首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Biological phenol degradation in a draft tube gas-liquid-solid fluidized bed (DTFB) bioreactor containing a mixed culture immobilized on spherical activated carbon particles was investigated. The characteristics of biofilms including the biofilm dry density and thickness, the volumetric oxygen mass transfer coefficient, and the phenol removal rates under different operating conditions in the DTFB were evaluated. A phenol degradation rate as high as 18 kg/m(3)-day with an effluent phenol concentration less than 1 g/m(3) was achieved, signifying the high treatment efficiency of using a DTFB.  相似文献   

2.
The ability for a biofilm to grow and function is critically dependent on the nutrient availability, and this in turn is dependent on the structure of the biofilm. This relationship is therefore an important factor influencing biofilm maturation. Nutrient transport in bacterial biofilms is complex; however, mathematical models that describe the transport of particles within biofilms have made three simplifying assumptions: the effective diffusion coefficient (EDC) is constant, the EDC is that of water, and/or the EDC is isotropic. Using a Monte Carlo simulation, we determined the EDC, both parallel to and perpendicular to the substratum, within 131 real, single species, three-dimensional biofilms that were constructed from confocal laser scanning microscopy images. Our study showed that diffusion within bacterial biofilms was anisotropic and depth dependent. The heterogeneous distribution of bacteria varied between and within species, reducing the rate of diffusion of particles via steric hindrance. In biofilms with low porosity, the EDCs for nutrient transport perpendicular to the substratum were significantly lower than the EDCs for nutrient transport parallel to the substratum. Here, we propose a reaction-diffusion model to describe the nutrient concentration within a bacterial biofilm that accounts for the depth dependence of the EDC.  相似文献   

3.
A fluidized-bed biofilm reactor using activated carbon particles of 1.69 mm diameter as the support for biomass growth and molasses as the carbon source is used for wastewater denitrification.The start-up of the reactor was successfully achieved in 1 week by using a liquor from garden soil leaching as the inoculum and a superficial velocity u(0) = 5u(mf). Typical biofilm thickness is 800 mum; therefore covered activated carbon particles have 3.3 mm in diameter.Reactor hydrodynamics was studied by tracer (KCl solution) experiments. The analysis based on residence time distribution theory involved a model with axial dispersion flow and tracer diffusion with linear adsorption inside the biofilm. Peclet numbers higher than 100 were found, allowing the plug flow assumption for the reactor model.Experimental profiles of nitrate and nitrite species were explained by a kinetic model of two consecutive zero-order reactions coupled with substrate diffusion inside the biofilm. Under the operating conditons used thick biofilms were obtained working in a diffusion-controlled regime.Comparison is made with results obtained in the same reactor with sand particles as the support for biomass growth. Activated carbon as the support has the following advantages: good adsorptive characteristics, homogeneous biofilm thickness along the reactor, and easy restart-up of the reactor. (c) 1992 John Wiley & Sons, Inc.  相似文献   

4.
The effect of liquid flow velocity on biofilm development in a membrane-aerated biofilm reactor was investigated both by mathematical modeling and by experiment, using Vibrio natriegens as a test organism and acetate as carbon substrate. It was shown that velocity influenced mass transfer in the diffusion boundary layer, the biomass detachment rate from the biofilm, and the maximum biofilm thickness attained. Values of the overall mass transfer coefficient of a tracer through the diffusion boundary layer, the biofilm, and the membrane were shown to be identical during different experiments at the maximum biofilm thickness. Comparison of the results with published values of this parameter in membrane attached biofilms showed a similar trend. Therefore, it was postulated that this result might indicate the mechanism that determines the maximum biofilm thickness in membrane attached biofilms. In a series of experiments, where conditions were set so that the active layer of the membrane attached biofilm was located close to the membrane biofilm interface, it was shown that the most critical effect on process performance was the effect of velocity on biofilm structure. Biofilm thickness and effective diffusivity influenced reaction and diffusion in a complex manner such that the yield of biomass on acetate was highly variable. Consideration of endogenous respiration in the mathematical model was validated by direct experimental measurements of yield coefficients. Good agreement between experimental measurements of acetate and oxygen uptake rates and their prediction by the mathematical model was achieved.  相似文献   

5.
A novel technique has been used to determine the effective diffusion coefficients for 1,1,2-trichloroethane (TCE), a nonreacting tracer, in biofilms growing on the external surface of a silicone rubber membrane tube during degradation of 1,2-dichloroethane (DCE) by Xanthobacter autotrophicus GJ10 and monochlorobenzene (MCB) by Pseudomonas JS150. Experiments were carried out in a single tube extractive membrane bioreactor (STEMB), whose configuration makes it possible to measure the transmembrane flux of substrates. A video imaging technique (VIT) was employed for in situ biofilm thickness measurement and recording. Diffusion coefficients of TCE in the biofilms and TCE mass transfer coefficients in the liquid films adjacent to the biofilms were determined simultaneously using a resistances-in-series diffusion model. It was found that the flux and overall mass transfer coefficient of TCE decrease with increasing biofilm thickness, showing the importance of biofilm diffusion on the mass transfer process. Similar fluxes were observed for the nonreacting tracer (TCE) and the reactive substrates (MCB or DCE), suggesting that membrane-attached biofilm systems can be rate controlled primarily by substrate diffusion. The TCE diffusion coefficient in the JS150 biofilm appeared to be dependent on biofilm thickness, decreasing markedly for biofilm thicknesses of >1 mm. The values of the TCE diffusion coefficients in the JS150 biofilms <1-mm thick are approximately twice those in water and fall to around 30% of the water value for biofilms >1-mm thick. The TCE diffusion coefficients in the GJ10 biofilms were apparently constant at about the water value. The change in the diffusion coefficient for the JS150 biofilms is attributed to the influence of eddy diffusion and convective flow on transport in the thinner (<1-mm thick) biofilms.  相似文献   

6.
The effect on intra-membrane oxygen pressure at a constant carbon substrate loading rate on the development of biofilms of Vibrio natrigens in a membrane aerated biofilm reactor (MABR) was investigated experimentally and by mathematical modelling. A recently reported technique (Zhang et al., 1998. Biotechnol. Bioeng. 59: 80-89) for the in situ measurement of the substrate diffusion coefficients in a growing biofilm and the mass transfer coefficients in the boundary layer at the biofilm liquid interface was used. This aided the study of the effect of the heterogeneous biofilm structure and also improved the reliability of the model predictions. The different intra-membrane oxygen pressures used, 12.5, 25 and 50 kPa, with acetate as the carbon substrate, showed a marked effect on the initial biofilm growth rate, on acetate removal rate, particularly in thick biofilms and on biofilm structure. The model predicted the substrate limitation regimes, the location of the active biomass layer within the biofilms and the trends in oxygen uptake rate through the membrane into the biofilms. During the development of the biofilms, the biofilm thickness and the intra-membrane oxygen pressure were found to be the most important parameters influencing the MABR performance while the effect of biofilm structure was less marked.  相似文献   

7.
Biological phenol degradation was performed experimentally in a gas-liquid-solid fluidized bed bioreactor using a mixed culture of living cells immobilized on activated carbon particles. A comprehensive model was developed for this system utilizing double-substrate limiting kinetics. The model was used to simulate the effects of changing inlet phenol concentration and biofilm thickness on the rate of biodegradation for two different types of support particles. The model shows that gas-liquid mass transfer is the limiting step in the rate of phenol biodegradation when the phenol loading is high.  相似文献   

8.
Pseudomonas putida ATCC 11172 was grown in continuous culture with phenol as the only carbon and energy source; a culture practically without biofilm was compared with biofilm cultures of differing surface area/volume ratios. The biofilm did not significantly affect the maximal suspended cell concentration in the effluent, but it increased the maximal phenol reduction rate from 0.23 g/liter per h (without biofilm) to 0.72 g/liter per h at the highest biofilm level (5.5 cm2 of biofilm surface per ml of reactor volume). The increase in phenol reduction rate was linear up to the surface area/volume ratio of 1.4 cm2/ml. The continuous cultures with biofilms could tolerate a higher phenol concentration of the medium (3.0 g/liter) than the nonbiofilm system (2.5 g/liter). At higher dilution rates an intermediate product, 2-hydroxymuconic semialdehyde, accumulated in the culture. When the biomass of the effluent started to decrease, the concentration of 2-hydroxymuconic semialdehyde reached a peak value. We conclude that biofilms in continuous culture have the potential to enhance the aerobic degradation of aromatic compounds.  相似文献   

9.
Pseudomonas putida ATCC 11172 was grown in continuous culture with phenol as the only carbon and energy source; a culture practically without biofilm was compared with biofilm cultures of differing surface area/volume ratios. The biofilm did not significantly affect the maximal suspended cell concentration in the effluent, but it increased the maximal phenol reduction rate from 0.23 g/liter per h (without biofilm) to 0.72 g/liter per h at the highest biofilm level (5.5 cm2 of biofilm surface per ml of reactor volume). The increase in phenol reduction rate was linear up to the surface area/volume ratio of 1.4 cm2/ml. The continuous cultures with biofilms could tolerate a higher phenol concentration of the medium (3.0 g/liter) than the nonbiofilm system (2.5 g/liter). At higher dilution rates an intermediate product, 2-hydroxymuconic semialdehyde, accumulated in the culture. When the biomass of the effluent started to decrease, the concentration of 2-hydroxymuconic semialdehyde reached a peak value. We conclude that biofilms in continuous culture have the potential to enhance the aerobic degradation of aromatic compounds.  相似文献   

10.
Members of a triple-species 3-(3,4-dichlorophenyl)-1-methoxy-1-methyl urea (linuron)-mineralizing consortium, i.e. the linuron- and 3,4-dichloroaniline-degrading Variovorax sp. WDL1, the 3,4-dichloroaniline-degrading Comamonas testosteroni WDL7 and the N,O-dimethylhydroxylamine-degrading Hyphomicrobium sulfonivorans WDL6, were cultivated as mono- or multi-species biofilms in flow cells irrigated with selective or nonselective media, and examined with confocal laser scanning microscopy. In contrast to mono-species biofilms of Variovorax sp. WDL1, the triple-species consortium biofilm degraded linuron completely through apparent synergistic interactions. The triple-species linuron-fed consortium biofilm displayed a heterogeneous structure with an irregular surface topography that most resembled the topography of linuron-fed mono-species WDL1 biofilms, indicating that WDL1 had a dominating influence on the triple-species biofilm architecture. This architecture was dependent on the carbon source supplied, as the biofilm architecture of WDL1 growing on alternative carbon sources was different from that observed under linuron-fed conditions. Linuron-fed triple-species consortium biofilms consisted of mounds composed of closely associated WDL1, WDL7 and WDL6 cells, while this association was lost when the consortium was grown on a nonselective carbon source. In addition, under linuron-fed conditions, microcolonies displaying associated growth developed rapidly after inoculation. These observations indicate that the spatial organization in the linuron-fed consortium biofilm reflected the metabolic interactions within the consortium.  相似文献   

11.
《Process Biochemistry》2010,45(1):30-38
An Upflow Anaerobic Fixed Bed (UAFB) reactor packed with activated carbon was used to remove the azo dye Reactive red 272. The biomass grown on the activated carbon surface was composed of an adapted consortium of microorganisms. Residence time distribution test indicated that the reactor was a plug flow behavior. A dynamic mathematical model is presented for dye flux along the reactor and within the bioparticles composed of two regions: activated carbon core and biofilm. The model considers that the reaction is performed in the biofilm and in the liquid phase and includes dye transport by dispersion and diffusion. The concentration profile within the bioparticles changes with reactor height and time as the equilibrium is achieved. Changes in dye concentrations affect the concentration profile in the reactor and reduce the removal efficiency. The effectiveness factor depends on the reactor height and on the dye concentration at the inlet.  相似文献   

12.
Summary Selected biofilms attached to granular activated carbon significantly enhance metal recovery through biosorption. To describe uptake of five metals, the Freundlich isotherm model was found superior to the Langmuir. Calculated diffusion coefficients through the biofilm indicated a dependence between diffusivity and metal ion concentration.  相似文献   

13.
Food webs in the rhithral zone rely mainly on allochthonous carbon from the riparian vegetation. However, autochthonous carbon might be more important in open canopy streams. In streams, most of the microbial activity occurs in biofilms, associated with the streambed. We followed the autochthonous carbon transfer toward bacteria and grazing protozoa within a stream biofilm food web. Biofilms that developed in a second-order stream (Thuringia, Germany) were incubated in flow channels under climate-controlled conditions. Six-week-old biofilms received either 13C- or 12C-labeled CO?, and uptake into phospholipid fatty acids was followed. The dissolved inorganic carbon of the flow channel water became immediately labeled. In biofilms grown under 8-h light/16-h dark conditions, more than 50% of the labeled carbon was incorporated in biofilm algae, mainly filamentous cyanobacteria, pennate diatoms, and nonfilamentous green algae. A mean of 29% of the labeled carbon reached protozoan grazer. The testate amoeba Pseudodifflugia horrida was highly abundant in biofilms and seemed to be the most important grazer on biofilm bacteria and algae. Hence, stream biofilms dominated by cyanobacteria and algae seem to play an important role in the uptake of CO? and transfer of autochthonous carbon through the microbial food web.  相似文献   

14.
The spatial distributions of zinc, a representative transition metal, and active biomass in bacterial biofilms were determined using two-photon laser scanning microscopy (2P-LSM). Application of 2P-LSM permits analysis of thicker biofilms than are amenable to observation with confocal laser scanning microscopy and also provides selective excitation of a smaller focal volume with greater depth localization. Thin Escherichia coli PHL628 biofilms were grown in a minimal mineral salts medium using pyruvate as the carbon and energy source under batch conditions, and thick biofilms were grown in Luria-Bertani medium using a continuous-flow drip system. The biofilms were visualized by 2P-LSM and shown to have heterogeneous structures with dispersed dense cell clusters, rough surfaces, and void spaces. Contrary to homogeneous biofilm model predictions that active biomass would be located predominantly in the outer regions of the biofilm and inactive or dead biomass (biomass debris) in the inner regions, significant active biomass fractions were observed at all depths in biofilms (up to 350 microm) using live/dead fluorescent stains. The active fractions were dependent on biofilm thickness and are attributed to the heterogeneous characteristics of biofilm structures. A zinc-binding fluorochrome (8-hydroxy-5-dimethylsulfoamidoquinoline) was synthesized and used to visualize the spatial location of added Zn within biofilms. Zn was distributed evenly in a thin (12 microm) biofilm but was located only at the surface of thick biofilms, penetrating less than 20 microm after 1 h of exposure. The relatively slow movement of Zn into deeper biofilm layers provides direct evidence in support of the concept that thick biofilms may confer resistance to toxic metal species by binding metals at the biofilm-bulk liquid interface, thereby retarding metal diffusion into the biofilm (G. M. Teitzel and M. R. Park, Appl. Environ. Microbiol. 69:2313-2320, 2003).  相似文献   

15.
The documented release of carbon fines from granular activated carbon filters is a concern for drinking water utilities, since these particles may carry coliform and even pathogenic bacteria through the disinfection barrier. Such a breakthrough could have an impact on distribution system biofilms. Using total cell counts, specific monoclonal antibody staining, and computerized image analysis, we monitored the colonization of introduced Klebsiella pneumoniae associated with carbon fines in mixed-population biofilms. The particles transported the coliforms to the biofilms and allowed successful colonization. Chlorine (0.5 mg/liter) was then applied as a disinfectant. Most K. pneumoniae along with the carbon fines left the biofilm under these conditions. The impact of chlorine was greater on the coliform bacteria and carbon fines than on the general fixed bacterial population. However, 10% of the introduced coliforms and 20% of the fines remained in the biofilm. The possibility that this represents a mechanism for bacteria of public health concern to be involved in regrowth events is discussed.  相似文献   

16.
Diffusive mass transfer in biofilms is characterized by the effective diffusion coefficient. It is well documented that the effective diffusion coefficient can vary by location in a biofilm. The current literature is dominated by effective diffusion coefficient measurements for distinct cell clusters and stratified biofilms showing this spatial variation. Regardless of whether distinct cell clusters or surface‐averaging methods are used, position‐dependent measurements of the effective diffusion coefficient are currently: (1) invasive to the biofilm, (2) performed under unnatural conditions, (3) lethal to cells, and/or (4) spatially restricted to only certain regions of the biofilm. Invasive measurements can lead to inaccurate results and prohibit further (time‐dependent) measurements which are important for the mathematical modeling of biofilms. In this study our goals were to: (1) measure the effective diffusion coefficient for water in live biofilms, (2) monitor how the effective diffusion coefficient changes over time under growth conditions, and (3) correlate the effective diffusion coefficient with depth in the biofilm. We measured in situ two‐dimensional effective diffusion coefficient maps within Shewanella oneidensis MR‐1 biofilms using pulsed‐field gradient nuclear magnetic resonance methods, and used them to calculate surface‐averaged relative effective diffusion coefficient (Drs) profiles. We found that (1) Drs decreased from the top of the biofilm to the bottom, (2) Drs profiles differed for biofilms of different ages, (3) Drs profiles changed over time and generally decreased with time, (4) all the biofilms showed very similar Drs profiles near the top of the biofilm, and (5) the Drs profile near the bottom of the biofilm was different for each biofilm. Practically, our results demonstrate that advanced biofilm models should use a variable effective diffusivity which changes with time and location in the biofilm. Biotechnol. Bioeng. 2010;106: 928–937. © 2010 Wiley Periodicals, Inc.  相似文献   

17.
The spatial distributions of zinc, a representative transition metal, and active biomass in bacterial biofilms were determined using two-photon laser scanning microscopy (2P-LSM). Application of 2P-LSM permits analysis of thicker biofilms than are amenable to observation with confocal laser scanning microscopy and also provides selective excitation of a smaller focal volume with greater depth localization. Thin Escherichia coli PHL628 biofilms were grown in a minimal mineral salts medium using pyruvate as the carbon and energy source under batch conditions, and thick biofilms were grown in Luria-Bertani medium using a continuous-flow drip system. The biofilms were visualized by 2P-LSM and shown to have heterogeneous structures with dispersed dense cell clusters, rough surfaces, and void spaces. Contrary to homogeneous biofilm model predictions that active biomass would be located predominantly in the outer regions of the biofilm and inactive or dead biomass (biomass debris) in the inner regions, significant active biomass fractions were observed at all depths in biofilms (up to 350 μm) using live/dead fluorescent stains. The active fractions were dependent on biofilm thickness and are attributed to the heterogeneous characteristics of biofilm structures. A zinc-binding fluorochrome (8-hydroxy-5-dimethylsulfoamidoquinoline) was synthesized and used to visualize the spatial location of added Zn within biofilms. Zn was distributed evenly in a thin (12 μm) biofilm but was located only at the surface of thick biofilms, penetrating less than 20 μm after 1 h of exposure. The relatively slow movement of Zn into deeper biofilm layers provides direct evidence in support of the concept that thick biofilms may confer resistance to toxic metal species by binding metals at the biofilm-bulk liquid interface, thereby retarding metal diffusion into the biofilm (G. M. Teitzel and M. R. Park, Appl. Environ. Microbiol. 69:2313-2320, 2003).  相似文献   

18.
Summary The semicontinuous and continuous degradation of phenol by Pseudomonas putida P8 which was immobilized on activated carbon was investigated. The amount of bacteria immobilized on the activated carbon surface dependend on the cell concentration in the suspension and on the type of activated carbon. In a continuous process running for four weeks the biomass, which accumulated in the activated carbon fixed bed, was removed periodically. The average phenol degradation rate in this process was 360 mg/1 h. The degradation activity of the bacteria for phenol, measured by the activity of the catechol-2,3-dioxygenase, was stimulated by the activated carbon. During the fermentation processes the carbon particles were covered with a biofilm. The bacteria grew, especially in the caverns and the entrances of the macropores, whereby the phenol adsorption by the activated carbon was decreased.  相似文献   

19.
Stoodley P  Dodds I  De Beer D  Scott HL  Boyle JD 《Biofouling》2005,21(3-4):161-168
Fluid flow has been shown to be important in influencing biofilm morphology and causing biofilms to flow over surfaces in flow cell experiments. However, it is not known whether similar effects may occur in porous media. Generally, it is assumed that the primary transport mechanism for biomass in porous media is through convection, as suspended particulates (cells and flocs) carried by fluid flowing through the interstices. However, the flow of biofilms over the surfaces of soils and sediment particles, may represent an important flux of biomass, and subsequently affect both biological activity and permeability. Mixed species bacterial biofilms were grown in glass flow cells packed with 1 mm diameter glass beads, under laminar or turbulent flow (porous media Reynolds number = 20 and 200 respectively). The morphology and dynamic behavior reflected those of biofilms grown in the open flow cells. The laminar biofilm was relatively uniform and after 23 d had inundated the majority of the pore spaces. Under turbulent flow the biofilm accumulated primarily in protected regions at contact points between the beads and formed streamers that trailed from the leeward face. Both biofilms caused a 2 to 3-fold increase in friction factor and in both cases there were sudden reductions in friction factor followed by rapid recovery, suggesting periodic sloughing and regrowth events. Time-lapse microscopy revealed that under both laminar and turbulent conditions biofilms flowed over the surface of the porous media. In some instances ripple structures formed. The velocity of biofilm flow was on the order of 10 mum h(-1) in the turbulent flow cell and 1.0 mum h(-1) in the laminar flow cell.  相似文献   

20.
In this work, a new approach is proposed to evaluate substrate consumption rate, average biofilm density and active thickness of a spherical bioparticle in a completely mixed fluidized bed system. The substrate consumption rate and average biofilm density are predicted for a given biofilm surface substrate concentration and operational biofilm thickness. A diffusion and reaction model is developed with an effective diffusion coefficient that depends on the average biofilm density. This approach, a first in the literature, predicts the optimum average density of a biofilm to yield the maximum substrate consumption rate within the biofilm. A reasonable correlation was observed between the model prediction and experimental results for substrate consumption rate and average biofilm density for thin and fully active biofilms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号