1S associated with MH are present in approximately 1% of this North American MHS population.  相似文献   

19.
A large series of Swedish nuclear families, in which malignant hyperthermia (MH) reactions had occurred during anaesthesia, have been examined with respect to malignant hyperthermia susceptibility. In vitro contracture tests (IVCT) of muscle strips were conducted to diagnose MH status. Included in this series were some families where only one of the parents was tested by IVCT, while in 79 of the families both parents were tested by IVCT. Six known mutations in the gene encoding the calcium release channel of sarcoplasmic reticulum in skeletal muscle (the RYR1 gene), believed to cause MHS in man, were searched for in 41 nuclear families. The present paper focuses on findings in eight families, where both parents were malignant hyperthemia negative (MHN), while at least one child was either malignant hyperthermia susceptible (MHS) or malignant hyperthermia equivocal (MHE). There was no suggestion of non-paternity. The RYR1 mutations investigated were Arg163Cys, Gly341Arg, Ile403Met, Arg614Cys, Gly2433Arg and Arg2434His. No family had any of the six RYR1 mutations searched for.  相似文献   

20.
Menkes disease is an X-linked recessive disorder of the copper metabolism and affected males suffer a systemic copper deficiency due to malabsorption and defective distribution of dietary copper. It is caused by a defect in the Menkes (ATP7A) gene, which encodes a transmembrane copper-transporting P-type ATPase. A variety of mutations were reported; however, only a few mutations were reported in Asian patients. We identified four novel mutations and one known mutation in five Korean patients. Arg646Ter in exon 8, a novel mutation transmitted from his carrier mother, was identified in one patient. Prenatal DNA diagnosis on an unaffected fetus in this carrier mother was successfully accomplished. An additional three novel mutations, Leu706Arg in exon 9, Gly1118Asp in exon 17, and Gly1255Arg in exon 19, were identified. Splicing mutation was not identified. Menkes disease in Korean patients appears to be caused by heterogeneous mutations with different spectrums from Caucasian patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号