首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alimentary canal of the two‐spot ladybird Adalia bipunctata (Linnaeus) (Coleoptera: Coccinellidae) presents the foregut (stomodeum), the midgut (mesenteron) and the hindgut (proctodeum). The shortest region is the foregut and the longest is the midgut. The relative proportions of the main regions were found to be similar for males and females. In the foregut it was possible to distinguish the pharynx, the esophagus and the proventriculus but no crop. The hindgut is composed of the ileum, rectum and rectal canal. Generally the organ width is similar for males and females, but females presented a wider proventriculus. The epithelium of the foregut varied from squamous to simple cuboidal and columnar. In the midgut the epithelium is simple columnar with goblet and regenerative cells. The epithelium of the hindgut varied from simple cuboidal to squamous. Females presented thicker midgut epithelium whereas males presented thicker epithelium in the esophagus. The anatomy of the alimentary canal of A. bipunctata seems to conform to its carnivorous and recent phylogenetic status within the family Coccinellidae.  相似文献   

2.
On the Antarctica continent the wingless midge, Belgica antarctica (Diptera, Chironomidae) occurs further south than any other insect. The digestive tract of the larval stage of Belgica that inhabits this extreme environment and feeds in detritus of penguin rookeries has been described for the first time. Ingested food passes through a foregut lumen and into a stomodeal valve representing an intussusception of the foregut into the midgut. A sharp discontinuity in microvillar length occurs at an interface separating relatively long microvilli of the stomodeal midgut region, the site where peritrophic membrane originates, from the midgut epithelium lying posterior to this stomodeal region. Although shapes of cells along the length of this non-stomodeal midgut epithelium are similar, the lengths of their microvilli increase over two orders of magnitude from anterior midgut to posterior midgut. Infoldings of the basal membranes also account for a greatly expanded interface between midgut cells and the hemocoel. The epithelial cells of the hindgut seem to be specialized for exchange of water with their environment, with the anterior two-thirds of the hindgut showing highly convoluted luminal membranes and the posterior third having a highly convoluted basal surface. The lumen of the middle third of the hindgut has a dense population of resident bacteria. Regenerative cells are scattered throughout the larval midgut epithelium. These presumably represent stem cells for the adult midgut, while a ring of cells, marked by a discontinuity in nuclear size at the midgut-hindgut interface, presumably represents stem cells for the adult hindgut.  相似文献   

3.
The fine structure of the alimentary canal, especially the midgut and hindgut of Lepidocampa weberi (Diplura: Campodeidae) is described. The general organization of the canal is similar to that of Campodea. The midgut epithelium is composed of columnar apical microvillated cells. Each nucleus contains a single intranuclear crystal. Close to the pyloric region, the posterior midgut cells are devoid of microvilli and intranuclear crystals. There is no special pyloric chamber as in Protura or pyloric cuticular ring as in Collembola but a morphological transformation from midgut to hindgut cells. Eight globular Malpighian papillae, consisting of distal microvillated cells and flat proximal cells, open into the gut lumen via ducts formed by hindgut cells. The structure of the hindgut is complicated and can be divided into three segments. The anterior hindgut cells have an irregular shape and compact cytoplasm. A striking interdigitation between the large bottle-shaped epithelial cells and longitudinal muscle cells occurs in the middle segment of the hindgut. The thick cuticle gives rise to long spikes projecting into the gut lumen. The posterior hindgut cells possess the morphological features for water reabsorption. Some hypotheses are advanced about the function of the different regions of the gut.  相似文献   

4.
Ultrastructural features and structure of the midgut and hindgut of Derocheilocaris remanei were studied. The large endodermal midgut is differentiated into an anterior midgut and a posterior midgut separated by a conspicuous constriction. Both circular and longitudinal striated muscle bands surround the midgut, while the hindgut only presents longitudinal muscles. The limit between the midgut and the cuticle-lined hindgut is marked by a rectal valve. In cross-section, the short hindgut is triradiate and has a distinct Y-shaped lumen. The hindgut cuticular lining appears interrupted at the tip of every branch of the Y. Three different cell types are found in the midgut epithelium: basally located undifferentiated cells that give rise to the other two specialized cell types; secretory zymogen-like cells responsible for extracellular digestion and located mainly in the anterior midgut; and vacuolated cells, distributed all along the midgut and appearing to have several functions, including absorption, intracellular digestion, and nutrient transport. A single basic cell type forms the hindgut epithelium. The suggested function for the hindgut is the transport and ejection of waste products.  相似文献   

5.
Light and electron microscopy has shown the alimentary canal of Paranthessius to be composed of clearly defined foregut, midgut and hindgut regions. The spacious foregut is cuticle-lined and separated from the midgut by a valve. The midgut epithelium is composed of columnar cells with an apparent secretary/absorptive rôle, and amoeboid cells thought to engulf material from the lumen. The amoeboid cells have large electron-dense central vacuoles containing carbohydrate-and protein-staining material. These cells appear to be sloughed off into the lumen to form part of a faecal pellet. Apart from their digestive rôle the midgut cells store lipid and it is considered possible that they have an osmoregulatory function. The hindgut epithelium cell type, lacks a cuticular layer and is thought to be mainly concerned with absorption. The alimentary canal is surrounded by strands of longitudinal and circular muscle.  相似文献   

6.
The distribution of the West Nile virus (WNV) in the organs and tissues of the mosquito Culex pipiens pallens, a potential vector of WNV in China, was investigated up to 14 days after oral infection. The WNV antigen was detected in paraffin‐embedded mosquitoes using immunocytochemistry and viral titers of post‐infected mosquitoes determined by plaque assay. Viral titers sharply decreased 24 h post‐infection, were undetectable for the first few days, then rose over the course of infection. The first midgut infection appeared after one day, and the overall infection rate (based on midgut infection) was 43.9%. Other tissues, including hindgut, foregut, ovarian follicles, Malpighian tubules, and ommatidia, showed weak WNV antigens as early as three days post‐infection. Staining in the salivary glands first appeared after seven days, and the salivary gland infection rate on the 14th day was 37.5%. Specimens with no detectable WNV antigens in any tissues, and with positive results confined to the midgut, anterior midgut, and hindgut, were observed on the 14th day. The route of viral dissemination from the midgut, and the relative importance of amplifying tissues in mosquitoes' susceptibility to infection, were evaluated. The results indicate that Cx. p. pallens has the ability to harbor WNV throughout its alimentary system and that midgut epithelial cells may be the initial site of the replication of this virus in this species.  相似文献   

7.
The digestion of various carbohydrates and synthetic substrates by the gut of Locusta migratoria was analysed quantitatively. Maltose, starch, and sucrose were found to be hydrolysed most rapidly, whereas the splitting of cellobiose, trehalose, lactose, and melecitose took place at much slower rates.The absolute carbohydrase activities in foregut and midgut are nearly equal. However, specific activities are much higher in the foregut. Only low activities were found in extracts from the hindgut and salivary glands. The latter show a pattern of sugar splitting which is different from that found in gut preparations.The distribution of carbohydrase activities between the epithelia and lumina of the foregut, midgut, and hindgut and between soluble and particulate fractions were studied. The midgut epithelium is shown to have a particularly high content of enzymes, although some carbohydrases are rather active also in the epithelium of the hindgut. During hunger periods the relative enzymatic activities of the epithelium are distinctly increased.The isolation and purification of the carbohydrases were attempted and a partial separation of individual enzymes was obtained by gel-filtration. These results indicate the presence of at least seven distinct carbohydrases in the locust gut. The molecular weights of the enzymes were estimated by gel-filtration, and KM values and pH-optima are reported.  相似文献   

8.
Scolopendra cingulata has a tube-shaped digestive system that is divided into three distinct regions: fore-, mid- and hindgut. The midgut is lined with a pseudostratified columnar epithelium which is composed of digestive, secretory and regenerative cells. Hemocytes also appear between the digestive cells of the midgut epithelium. The ultrastructure of three types of epithelial cells and hemocytes of the midgut has been described with the special emphasis on the role of regenerative cells in the protection of midgut epithelium. The process of midgut epithelium regeneration proceeds due to the ability of regenerative cells to proliferate and differentiate according to a circadian rhythm. The regenerative cells serve as unipotent stem cells that divide in an asymmetric manner.Additionally, two types of hemocytes have been distinguished among midgut epithelial cells. They enter the midgut epithelium from the body cavity. Because of the fact that numerous microorganisms occur in the cytoplasm of midgut epithelial cells, we discuss the role of hemocytes in elimination of pathogens from the midgut epithelium. The studies were conducted with the use of transmission electron microscope and immunofluorescent methods.  相似文献   

9.
Summary The ontogeny of the endocrine cells of the gut of the cockroach Periplaneta americana was studied by immunohistochemistry. During embryogenesis, the midgut begins to be formed as an outgrowth of the foregut and hindgut invaginations. Gut endocrine cells with pancreatic polypeptide (PP)-like immunoreactivity begin to appear at the anterior and posterior ends of the forming midgut. These cells are restricted to the midgut epithelium, and no mitotic cells with PP-like immunoreactivity are observed. These results strongly suggest that the gut endocrine cells, at least those with PP-like immunoreactivity, are derived from precursor cells they have in common with other epithelial cells of the midgut.  相似文献   

10.
Abstract Unique morphological structures occur near the midgut–hindgut juncture in decapod crustaceans, and neither their fine structure nor function are well understood. In the ghost shrimp Lepidophthalmus louisianensis. structures associated with this juncture include an elongate posterior midgut caecum (PMGC) extending into the abdominal hemocoel, a massive swelling of acinar glands encasing the juncture, and a dorso-lateral valve complex involving cuticularized lumenal surfaces of the anterior hindgut. Vivisection, histological studies (LM, TEM) and paraffin-carving (SEM) have been applied to reconstruct morphology of these components and characterize constituent tissues. The lumen of the PMGC is lined by very elongate columnar cells underlain by a thin layer of circular muscle. The hemocoelic surface of the PMGC is covered by cells richly endowed with unique lamellar bodies. The acinar glands are composed of multiple rosettes of secretory cells, from which products appear to empty into the anterior extreme of the hindgut. The dorso-lateral valve complex of the hindgut consists of anterior and posterior components, differing in strength of lumenal ridging and microdentition of the cuticular lining. Unique features of these structures may relate to behavioral, feeding and metabolic adaptations in this obligate fossorial crustacean.  相似文献   

11.
Two western equine encephalomyelitis virus (WEEV) strains have been isolated in China. Our previous studies have verified that the mosquito Culex pipiens pallens Coquillett (Diptera: Culicidae) infected with WEEV was capable of transmitting this arbovirus, but it was not clear how the sequential multiplication and spread of virus occurred within the mosquito. In this study, we observed the distribution of WEEV antigen in orally‐infected Cx. p. pallens by immunohistochemistry in order to better understand the initial infection, dissemination, and transmission of WEEV in the potential vector. Orally‐infected WEEV dissemination varied within the different tissues of Cx. p. pallens, with virus antigen consistently observed in the salivary glands, foregut, midgut epithelial cells, Malpighian tubules, hindgut, and ovarian follicles of some individuals after various days of extrinsic incubation. We suggest that Cx. p. pallens, the potential vector of WEEV, has the ability to harbor the virus through the alimentary system, and the midgut epithelial cell may be the initial site of WEEV replication after ingestion of a viremic blood meal.  相似文献   

12.
A morphological study of the midgut and salivary glands of second and third instars of Gasterophilus intestinalis (De Geer) (Diptera: Oestridae) was conducted by light, scanning and transmission electron microscopy. The midgut is anteriorly delimited by a proventriculus, without caeca, and is composed of posterior foregut and anterior midgut tissue from which a double‐layered peritrophic matrix is produced. The midgut can be divided into anterior, median and posterior regions on the basis of the structural and physiological variations of the columnar cells which occur along its length. Two other types of cell were identified: regenerative cells scattered throughout the columnar cells, and, more rarely, endocrine cells of two structural types (closed and open). Different secretion mechanisms (merocrine, apocrine and microapocrine) occur along the midgut epithelium. Abundant microorganisms are observed in the endoperitrophic space of the anterior midgut. The origin and nature of these microorganisms remain unknown. No structural differences are observed between the second and third instar midguts. The salivary glands of G. intestinalis second and third instars consist of a pair of elongated tubular structures connected to efferent ducts which unite to form a single deferent duct linked dorsally to the pharynx. Several intermediate cells, without cuticle, make the junction with the salivary gland epithelium layer. Cytological characteristics of the gland epithelial cells demonstrate high cellular activity and some structural variations are noticed between the two larval stages.  相似文献   

13.
The distribution of endo-beta-1,4-glucanase (EG) components in the digestive system of the wood-feeding termite, Coptotermes formosanus Shiraki, was investigated by zymogram analysis using polyacrylamide gel electrophoresis, followed by N-terminal protein sequencing. EG components similar to glycoside hydrolase family (GHF) 9 members were restricted to the salivary glands, the foregut, and the midgut, whereas components similar to GHF7 members were confined to the hindgut where numerous cellulolytic flagellates were harbored. RT-PCR experiments revealed that five GHF9 EG mRNAs (1348 bp) homologous to other termite EGs were expressed in the salivary glands and the midgut. The crude extract prepared from the midgut as well as that from the hindgut produced glucose from crystalline cellulose. These data suggest that C. formosanus has two independent cellulose-digesting systems: one in the midgut where cellulose digestion is accomplished by endogenous cellulases and the other in the hindgut which makes use of other cellulases possibly from symbiotic flagellates.  相似文献   

14.
登革Ⅱ型病毒在白纹伊蚊体内分布的研究   总被引:9,自引:2,他引:7  
利用蚊虫连续石蜡切片免疫组织化学技术,对登革Ⅱ型病毒(DEN-2)感染白纹伊蚊Aedes albopictus后的散播时间、程度及组织器官的感染顺序进行监测,以了解DEN-2在媒介白纹伊蚊体内的分布规律。结果表明:大剂量感染登革Ⅱ型病毒后,在蚊虫消化道的主要部位以及大多数组织器官包括神经及内分泌系统在内,如涎腺、脑、神经节等亦检测到病毒抗原。登革Ⅱ型病毒一旦感染并逸出中肠会迅速侵染其它组织。从各组织感染率的高低推断,病毒逸出中肠后通过血淋巴传播到其它组织的顺序通常为:前肠、涎腺、咽部神经节、脑及食管下神经节、后肠及复眼的小眼等。  相似文献   

15.
While investigating the distribution of Leptomonas wallacei in the intestine of the insect host Oncopeltus fasciatus, promastigotes and cyst-like forms of L. wallacei were observed only in the midgut ventricles V(3) and V(4) and the hindgut. In video-microscopy, once contact had occurred, the parasites remained attached to the midgut epithelium. Scanning electron microscopy revealed the adhesion of flagellates and cyst-like forms to the midgut wall and to the rectal pads of the hindgut. Using transmission electron microscopy, we observed that adhesion occurred mainly between the flagellum and the perimicrovillar membranes secreted by the midgut epithelium. No modifications were observed either in the parasite or in the epithelial cells. In the hindgut, adhesion to the superficial wax layer of the epithelial cells of the rectal pads was via flagellum. Host cell morphology appeared unaffected by L. wallacei.  相似文献   

16.
显微观察发现臭腹腺蝗Zonocerus variegatus(直翅目:锥头蝗科)嗉囊、中肠和后肠的肠壁结构有所不同。嗉囊为空时纵向折叠。中肠上皮层的厚度随龄期有明显变化,1龄和2龄时明显大于3龄、4龄和5龄。后肠具有帮助消化和吸收的功能。  相似文献   

17.
Summary The fine structure of the midgut gland and the changes in composition associated with the digestive activity were examined in Phalangium opilio. In the epithelium four different types of cells are present: ferment cells, resorption cells, and digestion cells which probably turn into excretion cells, as can be seen by many intermediate stages. Ferment cells are found only in the midgut gland and in no other epithelia; therefore they should be regarded as a cell type. The relationship between digestion and resorption cells is not yet clear. No regeneration zone or single regeneration cells could be identified.The ultrastructural changes in these different cells during digestion are described, and their functional aspects are discussed. A hypothetical digestive cycle is constructed from these data. The results are compared with those on other chelicerate midgut glands.  相似文献   

18.
Morphological, histochemical and cytochemical changes were examined in honeybee larvae after infection with the bacterium Bacillus larvae. The results indicate cell necrosis in the midgut epithelium accompanied by increasing cell vacuolization and nuclear pyknosis following per os inoculation with B. larvae. Many autolysosomes were positive for acid phosphatase. Non-vacuolar acid phosphatase activity was also found in lysed cell compartments. No such activity was found in regenerative epithelial cells. Degradation of haemocytes, salivary glands and other tissues was also observed. Histochemical analyses after per cutaneous inoculation with B. larvae of three- and five-day-old honeybee larvae show intense non-vacuolar acid phosphatase activity followed by disintegration of infected salivary glands, epithelial cell cytoplasm and haemocytes.  相似文献   

19.
J. E. Bron    C. Sommerville    G. H. Rae 《Journal of Zoology》1993,230(2):207-220
The functional morphology of the alimentary canal of copepodite and chalimus stages of Lepeophtheirus salmonis (Krøyer, 1837) is described and compared with that found in other copepods studied to date.
The buccal cavity passes into a gut comprising three major regions: foregut (oesophagus), midgut and hindgut. The foregut and hindgut both posscss a cuticular lining whereas the midgut is lined with specialized epithelial cells. The midgut is divided into three recognizable zones, namely anterior midgut caecum, anterior midgut and posterior midgut. Three main types of epithelial cell are recognizable in the midgut: vesicular cells, microvillous cells and basal cells which correspond to the cell types normally described in other parasitic and free-living copepod species.
Digestion is thought to occur in the midgut and be mediated by the epithelial cells that line it. Although several glands appear to discharge into the area of the buccal cavity, none was seen to interface to any other area of the gut. There was no evidence for the involvement of commensal gut bacteria in food digestion.  相似文献   

20.
Solifuges are voracious and fast predators. Once having captured a prey item, mostly small arthropods or even small vertebrates, they start feeding on their prey by constant chewing movements with their huge chelicerae. At the same time, they squeeze out the soft tissue that passes the anterior lattice‐like part of the mouthparts. The digestion of the food takes place in the midgut, which is anatomically highly complex. It consists of the midgut tube from which numerous prosomal and opisthosomal diverticula and tubular lateral branches arise. The dimorphic epithelium of the midgut tube and the diverticula is constituted of digestive and secretory cells. The digestive cells are characterized by an apical tubulus system and contain nutritional vacuoles, lipids, spherites, and glycogen. Secretory cells contain a huge amount of rough endoplasmic reticulum and secretory vacuoles. The lateral branches are ultrastructurally similar to Malpighian tubules and are likely involved in excretion. In contrast to the midgut, the epithelium of the hindgut consists of only one type of cell overlain by a thin cuticle. Digested residuals are stored in the hindgut until defecation. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号