首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《New genetics and society》2013,32(2):117-132
Some of the most important factors that played a role in provoking the upheavals which overwhelmed the agri-foods biotechnology industry in Europe at the end of the 20th century are described and analysed, focusing especially on the impact of the introduction of a statutory labelling scheme that could be enforced. The implications of those upheavals for the development of biotechnology, for consumers and public policy makers, and corporate strategists, nationally and globally are outlined. The contention is that the trauma which overwhelmed the agri-food biotechnology sector in Europe had profound roots and rich implications which extend to the whole biotechnology sector and beyond.  相似文献   

2.
Multi-functionality of agriculture and rural areas has an impact on the economy, the environment, nature and also on societal and cultural development. The dimensions of multi-functionality are interpreted in literature in many different ways, but they always deal with environmental, social and economic aspects. The measurement of the multi-functionality of the agri-food system is an important issue, as it allows the value chain to be interpreted under the lens of sustainable development pillars. In this paper, we argue that multi-functionality is a value, which extends its benefits along the entire agri-food chain. We present a methodology to aggregate indicators into an evaluation framework, in order to assess the level of multi-functionality along the entire food value chain. We have called this the “extended value” of multi-functionality, since our approach is able to consider not only the farm level, but also extends to the entire food chain. To analyse multi-functionality, it was necessary to build Non-Commodity Categories (NCC) based on Non-Commodity Output (NCO), which characterised the value added function along the agri-food value chain. A set of indicators was developed to measure the level of multi-functionality in each NCC. The Multiple Criteria Decision Aiding (MCDA) methodology ELECTRE III was used to implement an evaluation process by assigning specific importance to each indicator. This process aggregated the evaluations of multiple indicators into an integrated interpretation, and aimed to support policy makers by providing a ranking of alternative ruling policies for the agri-food value chain. We finally tested our methodological approach on the value chain for the olive oil of five European countries, to analyse which value chain was able to generate more beneficial functions above and beyond the product itself.  相似文献   

3.
Summary Bioengineering approaches provide unprecedented opportunities for reducing poverty, food insecurity, child malnutrition, and natural resource degradation. Genetic engineering offers outstanding potential to increase the efficiency of crop improvement. Thus agricultural biotechnology could enhance global food production and availability in a sustainable way. Small farmers in developing countries are faced with many problems and constraints which biotechnology may assist. Yet, there are varying levels of opposition to the use of this technology in most countries and it is especially intense in Europe. While there is certain public apprehension with the use of bioengineering in food improvement, the primary hurdles facing this technology are the stringent and burdensome regulatory requirements for commercialization, opposition from the special interest groups, apprehension by the food industry especially with the whole foods, and trade barriers including rigid policies on traceability and labeling. Bioengineered crops such as soybean, maize, cotton, and canola with a few traits have already made a remarkable impaet on food production and environmental quality. But, in the developing world, bioengineering of crops such as bananas, cassava, yams, sweet potatoes, sorghum, rice, maize, wheat, millet, and legumes, along with livestock, can elearly contribute to global food security. However, the integration of biotechnology into agricultural research in developing countries faces many challenges which must be addressed: financial, technical, political, environmental, activism, intellectual-property, biosafety, and trade-related issues. To ensure that developing countries can harness the benefit of this technology with minimal problems, concerted efforts must be pursued to create an awareness of its potential benefits and to address the concerns related to its use through dialog among the various stakeholders: policy makers, scientists, trade groups, food industry, consumer organizations, farmer groups, media, and non-governmental organizations. Biotechnology holds great promise as a new tool in the scientific toolkit for generating applied agricultural technologies; however, per se it is not a panacea for the worlds problems of hunger and poverty.  相似文献   

4.
The advances in the biotechnology industry, and in biosciences research are impressive by any measure, but it is not sufficient just to continue to make spectacular scientific breakthroughs. It is important that the general public is assisted to keep up with the pace of technological change. Some efforts have been made, but they have not been enough. A public relations strategy is required. The biotechnology industry needs to influence public opinion as well as lead discovery. The aims of a public relations campaign should not be just to inform and convince legislators and regulators, but should target the average consumer of the 21st century. There are two areas where the science community must direct its attention if the international public is to be brought along on this biotechnological odyssey: the compulsory school sector – including teachers, students and policy makers; and key sector groups that can be specifically targeted such as farmers, indigenous peoples, horticulturists, food sector people, health professionals, and in particular, the recently retired. If the potential of biotechnological advances is to be realised, scientists must be proactive in educating the general public. This will also involve educating the educators. No amount of public education will completely remove the opposition to genetic engineering, but with an educated public there is an increased opportunity for a fair debate and scare tactics, half-truths and innuendo will gain less traction.  相似文献   

5.
Raybould  Alan 《Transgenic research》2021,30(5):613-618

The unwarranted interference of some environmental non-governmental organisations (ENGOs) in decision-making over genetically modified (GM) crops has prompted calls for politics to be removed from the regulatory governance of these products. However, regulatory systems are inevitably political because their purpose is to decide whether the use of particular products will help or hinder the delivery of public policy objectives. ENGOs are most able to interfere in regulatory decision-making when policy objectives and decision-making criteria are vague, making the process vulnerable to disruption by organisations that have a distinct agenda. Making regulatory decision-making about GM crops and other green biotechnology more resistant to interference therefore requires better politics not the removal of politics. Better politics begins with political leadership making a case for green biotechnology in achieving food security and other sustainable development goals. Such a policy must involve making political choices and cannot be outsourced to science. Other aspects of better politics include regulatory reform to set policy aims and decision-making criteria that encourage innovation as well as control risk, and engagement with civil society that discusses the values behind attitudes to the application of green biotechnology. In short, green biotechnology for sustainable development needs better politics to counter well-organised opposition, to encourage innovation, and to build the trust of civil society for these policies. Removing politics from regulatory governance would be a gift to ENGOs that are opposed to the use of biotechnology.

  相似文献   

6.
Human gene patents continue to stir social controversy, including the possibility that they might adversely affect public access to useful technologies. It has been suggested that a compulsory licensing policy might be used to alleviate the adverse effect of patents in this context. We suggest, however, that it is unclear whether existing international policies and licensing practices will permit compulsory licensing to be used in a way that would address common concerns. Indeed, given the minor role that genetic technologies have in most health care systems, it would be difficult to justify compulsory licensing. At a minimum, policy makers need to be more realistic about the potential effects of international trade agreements on the development of biotechnology policies.  相似文献   

7.
作为现代生物产业的核心,生物制造涵盖了从生物资源到生物技术,再到生物产业的价值链,集中体现了现代生物技术在医药、农业、能源、材料、化工、环保等多个工业领域的应用,对经济社会可持续发展进程有重要推动作用。当前,生物制造已成为世界主要发达经济体科技产业布局的重点领域之一,吸引了大量公共投资和社会资本,形成了价值数十亿美元级别的投资风口。调研统计2018~2019年全球150家生物制造相关企业201次融资事件,梳理生物制造产业的国内外发展环境和融资现状,为我国生物制造产业发展提出建议,以期引导领域科技成果转移转化、技术资本对接和行业繁荣发展,为我国经济社会可持续发展做出贡献。  相似文献   

8.
Current advances in the emerging field of synthetic biology and the improvements in key technologies promise great impacts, not only on future scientific development, but also on the economy. In this paper we will adopt the triple helix concept for analyzing the early stages of a new field of science and innovation, namely synthetic biology. Synthetic biology is based on the creation and assembly of parts in order to create new and more complex structures and functions. These features of synthetic biology raise questions related to standardization and intellectual property, but also to security and public perception issues that go beyond the classical biotechnology discussions. These issues concern all involved actors in the synthetic biology field and affect the interrelationship between science, industry and policy. Based on the results of the recently finished EU FP-6 funded project TESSY (http://www.tessy-europe.de), the article analyzes these issues. Additionally, it illustrates the setting of clear framework conditions for synthetic biology research and development and the identification and definition of common goals for the future development of the field which will be needed for efficient science–industry–policy interaction. It was shown that it will be crucial to develop approaches that consider the needs of science and industry, on the one hand, and comply with the expectations of society, on the other hand. As synthetic biology is a global activity, the involvement of national decision-makers in international initiatives will further stimulate the development of the field.  相似文献   

9.
美国“国家生物工程食品信息披露标准”法案出台的主要目的是统一转基因食品标识立法,避免出现州各自为政、部分州与联邦对立的局面,减少州际食品生产和交易的成本。法案优先于州标识立法,它在要求“强制”的同时,也为经营者提供了多种信息披露方式。披露要求及标准则由农业部在两年内制定规章予以确定。这一法案是美国各方妥协的结果,并未影响原有的生物技术政策和管理原则。在我国,转基因技术相关立法上亦存在矛盾和冲突,转基因食品标识问题尚未有定论。美国立法妥协的艺术值得我国借鉴,各方应当认可国家发展生物技术的目标。我国转基因食品标识立法需要高层次立法的明确授权,设置更多样的标识方式,并进行充分的法律实施评估。  相似文献   

10.
Genomics, molecular genetics and the food industry   总被引:2,自引:0,他引:2  
The production of foods for an increasingly informed and selective consumer requires the coordinated activities of the various branches of the food chain in order to provide convenient, wholesome, tasty, safe and affordable foods. Also, the size and complexity of the food sector ensures that no single player can control a single process from seed production, through farming and processing to a final product marketed in a retail outlet. Furthermore, the scientific advances in genome research and their exploitation via biotechnology is leading to a technology driven revolution that will have advantages for the consumer and food industry alike. The segment of food processing aids, namely industrial enzymes which have been enhanced by the use of biotechnology, has proven invaluable in the production of enzymes with greater purity and flexibility while ensuring a sustainable and cheap supply. Such enzymes produced in safe GRAS microorganisms are available today and are being used in the production of foods. A second rapidly evolving segment that is already having an impact on our foods may be found in the new genetically modified crops. While the most notorious examples today were developed by the seed companies for the agro-industry directed at the farming sector for cost saving production of the main agronomical products like soya and maize, its benefits are also being seen in the reduced use of herbicides and pesticides which will have long term benefits for the environment. Technology-driven advances for the food processing industry and the consumer are being developed and may be divided into two separate sectors that will be presented in greater detail: 1. The application of genome research and biotechnology to the breeding and development of improved plants. This may be as an aid for the cataloging of industrially important plant varieties, the rapid identification of key quality traits for enhanced classical breeding programs, or the genetic modification of important plants for improved processing properties or health characteristics. 2. The development of advanced microorganisms for food fermentations with improved flavor production, health or technological characteristics. Both yeasts and bacteria have been developed that fulfill these requirements, but are as yet not used in the production of foods.  相似文献   

11.
Biotechnology can play an essential role in fostering the economic and social development of developing countries like Zambia. However, due to a number of constraints, Zambia is not in a position to exploit the emerging opportunities from biotechnology. Prominent among these constraints are the lack of a biotechnology policy, an insufficient number of trained personnel, a poor science and technology base and very little basic research in universities and research institutions. The challenge Zambia must overcome is to establish a capacity and capability to innovate its own biotechnology as well as to adapt biotechnologies developed elsewhere to the Zambian conditions and environment. Despite all the hurdles and setbacks Zambia will face as she endeavours to enter the world of biotechnology, Zambia cannot afford to be a mere spectator as the rest of the world invests and benefits from the promise of biotechnology.The authors are with the Food Technology Research Unit, National Council for Scientific Research, Box 310158 Lusaka, Zambia  相似文献   

12.
One of the aims of ecology is to aid policy makers and practitioners through the development of testable predictions of relevance to society. Here, we argue that this capacity can be improved in three ways. Firstly, by thinking more clearly about the priority issues using a range of methods including horizon scanning, identifying policy gaps, identifying priority questions and using evidence-based conservation to identify knowledge gaps. Secondly, by linking ecological models with models of other systems, such as economic and social models. Thirdly, by considering alternative approaches to generate and model data that use, for example, discrete or categorical states to model ecological systems. We particularly highlight that models are essential for making predictions. However, a key to the limitation in their use is the degree to which ecologists are able to communicate results to policy makers in a clear, useful and timely fashion.  相似文献   

13.
王剑虹  麻密 《植物学报》2000,17(6):504-510
随着现代化工业的发展,全球向土壤和环境中排放的重金属逐年增加。重金属污染已日益成为威胁人类健康和影响人类生活质量的严重环境问题和社会问题。这一问题可部分通过植物修复技术得以解决。植物修复技术是依据植物从环境中积累重金属元素和化合物的能力及其将这些有毒物质在植物体内代谢成无毒生物小分子的能力而建立的新的生物技术。本篇综述主要论及利用植物修复技术解决重金属污染的生物学机制。  相似文献   

14.
国外生物技术产业发展政策研究   总被引:1,自引:0,他引:1  
全球生物技术产业尚处于发展时期,政府的政策对技术的进步和产业的发展有明显的导向和促进作用。对美国、欧洲等国家和地区的产业政策进行综合研究,发现这些生物技术产业相对发达的国家和地区,尤其是美国,其产业政策已成体系,而且可操作性强,对产业的推动作用明显,具有相当的可借鉴意义。从组织管理结构、科研投入机制、鼓励研发创新、财税支持方式、资本市场培育、产业基地建设、中介服务网络构建、人才培养与引进、以及国际合作等方面对国际上行之有效的生物技术产业政策进行了归纳分析 。  相似文献   

15.
Biotechnology as a multidisciplinary and transdisciplinary field of science and engineering is regarded to be a key technology for the future, able to essentially contribute to sustainable development. In the first part of this paper, a critical analysis of the status quo in biotechnologies is given in the area of pharmaceutical, agricultural, environmental, and industrial biotechnology as well as food biotechnology. Here the general potential becomes clear, but also a series of disadvantages which are partly the result of the existing paradigm in science and technology and partly in direct connection to bioprocessing itself. Nevertheless, these biotechnologies will contribute to sustainable development, but mainly in a shallow sense of survival and livelihood. In the second part of this paper, another new dimension in bioprocessing is elucidated, which is in agreement with the new ecological, holistic world view. Here the so-called “eco-principles” are derived from a systems analysis of the ecosphere and represent the intelligence of nature as the result of evolution. The eco-principles will serve as guidelines for the general eco-restructuring of technology, being a drastic change within the next 2–5 decades. For the applying of eco-principles, a quantitative measure for sustainability in technology was developed (“sustainable process index”), which will enable us to design the new technology paradigm called “Eco Tech”. Ecological security and social equity, together with economic efficiency will define sustainable technology development in a deeper sense. Following this route, a completely new dimension of biotechnology will be reached, where the technosphere is fully embedded into the natural cycles of the ecosphere on a local basis.  相似文献   

16.
Structural transformation, food safety, and environmental risks pose challenges to livestock producers. Adjustments to livestock production systems to improve animal welfare will be made in an economic and political milieu characterized by these challenges. However, competing assumptions about contemporary society provide different frameworks for formulating the problems faced by industry and government decision makers. The assumption that industrialization is the key problem in livestock production leads to an application of science that does not adequately address the role of public participation and trust.  相似文献   

17.
Commercialization of animal biotechnology is a wide-ranging topic for discussion. In this paper, we will attempt to review embryo transfer (ET) and related technologies that relate to food-producing mammals. A brief review of the history of advances in biotechnology will provide a glimpse to present and future applications. Commercialization of animal biotechnology is presently taking two pathways. The first application involves the use of animals for biomedical purposes. Very few companies have developed all of the core competencies and intellectual properties to complete the bridge from lab bench to product. The second pathway of application is for the production of animals used for food. Artificial insemination (AI), embryo transfer, in vitro fertilization (IVF), cloning, transgenics, and genomics all are components of the toolbox for present and future applications. Individually, these are powerful tools capable of providing significant improvements in productivity. Combinations of these technologies coupled with information systems and data analysis, will provide even more significant change in the next decade. Any strategies for the commercial application of animal biotechnology must include a careful review of regulatory and social concerns. Careful review of industry infrastructure is also important. Our colleagues in plant biotechnology have helped highlight some of these pitfalls and provide us with a retrospective review. In summary, today we have core competencies that provide a wealth of opportunities for the members of this society, commercial companies, producers, and the general population. Successful commercialization will benefit all of the above stakeholders.  相似文献   

18.
The lactic acid bacteria are involved in the manufacture of fermented foods from raw agricultural materials such as milk, meat, vegetables, and cereals. These fermented foods are a significant part of the food processing industry and are often prepared using selected strains that have the ability to produce desired products or changes efficiently. The application of genetic engineering technology to improve existing strains or develop novel strains for these fermentations is an active research area world-wide. As knowledge about the genetics and physiology of lactic acid bacteria accumulates, it becomes possible to genetically construct strains with characteristics shaped for specific purposes. Examples of present and future applications of biotechnology to lactic acid bacteria to improve product quality are described. Studies of the basic biology of these bacteria are being actively conducted and must be continued, in order for the food fermentation industry to reap the benefits of biotechnology.  相似文献   

19.
Abstract The lactic acid bacteria are involved in the manufacture of fermented foods from raw agricultural materials such as milk, meat, vegetables, and cereals. These fermented foods are a significant part of the food processing industry and are often prepared using selected strains that have the ability to produce desired products or changes efficiently. The application of genetic engineering technology to improve existing strains or develop novel strains for these fermentations is an active research area world-wide. As knowledge about the genetics and physiology of lactic acid bacteria accumulates, it becomes possible to genetically construct strains with characteristics shaped for specific purposes. Examples of present and future applications of biotechnology to lactic acid bacteria to improve product quality are described. Studies of the basic biology of these bacteria are being actively conducted and must be continued, in order for the food fermentation industry to reap the benefits of biotechnology.  相似文献   

20.
The application of insect biotechnology is promising for the development of environmentally compatible pest management solutions. As we have refined and enhanced genetic engineering techniques in several insect species that cause significant economic loss and public health injury, it has become clear that insect biotechnology will move forward as one of the key tools of pest management in agriculture and in the human environment. Well characterized genetic elements can be manipulated toward specific aims and maintain a viable insect, albeit one with diminished capacity to exchange genetic material, vector a virus or bacterium, or complete its life cycle. Despite this degree of knowledge and precision, there remain unanswered questions regarding environmental fate, release and public acceptance of this technology. The uncertainty surrounding any novel technology inevitably increases the level of regulatory scrutiny associated with its use. Although the term “insect biotechnology” has many connotations, it certainly includes the genetic modification of symbiotic or commensally associated microbes as a means of delivering a trait (e.g. a toxin) to manage plant and human diseases and insect pests. The distinction between this paratransgenic approach and direct genetic modification of insect pests is an important one biologically as well as from a regulatory standpoint. The regulatory framework for microbial applications to agriculture is in many instances in place; however, we must strive to forge the development of guidelines and regulations that will foster deployment of insect biotechnologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号