首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
黄单胞菌属(Xanthomonas)是一类能引起多种单子叶和双子叶植物感病的革兰氏阴性细菌,严重危害水稻、甘蓝、番茄、柑橘等多种作物,其入侵和增殖依赖于三型分泌系统(Type III Secretion System,T3SS)和其他毒素因子。细菌非编码小RNA能通过与靶m RNA互作,在转录后水平调控基因的表达,或直接与蛋白互作,影响细胞的各种生理功能。主要介绍了细菌非编码小RNA的分类、及其对细菌蛋白调节、生长代谢、基因转录以及毒力调控等方面的研究进展,并重点对黄单胞菌属细菌已鉴定的非编码小RNA及其生物学功能进行综述,以期为黄单胞菌引起的作物病害防控提供新的思路。  相似文献   

2.
黄单胞菌属的分类研究进展   总被引:1,自引:0,他引:1  
引起植物病害的细菌约有300多种,广义的细菌是原核生物界中引起各种植物病害的一类最大的群体。黄单胞菌属的所有种都是植物病原细菌,引起植物病害症状多为叶斑、叶枯,少数为萎蔫、溃疡。黄单胞菌属(Xanthomonas)属于薄壁菌门、假单胞菌科,菌体短杯状,0.4-1.0×1.2-3.0μm,根极生鞭毛,严格好气性,革兰氏染色阴性,DNA中的G+C含量为63-71mol%。细菌的分类地位和分类系统曾有过多次变动,迄今仍不完善。过去,黄单胞菌属的分类单一利用奇主的专化性划分种,即从一株寄主植物上分离到新的黄单胞菌菌株,使定为一个种,由…  相似文献   

3.
近年来在多种生物体中都发现有抗菌活性蛋白和多肽。由于其具有生物化学多样性,抗病毒、微生物、真菌、原生动物、肿瘤,促进伤口愈合等生物学活性,而引起研究者的极大兴趣。抗菌活性蛋白和多肽在动物的先天免疫中具有重要作用,它们直接作用于细菌,并将其杀死。鲑点石斑鱼(Epinephelusfario)是中国南方水产养殖中重要的海水鱼。近年来,由于细菌和病毒引发的病害造成鲑点石斑鱼大量死亡,但其抗菌活性蛋白及多肽目前还未见报道。本研究发现鲑点石斑鱼皮肤具有抗菌活性成分,鲑点石斑鱼皮肤匀浆物经胰蛋白酶水解后抗菌活性丧失,说明该活性是由蛋白质引起的。经离子交换层析及凝胶过滤层析,从鲑点石斑鱼皮肤中分离纯化到抗菌活性蛋白(Efap)。SDS-PAGE显示,Efap为单链蛋白,分子量约41kD。该成分能同时抑制革兰氏阳性菌,如金黄色葡萄球菌、滕黄微球菌、枯草牙胞杆菌和革兰氏阴性菌,如溶藻弧菌、副溶血弧菌、河流弧菌、多杀性巴氏杆菌、嗜水气单胞菌、大肠杆菌和铜绿假单胞菌。革兰氏阴性菌中,溶藻弧菌、副溶血弧菌、河流弧菌和多杀性巴氏杆菌对Efap较敏感,MIC<20mol/L,其他3种菌敏感性较差,MIC>20mol/L。另外,Efap显示出较强的抗金黄色葡萄球菌的活性,MIC为5—10mol/L。Efap的广谱抗菌性,说明其在鲑点石斑鱼免疫防御中具有一定的作用。  相似文献   

4.
【背景】由野油菜黄单胞菌(Xanthomonas campestris)和成团泛菌(Pantoea agglomerans)侵染引起的核桃黑斑病是一种严重的细菌性病害,给核桃产业带来了极大损失。【目的】从根际土壤中筛选出对核桃黑斑病病原菌野油菜黄单胞菌和成团泛菌均具有拮抗效果的放线菌菌株,可作为创制生防菌剂的出发菌株。【方法】采用稀释涂布法、平板对峙法和改良牛津杯法筛选拮抗菌株,通过形态学特征、生理生化特性和16S rRNA基因序列分析进行鉴定,测定无菌发酵液抗菌谱,离体叶片试验验证其对核桃黑斑病的防治效果。【结果】筛选到一株对2种病原菌均有较强拮抗作用的放线菌菌株YNF36。经形态学特征观察、生理生化特性试验及16S rRNA基因序列分析,将菌株YNF36鉴定为沙场链霉菌(Streptomyces arenae)。该菌株在SYP培养基上产量最高,抑菌活性最强,其无菌发酵液对金黄色葡萄球菌、大肠杆菌、黑曲霉、白色念珠菌、枯草芽孢杆菌、铜绿假单胞菌、蜡样芽孢杆菌这7种指示菌,以及链格孢菌、黑腐皮壳菌、胶孢炭疽菌、灰葡萄孢菌、黄褐孢霉菌、辣椒刺盘孢菌、腐皮镰孢菌这7种植物病原菌均有抑制作用,抗菌谱广。发酵液原液对离体叶片上的由野油菜黄单胞菌和成团泛菌造成的核桃黑斑病防效分别为75.69%和62.39%。【结论】沙场链霉菌YNF36补充了一种防治核桃黑斑病的生防材料,具有良好的开发价值和应用前景。  相似文献   

5.
孙敬都  贾程皓  唐标  赵国屏  乐敏 《微生物学报》2023,63(11):4101-4117
抗生素被认为是现代医学的基石之一,但包括抗生素在内抗菌药物的滥用也加速了可抵抗多种抗菌药物“超级细菌”的出现。耐药基因是导致细菌产生耐药性的关键因素,可通过质粒、转座子(transposon, Tn)、插入序列(insertion sequence, IS)等可移动元件(mobile genetic elements, MGEs)进行水平转移,严重威胁公共卫生安全。近年来,面对碳青霉烯类药物和多黏菌素耐药性的暴发,替加环素被视为人类面临多重耐药细菌感染的最后一道防线。近期发现了一种主要存在于质粒上的新型可移动外排泵基因簇tmexCD-toprJ,可编码耐药结节细胞分化家族(resistance-nodulation-cell division, RND)外排泵,排出菌体内包括替加环素在内的多种抗生素,大幅提升了细菌的耐药性。tmexCD-toprJ基因簇可以随质粒等可移动元件进行水平转移,已经传播至人、动物和环境中,给公共卫生健康造成了严重威胁。然而,目前人们对于其具体结构和功能作用机制等研究仍不透彻。本文系统总结tmexCD-toprJ耐药基因的分布特征、传播机制及外排泵结构等研究现状,并基于同一健康(One Health)理念提出了阻遏其扩散的措施,为减缓tmexCD-toprJ传播提供科学依据。  相似文献   

6.
【背景】舒伯特气单胞菌(Aeromonas schubertii)广泛分布于淡、海水水体和底泥中,致病株已在我国养殖鳢科鱼类中流行,也感染其他经济鱼类,导致暴发性死亡。【目的】对病鳜(Siniperca chuatsi)的病原进行鉴定,确定分离菌的致病性及药物敏感性,为该病临床治疗提供参考。【方法】采集病鳜脾肾组织进行PCR或RT-PCR扩增其常见病毒,采集病鳜肝脏和腹水分离培养细菌,PCR扩增代表菌株的gyrB、16S rRNA和毒力基因,鉴定其生理生化特征,并进行药物敏感性试验和人工感染试验。【结果】病鳜的传染性脾肾坏死病毒、鳜蛙病毒、鳜弹状病毒检测结果为阴性,肝脏和腹水均存在大量细菌;代表菌株Gui210820被鉴定为舒伯特气单胞菌,携带溶血素、气溶素、弹性蛋白酶和磷脂酶毒力基因,腹腔注射感染鳜的半数致死浓度(LD50)为3.16×105 CFU/mL;菌株Gui210820对四环素、卡那霉素、复方新诺明等6种抗菌药物耐药,对强力霉素中介,对恩诺沙星、新霉素、氟苯尼考等11种抗菌药物敏感。【结论】本试验从病鳜组织分离到致病性舒伯特气单胞菌,水产准许用药物恩诺沙星、新霉素、氟苯尼考...  相似文献   

7.
细菌性条斑病(简称细条病)是水稻的重要病害之一,随着气候的变暖,某些水稻品种有逐年发生加重的趋势,对产量影响较大。2013年浙江省金华市部分水稻种植区域发生细条病,发病严重的田块减产30%以上。采用组织分离法从发病水稻叶片分离获得6株细菌菌株,选择典型菌株JH01回接水稻幼苗,进行柯赫法则验证。接种后发病症状与自然发病症状一致,并重新分离得到此菌株,证明菌株JH01为水稻细条病的致病菌。通过形态学观察、常规生理生化指标测定、16S rDNA 序列测定和同源性分析,鉴定菌株JH01为稻黄单胞菌水稻致病变种(Xanthomonas oryzae pv. oryzicola,Xoc)。  相似文献   

8.
生物表面活性剂鼠李糖脂对甘蔗黑穗病菌的体外抗菌活性   总被引:1,自引:1,他引:0  
【背景】甘蔗黑穗病是一种主要的甘蔗病害,易造成甘蔗严重减产;鼠李糖脂是一种生物表面活性剂,可作为多种植物真菌病害的抑菌剂。【目的】研究生物表面活性剂鼠李糖脂对甘蔗黑穗病菌的体外抗菌活性及初步的抗菌机理。【方法】采用甘蔗黑穗病冬孢子萌发试验研究鼠李糖脂对甘蔗黑穗病冬孢子的抗菌作用。采用菌丝生长速率法和菌丝干重法对鼠李糖脂的体外抑菌试验进行检测;通过菌丝电导率的变化研究鼠李糖脂对甘蔗黑穗病菌细胞膜通透性的影响。【结果】鼠李糖脂能显著抑制甘蔗黑穗病菌孢子萌发,其中2.0 g/L鼠李糖脂对甘蔗黑穗病冬孢子萌发的抑制效果最好,抑制率达45.03%。鼠李糖脂能显著抑制甘蔗黑穗病菌双核菌丝体、单胞菌a和单胞菌b的生长。鼠李糖脂能使甘蔗黑穗病单胞菌细胞膜透性增加,与对照相比,2.0 g/L鼠李糖脂处理甘蔗黑穗病双核菌丝体0.5min后电导率升高了约9倍,处理单胞菌a30min后电导率提高了94.23%;0.1g/L鼠李糖脂处理甘蔗黑穗病单胞菌b30min后电导率升高了54.49%,随着浓度的增加,各处理电导率升高显著。【结论】鼠李糖脂对甘蔗黑穗病菌有良好的抗菌作用,有望为甘蔗黑穗病的防治提供新方法。  相似文献   

9.
10.
一株拮抗黄单胞菌的贝莱斯芽孢杆菌的分离和鉴定   总被引:3,自引:0,他引:3  
【目的】为了筛选防治水稻条斑病(bacterial leaf streak,BLS)的生防细菌。【方法】以水稻条斑病菌(Xanthomonas oryzae pv. oryzicola,Xoc)的模式菌株RS105为靶标菌,采用平板稀释和抑菌圈法,从空心菜根际土壤中筛选到一株对RS105具有拮抗作用的细菌菌株504。通过形态学、生理生化特征以及16SrDNA和gyrA序列分析对菌株504进行了鉴定。利用牛津杯法测定504对植物病原黄单胞菌的拮抗活性及其无菌发酵液拮抗活性的稳定性。通过PCR扩增预测504编码合成脂肽类和聚酮类化合物的合成相关基因。采用苗期水稻注射接菌法来评价水稻组织中504对Xoc的拮抗活性。【结果】菌株鉴定结果表明504为贝莱斯芽孢杆菌,命名为Bacillusvelezensis504。抑菌实验显示,B.velezensis504对黄单胞菌属的细菌具有较好的抑菌活性,对水稻白叶枯病菌(X. oryzae pv. oryzae,Xoo)的拮抗效果最显著。基因预测结果显示,B. velezensis 504含有fenA、dhbA、sfrA、bmyA、beaS、dfnA及bacA等编码脂肽类和聚酮糖类抑菌化合物的基因簇。其无菌发酵液的活性物质耐高温和蛋白酶降解,但不耐强酸、强碱,在pH值为5.5–8.9时仍具有稳定的拮抗活性。在高感水稻品种原丰早上,B. velezensis 504对Xoc在水稻叶片中引起的水渍症状具有显著的抑制作用。【结论】B. velezensis 504能够特异性拮抗黄单胞菌,在黄单胞菌引起的细菌性病害的生物防治中将具有较大的应用潜力。  相似文献   

11.
Albicidin is a pathotoxin produced by Xanthomonas albilineans, a xylem-invading pathogen that causes leaf scald disease of sugarcane. Albicidin is synthesized by a nonribosomal pathway via modular polyketide synthase and nonribosomal peptide synthetase (NRPS) megasynthases, and NRPS adenylation (A) domains are responsible for the recognition and activation of specific amino acid substrates. DNA fragments (0.5 kb) encoding the regions responsible for the substrate specificities of six albicidin NRPS A domains from 16 strains of X. albilineans representing the known diversity of this pathogen were amplified and sequenced. Polymorphism analysis of these DNA fragments at different levels (DNA, protein, and NRPS signature) showed that these pathogenicity loci were highly conserved. The conservation of these loci most likely reflects purifying selective pressure, as revealed by a comparison with the variability of nucleotide and amino acid sequences of two housekeeping genes (atpD and efp) of X. albilineans. Nevertheless, the 16 strains of X. albilineans were differentiated into several groups by a phylogenetic analysis of the nucleotide sequences corresponding to the NRPS A domains. One of these groups was representative of the genetic diversity previously found within the pathogen by random fragment length polymorphism and amplified fragment length polymorphism analyses. This group, which differed by three single synonymous nucleotide mutations, contained only four strains of X. albilineans that were all involved in outbreaks of sugarcane leaf scald. The amount of albicidin produced in vitro in agar and liquid media varied among the 16 strains of X. albilineans. However, no relationship among the amount of albicidin produced in vitro and the pathotypes and genetic diversity of the pathogen was found. The NRPS loci contributing to the synthesis of the primary structure of albicidin apparently are not involved in the observed pathogenicity differences among strains of X. albilineans.  相似文献   

12.
Xanthomonas albilineans, the causal agent of sugarcane leaf scald, is a bacterial plant pathogen that is mainly spread by infected cuttings and contaminated harvesting tools. However, some strains of this pathogen are known to be spread by aerial means and are able to colonize the phyllosphere of sugarcane before entering the host plant and causing disease. The objective of this study was to identify the molecular factors involved in the survival or growth of X. albilineans on sugarcane leaves. We developed a bioassay to test for the attachment of X. albilineans on sugarcane leaves using tissue‐cultured plantlets grown in vitro. Six mutants of strain XaFL07‐1 affected in surface polysaccharide production completely lost their capacity to survive on the sugarcane leaf surface. These mutants produced more biofilm in vitro and accumulated more cellular poly‐β‐hydroxybutyrate than the wild‐type strain. A mutant affected in the production of small molecules (including potential biosurfactants) synthesized by non‐ribosomal peptide synthetases (NRPSs) attached to the sugarcane leaves as well as the wild‐type strain. Surprisingly, the attachment of bacteria on sugarcane leaves varied among mutants of the rpf gene cluster involved in bacterial quorum sensing. Therefore, quorum sensing may affect polysaccharide production, or both polysaccharides and quorum sensing may be involved in the survival or growth of X. albilineans on sugarcane leaves.  相似文献   

13.
Leaf scald of sugarcane, caused by Xanthomonas albilineans, is thought to be spread mainly in infected cuttings and transmitted on infested cutting implements. Several observations made in Guadeloupe indicated that other means of spreading also occur. The dispersal of the pathogen outside sugarcane was investigated with plants inoculated by an antibiotic-resistant marked strain of X. albilineans and with plants naturally infested with wild strains of the pathogen. The bacteria were isolated in water droplets (rain or dew) on the surface of sugarcane leaves at dawn. It was also detected on the surface of dry leaves during the day by leaf imprinting onto a selective culture medium. The bacteria were much more frequently isolated from the surface of symptomatic leaves than from symptomless ones. Aerial dispersal of X. albilineans was investigated by placing Petri dishes containing selective culture medium between sugarcane plants but without direct contact with the leaves. The pathogen was isolated in four out of 270 dishes which were randomly set 3-14 h in a diseased field. These results indicated that the pathogen exuded from the leaves and then was spread by aerial means (rain, insects,…) or by leaf contact. The bacteria were also found in roots and rhizospheric soil of infested sugarcane stools suggesting that X. albilineans could be transmitted by root to root contact or by the soil. Finally, isolations of the pathogen in sugarcane inflorescences were positive. So, fuzz transmission may also occur.  相似文献   

14.
Leaf scald of sugarcane, caused by Xanthomonas albilineans, is thought to be spread mainly in infected cuttings and transmitted on infested cutting implements. Several observations made in Guadeloupe indicated that other means of spreading also occur. The dispersal of the pathogen outside sugarcane was investigated with plants inoculated by an antibiotic-resistant marked strain of X. albilineans and with plants naturally infested with wild strains of the pathogen. The bacteria were isolated in water droplets (rain or dew) on the surface of sugarcane leaves at dawn. It was also detected on the surface of dry leaves during the day by leaf imprinting onto a selective culture medium. The bacteria were much more frequently isolated from the surface of symptomatic leaves than from symptomless ones. Aerial dispersal of X. albilineans was investigated by placing Petri dishes containing selective culture medium between sugarcane plants but without direct contact with the leaves. The pathogen was isolated in four out of 270 dishes which were randomly set 3–14 h in a diseased field. These results indicated that the pathogen exuded from the leaves and then was spread by aerial means (rain, insects, …) or by leaf contact. The bacteria were also found in roots and rhizospheric soil of infested sugarcane stools suggesting that X. albilineans could be transmitted by root to root contact or by the soil. Finally, isolations of the pathogen in sugarcane inflorescences were positive. So, fuzz transmission may also occur.  相似文献   

15.
16.
The symptoms of the leaf scald disease can be reproduced in vitro through the inoculation of sugarcane tissue culture plantlets. The pathogen is detected in the inoculated plantlet and is maintained at the surface of the base of the plantlets grown in vitro. Two strains of X. albilineans belonging to different serovars and lysovars reacted like pathotypes. The importance of the plant incubation temperature is clearly demonstrated. Further, in vitro the disease goes through the same phase of latency as in the field.  相似文献   

17.
Albicidins, a family of phytotoxins and antibiotics produced by Xanthomonas albilineans , are important in sugar cane leaf scald disease development. The albicidin detoxifying bacterium Pantoea dispersa (syn. Erwinia herbicola ) SB1403 provides very effective biocontrol against leaf scald disease in highly susceptible sugar cane cultivars. The P. dispersa gene ( albD ) for enzymatic detoxification of albicidin has recently been cloned and sequenced. To test the role of albicidin detoxification in biocontrol of leaf scald disease, albD was inactivated in P. dispersa by site-directed mutagenesis. The mutants, which were unable to detoxify albicidin, were less resistant to the toxin and less effective in biocontrol of leaf scald disease than their parent strain. This indicates that albicidin detoxification contributes to the biocontrol capacity of P. dispersa against X. albilineans . Rapid growth and ability to acidify media are other characteristics likely to contribute to the competitiveness of P. dispersa against X. albilineans at wound sites used to invade sugar cane.  相似文献   

18.
Transposon mutagenesis was used to obtain mutations affecting production of the toxin albicidin in Xanthomonas albilineans, which causes leaf scald disease of sugarcane and is also pathogenic to corn. Transposon Tn5-gusA inserted randomly into genomic DNA of X. albilineans Xa23R1 at a frequency of 10(-4) to 10(-5) per recipient after conjugal transfer from Escherichia coli. Fifty prototrophic mutants defective in albicidin production were isolated from 7,100 Tn5-gusA insertional derivatives tested for toxin production by an antibiosis bioassay. EcoRI fragments containing Tn5 flanking sequences from two mutants (AM15 and AM40) were cloned and used to probe a wild-type Xa23R1 DNA library by colony hybridization. Nine cosmids showed homology to the AM15 probe, and six showed homology to the AM40 probe. Four cosmid clones hybridized to both probes. Forty-five of the 50 defective mutants were restored to albicidin production with two overlapping cosmid clones. Restriction mapping showed that these mutants span a genomic region of about 48 kb. At least one other gene cluster is also involved in albicidin production in Xa23R1. DNA fragments from the 48-kb cluster proved to be very specific to X. albilineans. Some mutants affected in albicidin production retain their ability to colonize sugarcane cultivated in vitro.  相似文献   

19.
Albicidins are potent DNA-gyrase-inhibiting antibiotics and phytotoxins synthesised by Xanthomonas albilineans. Functions have been deduced for some clustered biosynthetic genes, including a PKS-NRPS megasynthase, methyltransferases and regulatory genes, and resistance genes including a transporter and a gyrase-binding protein. More puzzling is the presence in this cluster of apparent aromatic metabolism genes. Here, we describe functional analysis of several such genes and propose a model for their role. An apparent benzoate CoA ligase (xabE) proved essential for albicidin production and pathogenicity. A neighbouring operon includes genes for p-aminobenzoate (PABA) metabolism. A PABA synthase fusion (pabAB) restored prototrophy in pabA and pabB mutants of Escherichia coli, proving functionality. Inactivation of pabAB increased susceptibility to sulphanilamide but did not block albicidin production. X. albilineans contains a remote pabB gene which evidently supplies enough PABA for albicidin biosynthesis in culture. Additional capacity from pabAB may be advantageous in more demanding environments such as infected plants. Downstream from pabAB are a known resistance gene (albG) and ubiC which encodes a p-hydroxybenzoate (PHBA) synthase. PHBA protects X. albilineans from inhibition by PABA. Therefore, coordinated expression may protect X. albilineans against toxicity of both the PABA intermediate and the albicidin product, under conditions that induce high-level antibiotic biosynthesis.  相似文献   

20.
Visual symptoms of leaf scald necrosis in sugarcane (Saccharum officinarum) leaves develop in parallel to the accumulation of a fibrous material invading exocellular spaces and both xylem and phloem. These fibers are produced and secreted by the plant-associated bacterium Xanthomonas albilineans. Electron microscopy and specific staining methods for polysaccharides reveal the polysaccharidic nature of this material. These polysaccharides are not present in healthy leaves or in those from diseased plants without visual symptoms of leaf scald. Bacteria in several leaf tissues have been detected by immunogold labeling. The bacterial polysaccharide is not produced in axenic culture but it is actively synthesized when the microbes invade the host plant. This finding may be due to the production of plant glycoproteins, after bacteria infection which inhibit microbial proteases. In summary, our data are consistent with the existence of a positive feedback loop in which plant-produced glycoproteins act as a cell-to-bacteria signal that promotes xanthan production, by protecting some enzymes of xanthan biosynthesis against from bacterial proteolytic degradation.Key words: leaf scald, infectivity, Saccharum officinarum (L.) cv. mayarí 55-14, sugarcane glycoproteins, xanthan-like polysaccharide, Xanthomonas albilineans  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号