首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Renal cell carcinoma (RCC) originates in the lining of the proximal convoluted tubule and accounts for approximately 3% of adult malignancies. The RCC incidence rate increases annually and is twofold higher in males than in females. Female hormones such as estrogen may play important roles during RCC carcinogenesis and result in significantly different incidence rates between males and females. In this study, we found that estrogen receptor β (ERβ) was more highly expressed in RCC cell lines (A498, RCC-1, 786-O, ACHN, and Caki-1) than in breast cancer cell lines (MCF-7 and HBL-100); however, no androgen receptor (AR) or estrogen receptor α (ERα) could be detected by western blot. In addition, proliferation of RCC cell lines was significantly decreased after estrogen (17-β-estradiol, E2) treatment. Since ERβ had been documented to be a potential tumor suppressor gene, we hypothesized that estrogen activates ERβ tumor suppressive function, which leads to different RCC incidence rates between males and females. We found that estrogen treatment inhibited cell proliferation, migration, invasion, and increased apoptosis of 786-O (high endogenous ERβ), and ERβ siRNA-induced silencing attenuated the estrogen-induced effects. Otherwise, ectopic ERβ expression in A498 (low endogenous ERβ) increased estrogen sensitivity and thus inhibited cell proliferation, migration, invasion, and increased apoptosis. Analysis of the molecular mechanisms revealed that estrogen-activated ERβ not only remarkably reduced growth hormone downstream signaling activation of the AKT, ERK, and JAK signaling pathways but also increased apoptotic cascade activation. In conclusion, this study found that estrogen-activated ERβ acts as a tumor suppressor. It may explain the different RCC incidence rates between males and females. Furthermore, it implies that ERβ may be a useful prognostic marker for RCC progression and a novel developmental direction for RCC treatment improvement.  相似文献   

2.
3.
4.

Background

Several studies demonstrate that estrogen treatment improves cerebral blood flow in ischemic brain regions of young ovariectomized (OVX) rats. Estrogen receptor-α (ER-α) may mediate estrogen’s beneficial actions via its effects on the cerebral microvasculature. However, estrogen-derived benefit may be attenuated in aged, reproductively senescent (RS) rats. Our goal was to determine the effects of aging, estrogen deprivation and estrogen repletion with oral conjugated estrogens (CE) on postischemic cerebral microvascular protein expression of ER-α and ER-β.

Methods

Fisher-344 (n = 37) female rats were randomly divided into the following groups: OVX, OVX CE-treated, RS untreated, and RS CE-treated. After 30 days pretreatment with CE (0.01 mg/kg) rats were subjected to15 min. transient global cerebral ischemia. Non-ischemic naïve, OVX and RS rats were used as controls. Expression of ER-α and ER-β in isolated cortical cerebral microvessels (20 to 100 µm in diameter) was assessed using Western blot and immunohistochemistry techniques.

Results

Age and reproductive status blunted nonischemic ER-α expression in microvessels of OVX rats (0.31±0.05) and RS rats (0.33±0.06) compared to naïve rats (0.45±0.02). Postischemic microvascular expression of ER-α in OVX rats (0.01±0.0) was increased by CE treatment (0.04±0.01). Expression of ER-α in microvessels of RS rats (0.03±0.02) was unaffected by CE treatment (0.01±0.02). Western blot data are presented as a ratio of ER-α or ER-β proteins to β-actin and. Oral CE treatment had no effect on ER-β expression in postischemic microvessels of OVX and RS rats. Statistical analysis was performed by One-Way ANOVA and a Newman-Keuls or Student’s post-hoc test.

Conclusion

Chronic treatment with CE increases ER-α but not ER-β expression in cerebral microvessels of OVX rats. Aging appears to reduce the normal ability of estrogen to increase ER-α expression in postischemic cerebral microvessels.  相似文献   

5.
6.
7.
Impaired epithelial barrier function and estrogens are recognized as factors influencing inflammatory bowel disease (IBD) pathology and disease course. Estrogen receptor-β (ERβ) is the most abundant estrogen receptor in the colon and a complete absence of ERβ expression is associated with disrupted tight-junction formation and abnormal colonic architecture. The aim of this study was to determine whether ERβ signaling has a role in the maintenance of epithelial permeability in the colon. ERβ mRNA levels and colonic permeability were assessed in IL-10-deficient mice and HLA-B27 rats by RT-PCR and Ussing chambers. ERβ expression and monolayer resistance were measured in HT-29 and T84 colonic epithelial monolayers by RT-PCR and electric cell-substrate impedance sensing. The effect of 17β-estradiol and an estrogen agonist [diarylpropionitrile (DPN)] and antagonist (ICI 182780) on epithelial resistance in T84 cells was measured. Expression of ERβ and proinflammatory cytokines was investigated in colonic biopsies from IBD patients. Levels of ERβ mRNA were decreased, whereas colonic permeability was increased, in IL-10-deficient mice and HLA-B27 transgenic rats prior to the onset of colitis. T84 cells demonstrated higher resistance and increased levels of ERβ mRNA compared with HT-29 cells. 17β-estradiol and DPN induced increased epithelial resistance in T84 cells, whereas an ERβ blocker prevented the increased resistance. Decreased ERβ mRNA levels were observed in colonic biopsies from IBD patients. This study suggests a potential role for ERβ signaling in the modulation of epithelial permeability and demonstrates reduced ERβ mRNA in animal models of colitis and colon of patients with inflammatory bowel disease.  相似文献   

8.
9.
Although androgen receptor (AR) signaling is the main molecular tool regulating growth and function of the prostate gland, estrogen receptor β (ERβ) is involved in the differentiation of prostatic epithelial cells and numerous antiproliferative actions on prostate cancer cells. However, ERβ splice variants have been associated with prostate cancer initiation and progression mechanisms. ERβ is promising as an anticancer therapy and in the prevention of prostate cancer. Herein, we review the recent experimental findings of ERβ signaling in the prostate.  相似文献   

10.
11.
Estrogens have been found to improve memory and reduce risk of dementia, although conflicting results such as failure of estrogen replacement therapy for treatment of Alzheimer's disease (AD) also has been reported. Only recently, our published human brain studies showed a depletion of brain estrogen in women with AD, while other studies have demonstrated cognitive impairment believed to be caused by inhibition of endogenous estrogen synthesis in females. To investigate whether the shortage of brain estrogen alters the sensitivity of response to estrogen replacement therapy, we have used genetic and surgical animal models to examine the response of estrogen treatment in AD neuropathology. Our studies have shown that early treatment with 17β-estradiol (E2) or genistein could reduce brain amyloid levels by increasing Aβ clearance in both APP23 mice with genetic deficiency of aromatase (APP/Ar+/?), in which the brains contain nondetectable levels of estrogen, and in APP23 mice with an ovariectomy (APP/OVX), in which the brains still contain certain levels of estrogen. However, only APP/Ar+/? mice showed a great reduction in brain amyloid plaque formation after E2 or genistein treatment along with downregulation of β-secretase (BACE1) mRNA and protein expression. Our results suggest that early and long-term usage of E2 and/or genistein may prevent AD pathologies in a dependent manner on endogenous brain estrogen levels in aged females.  相似文献   

12.
Rapid non-genomic effects of 17β-estradiol are elicited by the activation of different estrogen receptor-α isoforms. Presence of surface binding sites for estrogen have been identified in cells transfected with full-length estrogen receptor-α66 (ER66) and the truncated isoforms, estrogen receptor-α46 (ER46) and estrogen receptor-α36 (ER36). However, the binding affinities of the membrane estrogen receptors (mERs) remain unknown due to the difficulty of developing of stable mER-transfected cell lines with sufficient mER density, which has largely hampered biochemical binding studies. The present study utilized cell-free expression systems to determine the binding affinities of 17β-estradiol to mERs, and the relationship among palmitoylation, membrane insertion and binding affinities. Saturation binding assays of human mERs revealed that [3H]-17β-estradiol bound ER66 and ER46 with Kd values of 68.81 and 60.72 pM, respectively, whereas ER36 displayed no specific binding within the tested concentration range. Inhibition of palmitoylation or removal of the nanolipoprotein particles, used as membrane substitute, reduced the binding affinities of ER66 and ER46 to 17β-estradiol. Moreover, ER66 and ER46 bound differentially with some estrogen receptor agonists and antagonists, and phytoestrogens. In particular, the classical estrogen receptor antagonist, ICI 182,780, had a higher affinity for ER66 than ER46. In summary, the present study defines the binding affinities for human estrogen receptor-α isoforms, and demonstrates that ER66 and ER46 show characteristics of mERs. The present data also indicates that palmitoylation and membrane insertion of mERs are important for proper receptor conformation allowing 17β-estradiol binding. The differential binding of ER66 and ER46 with certain compounds substantiates the prospect of developing mER-selective drugs.  相似文献   

13.
The function of pancreatic β-cells is the synthesis and release of insulin, the main hormone involved in blood glucose homeostasis. Estrogen receptors, ERα and ERβ, are important molecules involved in glucose metabolism, yet their role in pancreatic β-cell physiology is still greatly unknown. In this report we show that both ERα and ERβ are present in pancreatic β-cells. Long term exposure to physiological concentrations of 17β-estradiol (E2) increased β-cell insulin content, insulin gene expression and insulin release, yet pancreatic β-cell mass was unaltered. The up-regulation of pancreatic β-cell insulin content was imitated by environmentally relevant doses of the widespread endocrine disruptor Bisphenol-A (BPA). The use of ERα and ERβ agonists as well as ERαKO and ERβKO mice suggests that the estrogen receptor involved is ERα. The up-regulation of pancreatic insulin content by ERα activation involves ERK1/2. These data may be important to explain the actions of E2 and environmental estrogens in endocrine pancreatic function and blood glucose homeostasis.  相似文献   

14.
Glut9 is highly expressed in the human kidney proximal convoluted tubular and plays a crucial role in the regulation of plasma urate levels. The gene effects were stronger among women. Our results show that 17-β-estradiol (E2) through ER (estrogen receptor) β downregulates Glut9 protein expression on human renal tubular epithelial cell line (HK2). Intriguingly, E2 does not affect the expression of Glut9 mRNA. ERβ is linked to PTEN, the PTEN gene negatively regulates the PI3K/AKT pathway, and the PI3K/AKT pathway inhibition may lead to autophagy. Further study indicates that ERβ may affect the expression of Glut9 though autophagy.  相似文献   

15.
The significantly higher incidence of Alzheimer's disease (AD) in women than in men has been attributed to loss of estrogen and a variety of related mechanisms at the molecular, cellular, and hormonal levels, which subsequently elucidate neuroprotective roles of estrogen against AD-related pathology. Recent studies have proposed that beneficial effects of estrogen on AD are directly linked to its ability to reduce amyloid-β peptides and tau aggregates, two hallmark lesions of AD. Despite high expectations, large clinical trials with postmenopausal women indicated that the beneficial effects of estrogen therapies were insignificant and, in fact, elicited adverse effects. Here, we review the current status of AD prevention and treatment using estrogens focusing on recent understandings of their biochemical links to AD pathophysiology. This review also discusses development of selective ligands that specifically target either estrogen receptor α (ERα) or ERβ isoforms, which are potentially promising strategies for safe and efficient treatment of AD.  相似文献   

16.
17.
18.
19.
Estrogens are key to anterior pituitary function, stimulating hormone release and controlling cell fate to achieve pituitary dynamic adaptation to changing physiological conditions. In addition to their classical mechanism of action through intracellular estrogen receptors (ERs), estrogens exert rapid actions via cell membrane-localized ERs (mERs). We previously showed that E2 exerts a rapid pro-apoptotic action in anterior pituitary cells, especially in lactotropes and somatotropes, through activation of mERs. In the present study, we examined the involvement of mERα in the rapid pro-apoptotic action of estradiol by TUNEL in primary cultures of anterior pituitary cells from ovariectomized rats using a cell-impermeable E2 conjugate (E2-BSA) and an ERα selective antagonist (MPP dihydrochloride). We studied mERα expression during the estrous cycle and its regulation by gonadal steroids in vivo by flow cytometry. We identified ERα variants in the plasma membrane of anterior pituitary cells during the estrous cycle and studied E2 regulation of these mERα variants in vitro by surface biotinylation and Western Blot. E2-BSA-induced apoptosis was abrogated by MPP in total anterior pituitary cells and lactotropes. In cycling rats, we detected a higher number of lactotropes and a lower number of somatotropes expressing mERα at proestrus than at diestrus. Acute E2 treatment increased the percentage of mERα-expressing lactotropes whereas it decreased the percentage of mERα-expressing somatotropes. We detected three mERα isoforms of 66, 39 and 22 kDa. Expression of mERα66 and mERα39 was higher at proestrus than at diestrus, and short-term E2 incubation increased expression of these two mERα variants. Our results indicate that the rapid apoptotic action exerted by E2 in lactotropes depends on mERα, probably full-length ERα and/or a 39 kDa ERα variant. Expression and activation of mERα variants in lactotropes could be one of the mechanisms through which E2 participates in anterior pituitary cell renewal during the estrous cycle.  相似文献   

20.
Estrogen related receptor α-induced adipogenesis is PGC-1β-dependent   总被引:1,自引:0,他引:1  
Ju D  He J  Zhao L  Zheng X  Yang G 《Molecular biology reports》2012,39(3):3343-3354
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号