首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
湖泊微生物硝化过程研究进展   总被引:3,自引:0,他引:3  
孙小溪  蒋宏忱 《微生物学报》2020,60(6):1148-1161
湖泊中微生物介导的硝化作用在生境内部氮周转和温室气体N_2O释放方面扮演着关键的角色。因此,研究湖泊微生物硝化过程及速率有助于我们整体评估湖泊生境内部的氮循环状态,全面认识湖泊响应区域乃至全球气候变化的规律。本文综述了湖泊生境中硝化过程及其驱动微生物和影响因素,包括氨氧化过程、亚硝酸盐氧化过程和完全氨氧化过程,同时聚焦前沿,归纳了氨氧化古菌、氨氧化细菌和完全氨氧化菌产生N_2O的机制和相对贡献。最后对湖泊硝化过程研究现状和未来发展方向提出总结和展望。  相似文献   

2.
微生物在近海氮循环过程的贡献与驱动机制   总被引:1,自引:0,他引:1  
人类活动导致海岸带氮超载而富营养化,进而引起更多的生态环境问题.在全球变化背景下,进一步揭示微生物驱动的氮循环过程的驱动机制及贡献,对评价与预测近海生态系统服务功能变化、管理决策等至关重要.本文介绍了固氮、氨化、硝化、反硝化、硝酸盐铵化、厌氧氨氧化过程在近海多种生境沉积物中的生物地球化学(速率、通量、贡献)与微生物生态学(功能类群丰度)特征及时空变化规律,阐述温度、溶氧、盐度、活性溶解有机碳、无机氮、沉水植物、底栖动物活动等因素对各过程速率的影响及对各竞争性类群或过程(氨氧化细菌/氨氧化古菌,反硝化/硝酸盐铵化/厌氧氨氧化)的调控机制,并简析了海岸带微生物氮循环研究所面临的机遇与挑战.  相似文献   

3.
【目的】探究中性厌氧条件下,金属锌影响下硝酸盐依赖型铁氧化菌Pseudomonas stutzeri LS-2驱动的硝酸盐还原耦合亚铁氧化成矿过程机制,对深入理解中性厌氧环境中微生物亚铁氧化驱动的反硝化作用及重金属固定机制具有重要意义。【方法】以不同Zn(Ⅱ)浓度构建LS-2驱动的亚铁氧化成矿体系,分析不同体系中亚铁氧化速率、硝酸盐还原速率以及形成矿物的结构变化规律。【结果】LS-2驱动的硝酸盐还原耦合亚铁氧化成矿过程中,共存Zn(Ⅱ)降低该过程中硝酸盐的还原速率和亚铁氧化速率。同时,随着Zn(Ⅱ)浓度提高,抑制作用增强。微生物亚铁氧化形成的矿物通过吸附、共沉淀和离子置换等过程固定Zn(Ⅱ),降低Zn(Ⅱ)活性。Zn(Ⅱ)浓度对形成的矿物结构有较大的影响:低浓度Zn(Ⅱ)体系中,形成的矿物为纤铁矿;随着Zn(Ⅱ)浓度的提高,矿物结构与结晶度都有一定程度的变化,当Zn(Ⅱ)达到4 mmol/L时,形成的矿物主要为铁锌尖晶石。【结论】明确了重金属锌对LS-2菌株反硝化及亚铁氧化过程的抑制规律,同时阐明了Zn(Ⅱ)浓度对形成矿物结构的影响。研究结果有助于深入认识中性厌氧环境中重金属与微生物驱动的铁循环和反硝化过程的耦合作用,为土壤重金属污染防治提供理论支撑。  相似文献   

4.
微生物厌氧甲烷氧化反硝化研究进展   总被引:4,自引:0,他引:4  
厌氧甲烷氧化反硝化过程(Denitrifying anaerobic methane oxidation,DAMO)以甲烷为电子供体进行反硝化作用,在实现废水脱氮处理的同时,可有效削减温室气体甲烷的排放,从而减缓全球温室效应。相关机制研究集中在逆向产甲烷途径耦合反硝化和亚硝酸盐依赖型厌氧甲烷氧化(nitrite-dependent anaerobic methane oxidation,n-damo)两个方面。鉴于厌氧甲烷氧化反硝化过程对全球碳氮物质循环的重要意义,本文对近年来厌氧甲烷氧化反硝化过程的研究进展进行了概述,着重阐述了有关厌氧甲烷氧化反硝化微生物富集培养物,特别是含Candidatus Methylomirabilis oxyfera(M.oxyfera)富集培养物的微生物特性、甲烷氧化反硝化的机理以及影响因子。在此基础上,探讨了厌氧甲烷氧化反硝化过程未来的研究方向和工业化应用前景。  相似文献   

5.
【目的】探究不同菌浓度和亚铁浓度条件下,Acidovorax sp. strain BoFeN1介导的厌氧亚铁氧化耦合硝酸盐还原过程的动力学和次生矿物。【方法】构建包含菌BoFeN1、硝酸盐、亚铁的厌氧培养体系,测试硝酸根、亚硝酸根、乙酸根、亚铁等浓度,并收集次生矿物,采用XRD、SEM进行矿物种类和形貌表征。【结果】在微生物介导硝酸盐还原耦合亚铁氧化的体系中,高菌浓度促进硝酸盐还原,对亚铁氧化也有一定促进作用;高浓度亚铁在低菌浓度下氧化反应速率和程度降低,但是在高菌浓度下无明显影响;亚铁浓度越高次生矿物结晶度越高,但对硝酸盐还原具有一定抑制作用。在微生物介导亚硝酸盐还原耦合亚铁氧化的体系中,高的菌浓度和亚铁浓度都会促进亚硝酸盐还原,但亚铁氧化的次生矿物会对亚硝酸盐的微生物还原产生较强的抑制作用,次生矿物的种类和结晶度主要受亚铁浓度影响。【结论】硝酸盐还原主要是生物反硝化作用,亚硝酸盐还原包含生物反硝化和化学反硝化两部分,在硝酸盐体系中亚铁氧化与次生矿物生成是受生物和化学反硝化作用的共同影响,但亚硝酸盐体系中亚铁氧化与次生矿物生成主要是受化学反硝化作用影响。该研究可为深入理解厌氧微生物介导铁氮耦合反应机制提供基础数据和理论支撑。  相似文献   

6.
微生物甲烷氧化反硝化耦合反应研究进展   总被引:2,自引:1,他引:1  
甲烷氧化反硝化耦合过程是连接碳循环和氮循环的重要桥梁.该过程的深入研究有助于完善人们对全球碳氮生物化学循环的认识.甲烷作为反硝化外加气体碳源,既能调控大气甲烷平衡,有效减缓由甲烷引起的温室效应,又能降低反硝化工艺中因投入外加碳源带来的成本.因此近年来甲烷氧化反硝化耦合反应及其机理研究倍受关注.本文主要讨论了好氧和厌氧两种类型的甲烷氧化反硝化过程,重点对其微生物耦合反应机理及其影响因素进行了综述,同时指出了其工程化应用存在的问题,并对其应用前景提出展望.
  相似文献   

7.
土壤氮素转化的关键微生物过程及机制   总被引:47,自引:0,他引:47  
微生物是驱动土壤元素生物地球化学循环的引擎.氮循环是土壤生态系统元素循环的核心之一,其四个主要过程,即生物固氮作用、氨化作用、硝化作用、反硝化作用,均由微生物所驱动.近10年来,随着免培养的分子生态学技术和高通量测序技术等的发展,在硝化微生物多样性及其作用机理、厌氧氨氧化过程和机理等研究方面取得了突破性进展.本文重点阐述了我国有关土壤硝化微生物方面的研究进展,在此基础上,简要介绍了反硝化微生物和厌氧氨氧化及硝酸盐异化还原成铵作用的研究进展,并对今后的研究工作提出了展望.今后土壤氮素转化微生物生态学的研究,应瞄准国际微生生态学发展的前沿,加强新技术新方法的应用,结合我国农业可持续发展、资源环境保护和全球变化研究的重大需求,重点开展以下几方面的工作:(1)开展大尺度上土壤硝化作用及氨氧化微生物分布的时空演变特征及驱动因子的研究;(2)加强氮素转化关键微生物过程与机理的研究,并与相关过程的通量(如氨挥发、N2O释放)和反应速率(如矿化速率、硝化速率)关联起来;(3)在特定生态系统中系统研究各个氮转化过程的耦合关系,构建相关氮素转化和氮素平衡模型,为定向调控土壤氮素转化过程,提高氮素利用效率并减少其负面效应提供科学依据.  相似文献   

8.
微生物驱动的氮循环过程在红树林生态系统物质循环、净化外来污染物、维持生态系统平衡等方面起重要作用。相较于其他自然生态系统,因红树林处于沿海陆地交界地带,其氮循环过程及其相关微生物的种类丰富,受交错复杂的环境因素影响与调控。本文梳理了红树林土壤性质及特性,综述了红树林生态系统中由微生物驱动的固氮、氮素矿化、硝化、厌氧氨氧化、反硝化、异化硝酸盐还原为铵等主要的氮循环过程,并讨论了氮循环与其他循环的耦合过程。最后讨论pH、盐度、季节、螃蟹活动、红树林树种等环境因素对氮循环过程及其相关微生物丰度、多样性的影响。本综述以期为红树林湿地生态系统的保护和修复提供理论参考。  相似文献   

9.
全程硝化菌微生物学特性及在水处理领域的应用潜力   总被引:1,自引:0,他引:1  
全程硝化菌是近期微生物氮循环领域的重大发现之一,引发了对其全球分布、系统发育特征和生理生化特性的广泛关注。本文综述了全程硝化菌在土壤、地表水、废水处理系统等生境的分布规律及影响因子;并从底物亲和力、代谢多样性等方面阐述了其与传统硝化微生物间的竞争互作和生态位分离机制;基于上述特征提出全程硝化菌在水处理领域中的应用前景,可能与其他脱氮微生物如反硝化菌、厌氧氨氧化菌和厌氧甲烷氧化菌等耦合实现在低氨氮、低溶解氧条件下的污水深度脱氮,从而节省能耗并降低温室气体排放。未来研究应继续深入研究全程硝化菌的生理生化特性,评价其生态功能和对氮素地球化学循环的贡献,并探索其在生物水处理等领域的应用潜力。  相似文献   

10.
热泉微生物是驱动热泉氮(N)循环的主导力量,开展热泉生态系统中驱动氮循环微生物种群构成及其与环境响应的研究,对于探索热泉中氮的生物地球化学循环、生命进化、生物修复等方面都具有重要的理论和应用价值。本文综合阐述了热泉生态系统驱动氮循环的功能微生物(如固氮菌、氨氧化菌、厌氧氨氧化菌、反硝化菌、异化硝酸盐还原菌)在系统发育学上的分布、功能基因的相对丰度、活性及其与环境因子(如温度、pH)的相关性等方面的研究现状和亟待解决的问题。并展望了热泉生境中驱动氮循环微生物未来的研究方向。  相似文献   

11.
湖泊氮素氧化及脱氮过程研究进展   总被引:7,自引:0,他引:7  
范俊楠  赵建伟  朱端卫 《生态学报》2012,32(15):4924-4931
自然界中氮的生物地球化学循环主要由微生物驱动,由固氮作用、硝化作用、反硝化作用和氨化作用来完成。过去数十年间,随着异养硝化、厌氧氨氧化和古菌氨氧化作用的发现,人们对环境中氮素循环认识逐步深入,提出了多种脱氮途径新假说。对湖泊生态系统中氮素的输入、输出及其在水体、沉积物和水土界面的迁移转化过程进行了概括,对湖泊生态系统中反硝化和厌氧氨氧化脱氮机理及脱氮效率的最新研究进展进行了探讨,并对以后的氮素循环研究进行了展望。  相似文献   

12.
Anaerobic ammonium oxidation (anammox) and anaerobic methane oxidation (ANME coupled to denitrification) with nitrite as electron acceptor are two of the most recent discoveries in the microbial nitrogen cycle. Currently the anammox process has been relatively well investigated in a number of natural and man-made ecosystems, while ANME coupled to denitrification has only been observed in a limited number of freshwater ecosystems. The ubiquitous presence of anammox bacteria in marine ecosystems has changed our knowledge of the global nitrogen cycle. Up to 50% of N2 production in marine sediments and oxygen-depleted zones may be attributed to anammox bacteria. However, there are only few indications of anammox in natural and constructed freshwater wetlands. In this paper, the potential role of anammox and denitrifying methanotrophic bacteria in natural and artificial wetlands is discussed in relation to global warming. The focus of the review is to explore and analyze if suitable environmental conditions exist for anammox and denitrifying methanotrophic bacteria in nitrogen-rich freshwater wetlands.  相似文献   

13.
In the global nitrogen cycle, bacterial denitrification is recognized as the only quantitatively important process that converts fixed nitrogen to atmospheric nitrogen gas, N(2), thereby influencing many aspects of ecosystem function and global biogeochemistry. However, we have found that a process novel to the marine nitrogen cycle, anaerobic oxidation of ammonium coupled to nitrate reduction, contributes substantially to N(2) production in marine sediments. Incubations with (15)N-labeled nitrate or ammonium demonstrated that during this process, N(2) is formed through one-to-one pairing of nitrogen from nitrate and ammonium, which clearly separates the process from denitrification. Nitrite, which accumulated transiently, was likely the oxidant for ammonium, and the process is thus similar to the anammox process known from wastewater bioreactors. Anaerobic ammonium oxidation accounted for 24 and 67% of the total N(2) production at two typical continental shelf sites, whereas it was detectable but insignificant relative to denitrification in a eutrophic coastal bay. However, rates of anaerobic ammonium oxidation were higher in the coastal sediment than at the deepest site and the variability in the relative contribution to N(2) production between sites was related to large differences in rates of denitrification. Thus, the relative importance of anaerobic ammonium oxidation and denitrification in N(2) production appears to be regulated by the availability of their reduced substrates. By shunting nitrogen directly from ammonium to N(2), anaerobic ammonium oxidation promotes the removal of fixed nitrogen in the oceans. The process can explain ammonium deficiencies in anoxic waters and sediments, and it may contribute significantly to oceanic nitrogen budgets.  相似文献   

14.
Due to serious eutrophication in water bodies, nitrogen removal has become a critical stage for wastewater treatment plants (WWTPs) over past decades. Conventional biological nitrogen removal processes are based on nitrification and denitrification (N/DN), and are suffering from several major drawbacks, including substantial aeration consumption, high fugitive greenhouse gas emissions, a requirement for external carbon sources, excessive sludge production and low energy recovery efficiency, and thus unable to satisfy the escalating public needs. Recently, the discovery of anaerobic ammonium oxidation (anammox) bacteria has promoted an update of conventional N/DN-based processes to autotrophic nitrogen removal. However, the application of anammox to treat domestic wastewater has been hindered mainly by unsatisfactory effluent quality with nitrogen removal efficiency below 80%. The discovery of nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) during the last decade has provided new opportunities to remove this barrier and to achieve a robust system with high-level nitrogen removal from municipal wastewater, by utilizing methane as an alternative carbon source. In the present review, opportunities and challenges for nitrate/nitrite-dependent anaerobic methane oxidation are discussed. Particularly, the prospective technologies driven by the cooperation of anammox and n-DAMO microorganisms are put forward based on previous experimental and modeling studies. Finally, a novel WWTP system acting as an energy exporter is delineated.  相似文献   

15.
In the global nitrogen cycle, bacterial denitrification is recognized as the only quantitatively important process that converts fixed nitrogen to atmospheric nitrogen gas, N2, thereby influencing many aspects of ecosystem function and global biogeochemistry. However, we have found that a process novel to the marine nitrogen cycle, anaerobic oxidation of ammonium coupled to nitrate reduction, contributes substantially to N2 production in marine sediments. Incubations with 15N-labeled nitrate or ammonium demonstrated that during this process, N2 is formed through one-to-one pairing of nitrogen from nitrate and ammonium, which clearly separates the process from denitrification. Nitrite, which accumulated transiently, was likely the oxidant for ammonium, and the process is thus similar to the anammox process known from wastewater bioreactors. Anaerobic ammonium oxidation accounted for 24 and 67% of the total N2 production at two typical continental shelf sites, whereas it was detectable but insignificant relative to denitrification in a eutrophic coastal bay. However, rates of anaerobic ammonium oxidation were higher in the coastal sediment than at the deepest site and the variability in the relative contribution to N2 production between sites was related to large differences in rates of denitrification. Thus, the relative importance of anaerobic ammonium oxidation and denitrification in N2 production appears to be regulated by the availability of their reduced substrates. By shunting nitrogen directly from ammonium to N2, anaerobic ammonium oxidation promotes the removal of fixed nitrogen in the oceans. The process can explain ammonium deficiencies in anoxic waters and sediments, and it may contribute significantly to oceanic nitrogen budgets.  相似文献   

16.
滨海湿地生态系统微生物驱动的氮循环研究进展   总被引:5,自引:0,他引:5  
滨海湿地生态系统介于陆地生态系统和海洋生态系统之间,其类型多种多样,环境差异极大,微生物种类丰富。近年来,随着人为氮源的大量输入,造成滨海湿地生态系统富营养化污染问题日趋严重。本文主要总结了滨海湿地生态系统微生物驱动的固氮、硝化、反硝化、厌氧氨氧化、NO_3~-还原成铵等主要氮循环过程,并综述了通过功能基因(如nifH、amoA、hzo、nirS、nirK、nrfA)检测微生物群落多样性及其环境影响因素的相关研究,旨在更好理解微生物驱动氮循环过程以去除氮,以期为减轻富营养化和危害性藻类爆发提供科学依据。  相似文献   

17.
苏雷  向韬  李倩倩  马哲 《微生物学报》2023,63(4):1379-1391
厌氧氨氧化菌(anaerobic ammonia-oxidizing bacteria, AnAOB)的代谢多样性,使得该菌群能够在海洋、湿地和陆地等不同的自然生态系统中广泛分布,甚至在一些极热和极寒环境中也检测到了该菌群的存在。本文回顾并总结了厌氧氨氧化菌在不同生态系统中的发现、分布及脱氮贡献等方面的研究,分析了厌氧氨氧化菌分布的主要环境影响因素。该综述将帮助我们更好地理解全球氮循环中厌氧氨氧化菌的实际角色和功能,并基于厌氧氨氧化(anaerobicammoniaoxidation,anammox)过程,探究能与其进行协作的新型生物脱氮工艺,以期为这些工艺的研发和推广提供生态学基础和新的思考,从而实现脱氮工艺的技术变革。  相似文献   

18.
The nitrogen cycle describes the processes through which nitrogen is converted between its various chemical forms. These transformations involve both biological and abiotic redox processes. The principal processes involved in the nitrogen cycle are nitrogen fixation, nitrification, nitrate assimilation, respiratory reduction of nitrate to ammonia, anaerobic ammonia oxidation (anammox) and denitrification. All of these are carried out by micro-organisms, including bacteria, archaea and some specialized fungi. In the present article, we provide a brief introduction to both the biochemical and ecological aspects of these processes and consider how human activity over the last 100?years has changed the historic balance of the global nitrogen cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号