首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 637 毫秒
1.
用石蜡切片法对濒危物种灰叶胡杨的大孢子发生和雌配子体发育过程进行观察研究.结果显示,灰叶胡杨雌蕊由三心皮构成,侧膜胎座,胚珠为倒生型,有18~21列;发育早期的胚珠为双珠被,厚珠心;当外珠被发育至与内珠被处于同一水平时,内珠被便开始退化,故成熟胚珠为单珠被;孢原细胞1个,并且自表皮下2层处分化;大孢子母细胞由孢原细胞分裂后形成的造孢细胞直接发育而来;大孢子四分体直线形排列,合点端的大孢子为功能大孢子,蓼型胚囊;在胚囊发育过程中珠孔端的珠心组织退化.根据开花物候不同阶段花的形态特征,可以初步判断灰叶胡杨大孢子发生和雌配子体的发育进程.  相似文献   

2.
兰花蕉的胚胎学研究   总被引:4,自引:0,他引:4  
兰花蕉(Orchidantha chinensis T.L.Wu)的胚珠倒生,具厚珠心和双珠被。内外珠被形成珠孔。假种皮从外珠被的项端发生。造孢时期,胚珠具有一层周缘细胞。造孢细胞发育成大孢子母细胞,大孢子母细胞减数分裂形成大孢子的线形四分体,少数三分体。合点大孢子具功能。胚囊发育属蓼型。成熟胚囊的合点端狭长,胚珠具有珠心冠原和承珠盘。反足细胞寿命长,胚珠维管束属于合点后多维管束类型。胚乳发育属核型。种子脱落时,胚尚未分化出胚芽和胚根。  相似文献   

3.
以濒危植物崖柏(Thuja sutchuenensis Franch.)为对象,对其生殖物候、传粉机制进行观察,并采用石蜡切片法对其胚胎发育过程进行研究。结果显示:崖柏于8月分化出大、小孢子叶球,次年3月传粉,为花粉无气囊、具传粉滴、胚珠直立型传粉机制,球果于10月开裂;显微观察发现,传粉期花粉进入珠孔后,贮藏在珠心上方的贮粉室内,同时珠心组织中分化出孢原细胞,进入雌配子体发育阶段,5月中旬,花粉管开始萌发,6月初完成受精,进入胚胎发育阶段,10月初,胚胎发育成熟。研究表明崖柏从大、小孢子叶球形成至种子成熟的整个发育过程中均存在败育,而胚珠败育及雌配子体游离核时期至幼胚发育期间的败育是其生殖障碍的主要原因。本研究获得了崖柏生殖生物学的基础资料,为其人工繁育和制定保护策略提供了重要依据。  相似文献   

4.
以濒危植物崖柏(Thuja sutchuenensis Franch.)为对象,对其生殖物候、传粉机制进行观察,并采用石蜡切片法对其胚胎发育过程进行研究。结果显示:崖柏于8月分化出大、小孢子叶球,次年3月传粉,为花粉无气囊、具传粉滴、胚珠直立型传粉机制,球果于10月开裂;显微观察发现,传粉期花粉进入珠孔后,贮藏在珠心上方的贮粉室内,同时珠心组织中分化出孢原细胞,进入雌配子体发育阶段,5月中旬,花粉管开始萌发,6月初完成受精,进入胚胎发育阶段,10月初,胚胎发育成熟。研究表明崖柏从大、小孢子叶球形成至种子成熟的整个发育过程中均存在败育,而胚珠败育及雌配子体游离核时期至幼胚发育期间的败育是其生殖障碍的主要原因。本研究获得了崖柏生殖生物学的基础资料,为其人工繁育和制定保护策略提供了重要依据。  相似文献   

5.
白桦雌花发育、大孢子发生及胚胎发育的解剖学观察   总被引:6,自引:2,他引:4  
姜静  李同华  庄振东  杨传平 《植物研究》2003,23(1):T007-T009
白桦雌花从开花到雌性器官的成熟需经历1个月左右的时间,解剖学观察表明:四月下旬越冬的雌蕊原基开始了活跃的分裂和分化。子房和柱头开始生长。四月末开花,五月初授粉。此后胚珠开始长大。五月中旬即分化形成珠被,珠心,珠被为单层珠被,胚珠为厚珠心胚珠,胚珠倒生,五月中下旬,珠心内产生大孢子母细胞,一周左右发育为成熟胚囊-七细胞八核胚囊,五月末完成双受精,白桦胚胎发育经过合子,原胚,球形胚,心形胚和鱼雷形胚等时期最后发育成熟,胚乳发育与胚胎同步,即受精的极核进行几次分裂后形成核型胚乳,胚乳核不断增多,在形成心形胚后胚乳细胞形成细胞壁。  相似文献   

6.
利用扫描电子显微镜术和光学显微镜术研究了黄檗(Phellodendron amurense Rupr.)的珠孔塞和珠孔的形态发育和花粉管在雌蕊中的路径。黄檗胚珠的珠孔塞起源于珠柄。随着胚珠生长,珠孔塞逐渐增大,胚珠成熟时珠孔塞变得相当大并紧密地覆盖在珠孔上。当雌花进入可传粉期时,珠孔塞的形态发生很大变化,其表面细胞径向延伸,形成柱形、半乳突或乳突细胞。受精后,珠孔塞体积变小并逐步退化。花粉管在子房室中并非一定经过珠孔塞结构。花粉管是否经过珠孔塞取决于它们进入子房室的位置。我们不支持先前研究者关于珠孔塞主要充当对花粉管生长的机械作用的观点。我们对黄檗胚珠的珠孔的形态发育研究显示,在不同的生殖时期,珠孔的结构会发生变化,在传粉时期它的结构显示不对称性。黄檗珠孔塞和珠孔的发育与雌配子体发育存在密切关系。  相似文献   

7.
利用扫描电子显微镜术和光学显微镜术研究了黄檗(Phellodendron amurense Rupr.)的珠孔塞和珠孔的形态发育和花粉管在雌蕊中的路径.黄檗胚珠的珠孔塞起源于珠柄.随着胚珠生长,珠孔塞逐渐增大,胚珠成熟时珠孔塞变得相当大并紧密地覆盖在珠孔上.当雌花进入可传粉期时,珠孔塞的形态发生很大变化,其表面细胞径向延伸,形成柱形、半乳突或乳突细胞.受精后,珠孔塞体积变小并逐步退化.花粉管在子房室中并非一定经过珠孔塞结构.花粉管是否经过珠孔塞取决于它们进入子房室的位置.我们不支持先前研究者关于珠孔塞主要充当对花粉管生长的机械作用的观点.我们对黄檗胚珠的珠孔的形态发育研究显示,在不同的生殖时期,珠孔的结构会发生变化,在传粉时期它的结构显示不对称性.黄檗珠孔塞和珠孔的发育与雌配子体发育存在密切关系.  相似文献   

8.
非洲狼尾草胚珠(着重胚珠附器)发育的特点   总被引:4,自引:0,他引:4  
用光学显微镜对非洲狼尾草胚珠发育做了进一步观察。结果表明有如下几个特点:(1)珠孔区域的珠心细胞发生特化,膨大1伸长并进入珠孔,形成胚珠附器。(2)珠心表皮平周分裂产生周缘珠心组织。(3)珠孔由内珠被和腹侧外珠被构成。  相似文献   

9.
采用半薄切片技术和组织化学染色法对宁夏枸杞大孢子发生和雌配子体发育过程中的细胞结构变化及营养物质积累特征进行了观察。结果表明,(1)宁夏枸杞为中轴胎座,多室子房,倒生胚珠,单珠被,薄珠心类型。(2)位于珠心表皮下的孢原细胞可直接发育为大孢子母细胞,减数分裂后形成直线型大孢子四分体,合点端第一个大孢子发育为功能大孢子,胚囊发育类型为蓼型,具有珠被绒毡层。(3)初形成的胚囊外周组织中没有营养物质积累,成熟胚囊时期出现了大量的淀粉粒且呈珠孔端明显多于合点端的极性分布特征。(4)助细胞的珠孔端具有明显的丝状器结构,呈PAS正反应表现出多糖性质,成熟胚囊具有承珠盘结构。  相似文献   

10.
红花胚珠和雌配子体发育   总被引:3,自引:2,他引:1  
用石蜡切片法研究了红花的大孢子发生和雌配子体发育过程,得到以下结果:(1)胚珠发育为薄珠心类型,倒生胚珠,具单珠被。(2)胚囊发育蓼型。(3)有珠被绒毛层,珠被绒毡层起始于大孢子母细胞时期,单核胚囊阶段高度发育,受精后从合点端逐渐退化。珠孔塞细胞呈毛状。  相似文献   

11.
In Sequoiadendron ovules are borne inside the ovulate cone, and pollination drops secreted from these ovules collect pollen. We examined: (1) the relation between ovular position and pollen capture; (2) pollen behavior when in contact with a pollination drop; and (3) ultrastructure of ovules during pollination drop secretion. During wet periods a water sheet forms on the surface of the cone due to bract shape and wettability. Pollination drops persist inside the wetted cone, and pollen capture resumes immediately after drying. Pollen landing on a pollination drop is taken inside the drop and carried into the micropyle when the drop contracts. Several notable ultrastructural features appear in the nucellus, integument, chalaza, and bract lamina during pollination-drop secretion. The abaxial surface of the lamina is covered by a membrane that may contribute to the wettable nature of the surface.  相似文献   

12.
In the ovules of Vanilla (Vanilla planifolia Andr.) before fertilization, outer integument surrounded the lower part of ovule. Uranin got into ovule through funiculus, forming, the first center of fluorescence at the chalaza zone of ovule. Then uranin was transported to micropyle end along inner integument, forming the second center of fluorescence at micropyle end of inner integument. Soon, fluorescence appeared in the egg apparatua. After fertilization, the outer integument ovule extended upward, forming micropyle ogerber with inner integument. After getting into ovule through funiculus, uranin spreads to- ward several directions: l. transported to outer integument at the entrance of micropyle; 2. transported downward to chalaza zone along outer integument at the side of funiculus; 3. extended from chalaza zone to the inside and to the outer integument at the side far from funiculus The ovules of Vanilla had no vascular bundles. On transporting in inner integument, however, the cells in inner layer next to the embryo sac appeared to be the major passage. In mature embryo sac, there was cuticle between inner integument and embryo sac at the half of micropyle end. But between embryo sac at the half of chalaza end and nucellus, cuticle was absent. Nutrient could get into embryo sac from chalaza end undoubtedly. As egg apparatus showed the fluorescence after formation of fluorescence center of inner integument at micropylar end, the possibility that nutrient got into embryo sac from micropyle could not be excluded.  相似文献   

13.
北美香柏雌球果的发育   总被引:4,自引:0,他引:4  
用扫描电镜(SEM)观察了北美香柏 Thuja occidentalis 雌球果的发育过程。在北京,北美香柏的雌球果是在八月初由营养芽转变而来,雌球果一般有4~6对苞片,中间2~3对可育,每一苞片腋部着生两枚胚珠,在可育苞片腋部最先观察到一扁平的隆起,并在其上分化出两个胚珠原基,接着分化出珠被和珠心,最后形成扁平而两侧对称的胚珠。在北美香柏雌球果发育过程中,约一半的雌球果在2~3对可育苞片中位于下面的1~2对的腋部产生3个胚珠原基,中间一个较小,并在以后的发育中逐渐退化。由此推测北美香柏的雌球果可能是由祖先类群中每一苞片具多于2个胚珠的雌球果演化而来。在光镜下对雌球果维管系统的观察发现,传粉前幼小雌球果的苞片内仅有一束维管束,传粉后随着苞片基部的居间生长,有4—8束维管束在苞片内形成,但是新发育的维管束木质部和韧皮部相对位置与正常叶性器官一致,这与在以往报道的柏科植物成熟雌球果的苞片中均有反向维管束的发育不同。北美香柏雌球果早期发育和维管束分析结果支持傅德志和杨亲二提出的解释裸子植物生殖器官形态演化的“苞鳞-种鳞复合体”理论。关键词北美香柏;雌球果的发育;胚珠分化;SEM  相似文献   

14.
The micropyle and the integuments of sugar beet (Beta vulgaris) ovules have been investigated by light and electron microscopy during differentiation and maturation of the ovule. The micropyle itself is formed by the inner integument which is surrounded by the outer integument at its base. The micropyle containts a fibrillar PAS+ substance and is often covered by a thin sheet or hymen. Both integuments are cuticle-covered thin sheets, each 2-few cell layers in thickness. In the outer integument an increase in starch accumulation occurs during ovule maturation and probably functions as nutrient storage for embryo development. The inner epidermis of the inner integument differentiates as the most conspicuous cell layer of the beet ovule. During growth and maturation of the ovule a system of small perinuclear vacuoles containing dense material increases steadily in these cells. At maturity this system fills up more than half of each cell and very dense material has accumulated in each vacuole. This vacuole content is highly refractive and contains tannins and/or polyphenols.  相似文献   

15.
Seed cones in Taxodium distichum and Glyptostrobus pensilis occupy the position of permanent shoots and are initiated in the summer preceding spring pollination. Morphological features are similar in the two genera, reflecting their close taxonomic relationship. Ovule complexes originate as two (rarely more) ovule primordia in the axil of each fertile bract but without any indication of a preceding discrete ovuliferous scale. When the nucellus, integument, and micropyle are well developed, a series of up to ll abaxial lobes forms at the base of each ovule pair. They become fused by basal growth. After pollination the common basal meristem of lobes and bract extends by intercalary growth to form the conspicuous “ovuliferous scale” of the mature cone; the lobes enlarge and exceed the ovules. Despite the topographic similarity in the cones of both genera, there are differences in vasculature such that the vascular traces to the axillary complex originate directly from the axial cylinder in Glyptostrobus but from the bract trace in Taxodium. The complex vasculature of the mature cone develops late and primarily as an expression of intercalary growth.  相似文献   

16.
Cephalotaxus wilsoniana Hay, is endemic to Taiwan. This study was performed morphologically and anatomically to investigate reproduction in this species for the purpose of conservation. The duration from reproductive bud formation to fertilization in C. wilsoniana lasts about one year and five months. Buds are initiated in late January and differentiate into one vegetative bud and 3 female cones in late February. A female cone is constructed with 4 pairs of decussate opposite bracts. A small ridge-like secondary axis sits on the axil of each bract. Two ovules are borne on both sides of each secondary axis. A lysogenous pollen chamber begins to be formed from the degenerative tissues on the top end of the nucellus in early March. In late March the megasporogenous tissue is differentiated in the core center of the nucellus, and the micropyle closes gradually after pollination. By late July, pollen tubes have developed in the pollen chamber, and the megaspore mother cell appears. Then the functional megaspore becomes active in mid-October. The 8 free nucleate macrogametophyte appears in late December. From January to late March of the following year, the elliptical cyst-like female gametophyte keeps growing through continuous divisions of its free nuclei. The cyst layer of protoplast thickens in early April. In mid-April, cell walls begin to form among free nuclei. The archegonia are initiated in late April. Pollen tubes extend their tips to the macrogametophyte in early May, and each tube with 2 spermatozoids reaches a mature archegonium with an egg needed to perform fertilization in late May. Generally, only 1-(3) ovules in each cone can become mature.  相似文献   

17.
The earliest indication of ovule abortion in almond (Prunus dulcis [Mill.] D. A. Webb ‘Nonpareil‘) is the deposition of callose (as indicated by aniline blue fluorescence) 2 days after pollination which is 2 days before clear histological symptoms of ovule degeneration are evident and 6 days before fertilization of the viable ovule. Callose deposition begins in the chalazal region of the nucellus where the funicular trace enters the ovule and ramifies into the integuments. As ovule abortion progresses, callose deposition in the inner integument extends as a ring around the nucellus. Movement of the fluorescent dye disodium fluorescein (uranin) indicated that translocation from the vascular trace into abortive ovules becomes blocked at the chalazal position. The dye freely penetrates and diffuses into viable ovules but fails to penetrate abortive ovules. Lack of, or delayed and irregular, megagametophyte development was another characteristic of abortive ovules. Biochemical and histochemical analyses of abortive and viable ovules indicated that carbohydrate depletion parallels ovule abortion. These observations lead to the conclusion that ovule abortion is accompanied by blockage in metabolite supply although whether this blockage is the primary cause or a consequence of ovule abortion is uncertain.  相似文献   

18.
Numerous anatomically preserved ovules assignable to the genus Mitrospermum have been discovered in Upper Pennsylvanian sediments of Eastern Ohio. Although basically similar to Mitrospermum compressum, the newly discovered specimens exhibit several consistent differences. Ovules are strongly platyspermic, up to 4.2 mm long, 4.0 mm wide, and 0.6 mm thick. In the minor plane, ovules are broadest at the base and taper toward the micropyle. The integument exhibits three topographic regions: endotesta, sclerotesta, and sarcotesta. The sarcotesta is extremely broad in the major plane, where it forms two membranous wings. A single terete vascular bundle enters the base of the ovule, traverses the integument, and divides to form two integumentary bundles and a conspicuous nucellar platform. Integumentary bundles extend toward the tip of the ovule at the margin of the sarcotesta and sclerotesta. A pollen chamber with a prominent nucellar beak is delimited at the tip of the nucellus. Consistent differences in vascularization, size, nature of the seed base, features of the pollen chamber, and the Late Pennsylvanian age demonstrate that the specimens represent a distinct species. The discovery of these ovules extends the stratigraphic range of Mitrospermum to the Upper Pennsylvanian of Ohio.  相似文献   

19.
Observation of ovulate cones at the time of pollination in the southern coniferous family Podocarpaceae demonstrates a distinctive method of pollen capture, involving an extended pollination drop. Ovules in all genera of the family are orthotropous and single within the axil of each fertile bract. In Microstrobus and Phyllocladus ovules are erect (i.e., the micropyle directed away from the cone axis) and are not associated with an ovule-supporting structure (epimatium). Pollen in these two genera must land directly on the pollination drop in the way usual for gymnosperms, as observed in Phyllocladus. In all other genera, the ovule is inverted (i.e., the micropyle is directed toward the cone axis) and supported by a specialized ovule-supporting structure (epimatium). In Saxegothaea there is no pollination drop and gametes are delivered to the ovule by pollen tube growth. Pollination drops were observed in seven of the remaining genera. In these genera the drop extends over the adjacent bract surface or cone axis and can retain pollen that has arrived prior to drop secretion (“pollen scavenging”). The pollen floats upward into the micropylar cavity. The configuration of the cone in other genera in which a pollination drop has not yet been observed directly suggests that pollen scavenging is general within the family and may increase pollination efficiency by extending pollination in space and time. Increased pollination efficiency may relate to the reduction of ovule number in each cone, often to one in many genera, a derived condition. A biological perspective suggests that animal dispersal of large seeds may be the ultimate adaptive driving force that has generated the need for greater pollination efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号