首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Abstract.  1. Host plant preferences of the female diamondback moth Plutella xylostella were studied.
2. Female moths preferred conspecific-damaged cabbage plants over undamaged cabbage plants. The performance of P. xylostella larvae on conspecific-infested plants did not differ significantly from that of larvae on undamaged plants.
3.  Cotesia plutellae , the specialist parasitoid wasp of P. xylostella larvae, displayed equal preference for plants with differing levels of host-larvae damage, and the wasp attacked only one or two hosts on average before leaving an infested plant, irrespective of the number of hosts on the plant. It is hypothesised that the oviposition preferences of P. xylostella females for host plants already damaged by conspecific larvae demonstrate an encounter–dilution effect against C. plutellae .  相似文献   

2.
The strength of plant‐herbivore interactions varies spatially and through plant ontogeny, which may result in variable selection on plant defense, both among populations and life‐history stages. To test whether populations have diverged in herbivore resistance at an early plant stage, we quantified oviposition preference and larval feeding by Plutella xylostella (L.) (Lepidoptera: Plutellidae) on young (5–6 weeks old) Arabidopsis lyrata (L.) O'Kane & Al‐Shehbaz (Brassicaceae) plants, originating from 12 natural populations, six from Sweden and six from Norway. Arabidopsis lyrata can be trichome‐producing or glabrous, with glabrous plants usually receiving more damage from insect herbivores in natural populations. We used the six populations polymorphic for trichome production to test whether resistance against P. xylostella differs between the glabrous and the trichome‐producing morph among young plants. There was considerable variation among populations in the number of eggs received and the proportion of leaf area consumed by P. xylostella, but not between regions (Sweden vs. Norway) or trichome morphs. Rosette size explained a significant portion of the variation in oviposition and larval feeding. The results demonstrate that among‐population variation in resistance to insect herbivory can be detected among very young individuals of the perennial herb A. lyrata. They further suggest that trichome densities are too low at this plant developmental stage to contribute to resistance, and that the observed among‐population variation in resistance is related to differences in other plant traits.  相似文献   

3.
Abstract 1. Unoccupied wheat plants and wheat plants occupied by conspecific eggs or larvae were presented to ovipositing female Hessian flies in choice tests.
2. The presence of conspecific eggs on the leaf surfaces of wheat plants did not appear to have any effect on the responses of ovipositing Hessian fly females.
3. The presence of conspecific larvae at the base and nodes of wheat plants for 1, 6, or 11 days had significant effects on Hessian fly oviposition. Eggs oviposited on plants were inversely proportional to larval densities and days of larval occupation.
4. Feeding by Hessian fly larvae is associated with several changes in wheat plants. One of these changes, the growth arrestment of the plant, was measured by recording the heights of plants used in oviposition tests. Plant heights were inversely proportional to both larval densities and days of occupation. Plant heights were directly proportional to eggs oviposited on plants.
5. The consequences of adult female avoidance of plants occupied by conspecific larvae were investigated by allowing females to oviposit on unoccupied plants and 1-day, 6-day, and 11-day larval occupied plants, then scoring at the end of the first larval instar the survival of the offspring that resulted from this oviposition.
6. Survival during the first larval instar was 88% for the offspring of females that oviposited on unoccupied plants, decreasing to 82, 31, and 4% on the 1-day, 6-day, and 11-day occupied plant treatments. On these four plant treatments, a positive correlation was found between larval performance (i.e. survival) and the preferences of ovipositing females.
7. On the four plant treatments, relationships between first-instar larval density and first-instar larval survival varied significantly. On unoccupied plants, survival was inversely proportional to density. On plants oviposited on at 6 days of larval occupation, survival was directly proportional to density.  相似文献   

4.
1 Foliar nitrogen concentration, which can be manipulated in crop plants by fertilizer supply, has long been recognized as a major factor in phytophagous insect abundance and performance. More recently, the type of fertilizer supplied has been shown to influence the abundance of some herbivore species. The diamondback moth Plutella xylostella is a global pest of Brassica crops. Although it has been the subject of numerous studies on host-plant resistance and pest control, few studies have addressed the effect of abiotic factors, such as nutrient supply, on its performance and behaviour.
2 We assessed oviposition preference, larval feeding preference and larval performance of P. xylostella on two cultivars of Brassica oleracea . Plants were grown using two fertilizer types, John Innes fertilizer and an organic animal manure, at high and low concentrations.
3  Plutella xylostella laid more eggs on cultivar Derby Day than Drago. Derby Day was also the cultivar on which larval performance was maximized. However, differences in larval performance between cultivars were only found when plants were grown in compost with John Innes fertilizer, and not when fertilized with animal manure.
4 Foliar nitrogen concentration was greater in plants grown in high fertilizer treatments but did not differ between cultivars. The concentrations of three glucosinolate compounds (glucoiberin, sinigrin and glucobrassicin) were greater in the high fertilizer treatments. Glucosinolate concentrations were higher in the Drago than the Derby Day cultivar.
5 These results are discussed in relation to the preference-performance hypothesis, and the assessment of plant resistance differences between cultivars using different types of fertilizer.  相似文献   

5.
Theory predicts that trade-offs between resistance to herbivory and other traits positively affecting fitness can maintain genetic variation in resistance within plant populations. In the perennial herb Arabidopsis lyrata, trichome production is a resistance trait that exhibits both qualitative and quantitative variation. Using a paternal half-sib design, we conducted two greenhouse experiments to ask whether trichomes confer resistance to oviposition and leaf herbivory by the specialist moth Plutella xylostella, and to examine potential genetic constraints on evolution of increased resistance and trichome density. In addition, we examined whether trichome production is induced by insect herbivory. We found strong positive genetic and phenotypic correlations between leaf trichome density and resistance to leaf herbivory, demonstrating that the production of leaf trichomes increases resistance to leaf damage by P. xylostella. Also resistance to oviposition tended to increase with increasing leaf trichome density, but genetic and phenotypic correlations were not statistically significant. Trichome density and resistance to leaf herbivory were negatively correlated genetically with plant size in the absence of herbivores, but not in the presence of herbivores. There was no evidence of increased trichome production after leaf damage by P. xylostella. The results suggest that trichome production and resistance to leaf herbivory are associated with a cost and that the direction of selection on resistance and trichome density depends on the intensity of herbivory.  相似文献   

6.
We determined the effectiveness of Ni as an elemental defence of Streptanthus polygaloides (Brassicaceae) against a crucifer specialist folivore, diamondback moth (DBM), Plutella xylostella. An oviposition experiment used arrays of S. polygaloides grown on Ni-amended (high-Ni) soil interspersed with plants grown on unamended (low-Ni) soil and eggs were allowed to hatch and larvae fed freely among plants in the arrays. We also explored oviposition preference by allowing moths to oviposit on foil sheets coated with high- or low-Ni plant extract. This was followed by an experiment using low-Ni plant extract to which varying amounts of Ni had been added and an experiment using sheets coated with sinigrin (allyl glucosinolate) as an oviposition stimulant. Diamondback moths laid 2.5-fold more eggs on low-Ni plants than on high-Ni plants and larval feeding was greater on low-Ni plants. High-Ni plants grew twice as tall, produced more leaves, and produced almost 3.5-fold more flowers. Low-Ni plants contained more allyl glucosinolate than high-Ni plants and moths preferred to oviposit on foil sheets dipped in low-Ni plant extract. Moths showed no preference when Ni concentration of low-Ni extract was varied and overwhelmingly preferred sinigrin coated sheets. We conclude that Ni hyperaccumulation is an effective elemental defence against this herbivore, increasing plant fitness through a combination of toxicity to DBM larvae and decreased oviposition by adults.  相似文献   

7.
Summary Plant resistance to insect herbivores may derive from traits influencing herbivore preference, traits influencing the suitability of the plant as a host, or both. However, the plant traits influencing host-plant selection by ovipositing insect herbivores may not completely overlap those traits that affect larval survival, and distinct traits may exhibit different levels of genetic vs. environmental control. Therefore, resource supply to the host plant could affect oviposition preference and larval performance differently in different plant genotypes. To test this hypothesis, the effects of resistance level, plant genotype, and resource supply to the host plant on oviposition preference and larval performance of a gallmaking herbivore, and on various plant traits that could influence these, were examined. Replicates of four genotypes of Solidago altissima, grown under low, medium, or high levels of nutrient supply in full sun or with medium levels of nutrients in shade, were exposed to mass-released Eurosta solidaginis. The number of plants ovipunctured was significantly affected by plant genotype and the interaction between genotype and nutrient supply to the host plant: one susceptible and one resistant genotype were more preferred, and preference tended to increase with nutrient supply in the more-preferred genotypes. The growth rate of ovipunctured plants during the oviposition period was significantly greater than that of unpunctured plants. Bud diameter (which was strongly correlated with plant growth rate), leaf area, and leaf water content were significant determinants of the percentage of plants ovipunctured, explaining 74% of the variance. The number of surviving larvae was significantly affected by plant genotype, but no effect of nutrient or light supply to the host plant was detected. The ratio of bud diameter to bud length was positively related to the percentage of ovipunctured plants that formed galls, suggesting that the accurate placement of eggs near the apical meristem by ovipositing females may be easier in short, thick buds. No significant correlation was observed between oviposition preference and larval survival at the population level. These results suggest that the plant traits affecting oviposition preference may exhibit different magnitudes of phenotypic plasticity than those affecting larval survival, and that the degree of phenotypic plasticity in plant traits affecting oviposition preference may differ among genotypes within a species.  相似文献   

8.
Although selection by herbivores for increased feeding deterrence in hostplants is well documented, selection for increased oviposition deterrence is rarely examined. We investigated chemical mediation of oviposition by the parsnip webworm (Depressaria pastinacella) on its principal hostplant Pastinaca sativa to determine whether ovipositing adults choose hostplants based on larval suitability and whether hostplants experience selection for increased oviposition deterrence. Webworms consume floral tissues and florivory selects for increased feeding deterrents; moths, however, oviposit on leaves of pre-bolting plants. Exclusive use of different plant parts for oviposition and larval feeding suggests oviposition should select for increased foliar deterrents. Recent webworm colonization of New Zealand (NZ) allowed us to assess phenotypic changes in foliar chemicals in response to webworm oviposition. In a common garden experiment, we compared NZ populations with and without a history of infestation from 2004 to 2006 for changes in leaf chemistry in response to oviposition. Three leaf volatiles, cis- and trans-ocimene, and β-farnesene, elicit strong responses in female moth antennae; these compounds were negatively associated with oviposition and are likely oviposition deterrents. Leaf β-farnesene was positively correlated with floral furanocoumarins that deter florivory; greater oviposition on plants with low floral furanocoumarins indicates that moths preferentially oviposit on parsnips most suitable for larval growth. Unlike florivory, high oviposition on leaves did not lower plant fitness, consistent with the fact that NZ parsnip foliar chemistry was unaffected by 3–6 years of webworm infestation. Thus, in this system, selection by ovipositing moths on foliar chemistry is weaker than selection by larvae on floral chemistry.  相似文献   

9.
Evolutionary interactions among insect herbivores and plant chemical defenses have generated systems where plant compounds have opposing fitness consequences for host plants, depending on attack by various insect herbivores. This interplay complicates understanding of fitness costs and benefits of plant chemical defenses. We are studying the role of the glucosinolate-myrosinase chemical defense system in protecting Arabidopsis thaliana from specialist and generalist insect herbivory. We used two Arabidopsis recombinant inbred populations in which we had previously mapped QTL controlling variation in the glucosinolate-myrosinase system. In this study we mapped QTL controlling resistance to specialist (Plutella xylostella) and generalist (Trichoplusia ni) herbivores. We identified a number of QTL that are specific to one herbivore or the other, as well as a single QTL that controls resistance to both insects. Comparison of QTL for herbivory, glucosinolates, and myrosinase showed that T. ni herbivory is strongly deterred by higher glucosinolate levels, faster breakdown rates, and specific chemical structures. In contrast, P. xylostella herbivory is uncorrelated with variation in the glucosinolate-myrosinase system. This agrees with evolutionary theory stating that specialist insects may overcome host plant chemical defenses, whereas generalists will be sensitive to these same defenses.  相似文献   

10.
11.
1. Datura wrightii Regel (Solanaceae) is polymorphic with regard to trichome type. Some plants are densely covered with short, non-glandular trichomes, whereas other plants in the same populations possess glandular trichomes that excrete a sticky exudate. The hypothesis that glandular trichomes enhance resistance to all small insect herbivores is evaluated.
2. Field censuses in four southern Californian D. wrightii plant populations revealed that glandular plants are indeed resistant to whitefly spp. (Homoptera: Aleyrodidae). Whiteflies are almost exclusively found on non-glandular plants. In contrast, Tupiocoris notatus (Distant) (Heteroptera: Miridae), another sap-sucking herbivore of similar body size, is found predominantly on plants with glandular trichomes.
3. Laboratory experiments showed that whiteflies are unable to colonize glandular D. wrightii phenotypes. After the whitefly adults had landed on the leaves of these plants, they were trapped in the exudate and died.
4. Tupiocoris notatus adults, on the other hand, laid significantly more eggs on glandular plants. The presence of the exudate was shown to be the cue that determined their choice of glandular plants.
5. In no-choice experiments, T. notatus nymphs reared on glandular plants had significantly higher survival rates and had shorter developmental periods than those raised on non-glandular plants. This, combined with the higher oviposition rates, resulted in higher T. notatus population growth rates on glandular plants than on non-glandular plants.
6. Glandular trichomes are not therefore a universal protection against small herbivores. Differences in distribution over the two plant types within the natural herbivore guild on D. wrightii may, among other selection pressures, contribute to the maintenance of the observed trichome polymorphism.  相似文献   

12.
Trichomes, or leaf hairs, are epidermal extensions that take a variety of forms and perform many functions in plants, including herbivore defence. In this study, I document genetically determined variation, within‐generation plasticity, and a direct role of trichomes in herbivore defence for Mimulus guttatus. After establishing the relationship between trichomes and herbivory, I test for transgenerational effects of wounding on trichome density and herbivore resistance. Patterns of interannual variation in herbivore density and the high cost of plant defence makes plant–herbivore interactions a system in which transgenerational phenotypic plasticity (TPP) is apt to evolve. Here, I demonstrate that parental damage alters offspring trichome density and herbivore resistance in nature. Moreover, this response varies between populations. This is among the first studies to demonstrate that TPP contributes to variation in nature, and also suggests that selection can modify TPP in response to local conditions.  相似文献   

13.
14.
Selecting insect-resistant plant varieties is a key component of integrated management programs of oligophagous pests such as diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), but rigorous research on important life history parameters of P. xylostella in relation to host plant resistance is rare. We evaluated six conventional brassicaceous species, namely, Brassica napus L. 'Q2', B. rapa L., B. juncea (L.) Czern., B. carinata L., B. oleracea L., and Sinapis alba L., and two herbicide-tolerant cultivars, namely, B. napus 'Liberty' and B. napus 'Conquest' for their resistance against P. xylostella. Brassicaceae species and cultivars varied considerably in their susceptibilities as hosts for P. xylostella. Sinapis alba and B. rapa plants were highly preferred by ovipositing females and trichome density on adaxial and abaxial leaf surfaces had nonsignificant effects on P. xylostella oviposition. Larval survival was similar on the genotypes we tested, but host plants significantly affected larval and pupal developmental time, herbivory, pupal weight, silk weight, adult body weight, forewing area and longevity (without food) of both male and female P. xylostella. Larval and pupal development of females was fastest on B. juncea and S. alba, respectively. Specimens reared on B. napus Liberty and B. oleracea, respectively, produced the lightest female and male pupae. Defoliation by both female and male larvae was highest on B. rapa, whereas least herbivory occurred on S. alba. Females reared on S. alba were heavier and lived longer in the absence of food than their counterparts raised on other tested host plants. Brassica oleracea could not compensate for larval feeding to the level of the other species we evaluated. B. napus Conquest, B. napus Q2, B. carinata, B. rapa, and S. alba produced, respectively, 1.6-, 1.8-, 1.8-, 3.9-, and 5.5-fold heavier root systems when infested than their uninfested counterparts, suggesting that these species were better able to tolerate P. xylostella infestations.  相似文献   

15.
Because inbreeding is common in natural populations of plants and their herbivores, herbivore‐induced selection on plants, and vice versa, may be significantly modified by inbreeding and inbreeding depression. In a feeding assay with inbred and outbred lines of both the perennial herb, Vincetoxicum hirundinaria, and its specialist herbivore, Abrostola asclepiadis, we discovered that plant inbreeding increased inbreeding depression in herbivore performance in some populations. The effect of inbreeding on plant resistance varied among plant and herbivore populations. The among‐population variation is likely to be driven by variation in plant secondary compounds across populations. In addition, inbreeding depression in plant resistance was substantial when herbivores were outbred, but diminished when herbivores were inbred. These findings demonstrate that in plant–herbivore interactions expression of inbreeding depression can depend on the level of inbreeding of the interacting species. Furthermore, our results suggest that when herbivores are inbred, herbivore‐induced selection against self‐fertilisation in plants may diminish.  相似文献   

16.
1. The monophagous larch sawfly, Pristiphora erichsonii, requires larch, Larix spp., shoots for oviposition and foliage for larval development. The hypothesis that chronic defoliation reduces shoot availability for adult females, causing shifts in host use within plantations of L. decidua and L. leptolepis , was evaluated over a 3-year period.
2. Larch productivity and sawfly abundance varied six- to 10-fold among individual trees within each plantation. Sawflies concentrated oviposition on the most rapidly growing trees, and had a marginal impact on shoot production. Consequently, sawfly herbivory on individual trees remained relatively constant for 3 years, failing to support the hypothesis that P. erichsonii defoliation causes shifts in host use.
3. Pristiphora erichsonii larval performance varied 20–30% among individual host trees. The oviposition event did not significantly affect larval performance or foliar nutrient content.
4. The relationship between cocoon survival and natural enemy abundance was evaluated among fifteen L. leptolepis trees. Parasites and predators killed over 65% of the 18 315 cocoons sampled. The proportion of cocoons killed by parasitoids declined significantly with P. erichsonii density, while predation rates increased under heavily infested trees. Overall, the proportion of cocoons killed by parasitoids and predators did not vary with sawfly density.
5. Results indicate that components of host vigour, herbivore performance and natural enemy guilds exhibit substantial spatial heterogeneity among trees within plantations of exotic Larix trees. Moreover, individual larch can tolerate repeated oviposition and herbivory without a rapid loss in shoot production. The potential for host plant physiological tolerance to herbivory to interact with natural enemy population dynamics and behaviour so as to stabilize herbivore population patterns is discussed.  相似文献   

17.
Abstract.  1. Herbivory can induce resistance in a plant and the induced phenotype may be disfavoured by subsequent herbivores. Yet, as the distance between plants in a population increases, limited mobility may make a herbivore more likely to feed and oviposit on host plants in its immediate surroundings.
2. The present study tested whether a herbivore's preference and distribution across plants with different induced phenotypes was influenced by the spatial distribution of plants. A fragmented population of Solanum dulcamara plants was created. This consisted of discrete, spatially separated patches with different histories of damage, either herbivory from adult flea beetles ( Psylliodes affinis ), tortoise beetles ( Plagiometriona clavata ), or mechanical damage. Each patch was separated by 7 m and consisted of 12 plants that were spaced 30 cm apart. Then a fixed number of adult tortoise beetles were introduced to each patch, and movement and oviposition within and between spatially separate homogeneous patches (receiving one type of damage) were compared with movement and oviposition within heterogeneous patches (containing all three types of damage) over the growing season.
3. Flea beetle and tortoise beetle herbivory consistently induced different phytochemical responses in S. dulcamara (polyphenol oxidase and peroxidase), and adult tortoise beetles avoided oviposition on the flea beetle induced plants within heterogeneous patches. However, between homogeneous patches, plant phenotype did not influence oviposition. Colonisation by naturally occurring flea beetle adults followed a similar pattern.
4. These results suggest that the heterogeneity of plant phenotypes can influence herbivore choice and distribution at small but not large spatial scales.  相似文献   

18.
Abstract.  1. Environmental cues are known to influence oviposition behaviour in mosquitoes, with important consequences for larval survival and insect population dynamics. Enriched microhabitats have been shown to be preferred oviposition sites.
2. In a field experiment designed to determine whether ovipositing mosquitoes are sensitive to different levels of nutrient enrichment, new pitcher-plant ( Sarracenia purpurea ) leaves were opened and enriched with 0, 2, or 20 dead ants, and the number of pitcher-plant mosquito ( Wyeomyia smithii ) larvae resulting from subsequent oviposition were measured.
3. Oviposition rates were higher in leaves with low levels of enrichment (0 and 2 ants per leaf), although larval development was enhanced at the highest enrichment level.
4. Results suggest that, although these mosquito larvae are nutrient limited, ovipositing females preferentially avoid highly enriched leaves. This counterintuitive result may be due to low oxygen concentrations or a masked cue in enriched leaves, and contrasts with other oviposition studies.  相似文献   

19.
Abstract.  1. In holometabolous insects, learning has been demonstrated in both larval and adult stages. Whether learning can be retained through metamorphosis from larva via pupa to adult has long been a subject of debate. The present study is designed to distinguish between preimaginal and imaginal conditioning in the diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae) using oviposition preference tests on females exposed to various types of learning experiences during immature and adult stages.
2. Cohorts of test insects were reared from egg to pupa on an artificial diet, or on one of two host plants, Chinese cabbage, Brassica campestris L. ssp. pekinensis , and common cabbage, Brassica oleracea L. var. capitata . The ensuing females reared on the three kinds of food showed similar oviposition preference between the two plants. A brief experience of the less preferred host, common cabbage, by adults slightly increased their preference for this plant.
3. Cohorts of test insects were reared from egg to pupa on an artificial diet with or without the addition of a neem-based oviposition deterrent (Neemix® 4.5). Larval feeding experience did not alter oviposition response to the deterrent. However, emergence conditioning and early adult learning, achieved through experience of a residue of the deterrent carried over from the larval food on pupal cuticle and cocoons, altered oviposition preference significantly.
4. The combined results revealed no evidence of preimaginal conditioning in this insect but a strong effect of emergence conditioning and early adult learning on oviposition preference.  相似文献   

20.
Abstract.  1. The enormous diversity of phytophagous insects in forest canopies is hypothesised to be supported by the number of herbivorous species per host tree species or host specificity. It is therefore necessary to examine the effect of host plant species on compositional changes in the herbivore communities.
2. The lepidopteran larval communities were examined in the canopies of 10 tree species in a temperate deciduous forest of Japan. The phylogeny and leaf flush phenology of host plant species were taken into account as factors affecting the herbivore community assembly.
3. Examination of seasonal changes in the larval community structures on each tree species showed that larval species richness, abundance, and evenness decreased significantly from spring to summer. Larval species richness and abundance were characterised by family-level phylogenetic differences among tree species, whereas evenness was determined at a higher taxonomic level.
4. Compositional changes in the larval communities among tree species showed a remarkable pattern, with a phylogenetic effect at a high taxonomic level in spring, similar to evenness, but a phenological effect in summer. This suggests that host specificity could support the lepidopteran larval diversity in spring.
5. These results suggest that the differences in host utilisation of the herbivore, which reflects the phylogenetic effect of the host plants, can be important as a factor affecting the diversity of lepidopteran larval communities in temperate forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号