首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mathematical model has been developed that predicts the cell population dynamics and production of recombinant protein and infective extracellular virus progeny by insect cells after infection with baculovirus in batch suspension culture. Infection in the model is based on the rate of virus attachment to suspended insect cells under culture conditions. The model links the events following infection with the sequence of gene expression in the baculovirus replicative cycle. Substrate depletion is used to account for the decrease in product yield observed when infecting at high cell densities. Model parameters were determined in shaker flasks for two media: serum-supplemented IPL-41 medium and serum free Sf900II medium. There was good agreement between model predictions and the results from an independent series of experiments performed to validate the mode. The model predicted: (1) the optimal time of infection at high multiplicity of infection: (2) the timing and magnitude of recombinant protein production in a 2-L bioreactor; and (3) the timing and magnitude of recombinant protein production at multiplicities of infection from 0.01 to 100 plaque-forming units per cell. Through its ability to predict optimal infection strategies in batch suspension culture, the model has use in the design and optimization of large-scale systems for the production of recombinant products using the baculovirus expression vector system. (c) 1994 John Wiley & Sons, Inc.  相似文献   

2.
The potential use of a wild-type Helicoverpa baculovirus as a biopesticide, using insect cell culture for its production, has been investigated. A Helicoverpa zea cell line was adapted to grow in suspension culture using a serum-free medium, SF900II and serum supplemented SF900II. The serum supplemented cells were infected with a wild-type nuclear polyhedrosis virus of Helicoverpa armigera (HaNPV), at different stages of growth, in conditioned and tresh medium, to determine the effect of cell density on polyhedra production. Cultures infected at low cell densities, produced similar yields of virus (20–40 PIB/cell), irrespective of medium conditions. However, in infections which occurred at high cell densities, there was a 16-fold improvement in cell specific yields, when the spent medium was renewed with fresh medium prior to infection. Results indicated that only 60–70% of the viable cells in a culture produced polyhedra as a result of infections.  相似文献   

3.
The baculovirus-insect cells expression system was used for the production of self-forming Porcine parvovirus (PPV) like particles (virus-like particles, VLPs) in serum-free medium. At 2l bioreactor scale an efficient production was achieved by infecting the culture at a concentration of 1.5 x 10(6)cells/ml using a low multiplicity of infection of 0.05 pfu per cell. In a continuous bioreactor, it was shown that the uninfected insect cells were not sensitive to local shear stress values up to 2.25 N/m2 at high Reynolds numbers (1.5 x 10(4)) in sparging conditions. Uninfected insect cells can be grown at scaled-up bioreactor at high agitation and sparging rates as long as vortex formation is avoided and bubble entrapment is minimized. An efficient process scale-up to 25 l bioreactor was made using constant shear stress criteria for scale-up. The kinetics of baculovirus infection at low multiplicity of infection, either at different cell concentration or at different scales, are very reproducible, despite the different turbulence conditions present in the bioreactor milieu. The results suggest that the infection kinetics is controlled by the rate of baculovirus-cell receptor attachment and is independent of the bioreactor hydrodynamic conditions. Furthermore, the achieved specific and volumetric productivities were higher at the 25 l scale when compared to the smaller scale bioreactor. Different rates of cell lysis after infection were observed and seem to fully explain both the shift in optimal harvest time and the increase in cell specific productivity. The results emphasize the importance of integrated strategies and engineering concepts in process development at bioreactor stage with the baculovirus insect cell system.  相似文献   

4.
In order to develop an efficient process for large-scale production of recombinant protein, various factors were studied which affect the productivity of Sf-9 (Spodoptera frugiperda) insect cells when using the baculovirus expression system. It was shown that upon infection with the Bac-BRV6L recombinant baculovirus, the level per cell of VP6 (a bovine rotavirus nucleocapsid protein) would drop 10-fold when host cell density at the time of infection increased from 2 x 10(6) to 3 x 10(6) cells/mL. The decrease was found to be totally reversible by culture medium renewal after infection, even when cells were infected at the stationary phase. Recombinant protein production was 4-6 times higher using TNMFH medium supplemented with 10% fetal bovine serum (FBS) than in IPL/41 serum-free medium. Fine-tuning of infection parameters in a 4-L surface-aerated bioreactor resulted in the production of typically 350 mg/L of VP6 protein, representing more than 25% of total cell proteins.  相似文献   

5.
Production of recombinant adeno-associated viral vectors using a baculovirus/insect cell system at various scales is presented. Shake flask studies were conducted to assess conditions to be used in bioreactors. Two insect cell lines, Trichoplusia ni (H5) and Spodoptera frugiperda (Sf9), were compared for their ability to produce rAAV-2 after infection with recombinant baculoviruses coding for the essential components of the vector. The effect of varying the ratio between individual baculoviruses and the effect of the overall multiplicity of infection (MOI), as well as the cell density at infection, were also examined. Infectious rAAV-2 particles were proportionally produced when increasing the individual MOI of BacRep virus up to 1.6. When equal amounts of each virus were used, a leveling effect occurred beyond an overall MOI of 5 and a maximum titer was obtained. Increasing the cell density at infection resulted in higher yields when infecting the cells in fresh medium; however, for the production of bioactive particles, an optimal peak cell density of approximately 1 x 10(6) cells/mL was observed without medium exchange. Infection in 3- and 20-L bioreactors was done at an overall MOI of 5 with a ratio of the three baculoviruses equal to 1:1:1. Under these conditions and infecting the cells in fresh medium, a total of approximately 2.2 x 10(12) infectious viral particles (bioactive particles) or 2.6 x 10(15) viral particles were produced in a 3-L bioreactor. Without replacing the medium at infection, similar titers were produced in 20 L. Our data demonstrates the feasibility of rAAV-2 production by BEVS at various scales in bioreactors and indicates that further optimization is required for production at high cell densities.  相似文献   

6.
The death process of baculovirus-infected insect cells was divided into two phases: a constant viability (or delay) phase characterized by a delay time (t(d)) and a first-order death phase characterized by a half-life (t(1/2)). These two parameters were used in conjunction with the n-target theory to classify the kinetics of cell death under various conditions, including different multiplicity of infection (MOI), host cell lines, virus types, incubation volumes, cell density and extracellular L(+)-lactate and ammonium concentrations. Two groups of kinetic effects were found: one characterized by a constant number of hypothetical targets and the other by decreased numbers of hypothetical targets. The first group includes effects such as MOI, virus types, and host cell lines. The second includes the effects of environmental perturbations, such as incubation volume, cell density, and extracellular concentrations of L(+)-lactate and ammonium. Although the underlying mechanisms of these effects are as yet unknown, the death kinetics of infected cells significantly affects the recombinant protein production. In general, foreign protein production does not correlate with the cell life after infection (c) 1993 John Wiley & Sons, Inc.  相似文献   

7.
A two-stage bioreactor scheme was developed for the large-scale production of recombinant proteins using a genetically engineered baculovirus/insect cell system. The first bioreactor was employed for cell growth and the second for cell infection. Silkworm Bm5 cells were infected with a recombinant baculovirus, BmNPV/P5.cat, containing a bacterial chloramphenicol acetyltransferase (CAT) gene under the control of the polyhedrin gene promoter of Bombyx mori nuclear polyhedrosis virus (BmNPV). This recombinant baculovirus has been used as an expression vector for the production of recombinant CAT enzyme. A specific productivity of 82 to 90 mug CAT/(10(6) cells) was obtained using the BmNPV/Bm5 expression system, a yield similar to that achieved using the AcNPV/Sf expression system. Repeated infection of high-density cell cultures did not reduce the specific productivity of the CAT enzyme. Most importantly, the problems associated with the infection of high-density cell cultures were resolved by means of controlled infection conditions and appropriate replenishment of spent culture medium following infection. The glucose uptake rate by the cells following infection was 50% higher than that by the cells before infection. Not only did the infection of high-density cell cultures result in consistent yields of 250 mg/L of CAT enzyme, but also the two-stage bioreactor system was proven to be reliable for a long-term operation beyond 600 h. (c) 1993 John Wiley & Sons, Inc.  相似文献   

8.
The baculovirus expression vector system was employed to produce human apolipoprotein E and β-galactosidase in order to study the effect of multiplicity of infection on secreted and non-secreted recombinant protein production. Prior knowledge of the influence of other cell culture and infection parameters, such as the cell density at time of infection and the time of harvest, allowed determination of the direct and indirect influences of multiplicity of infection on recombinant protein synthesis and degradation in insect cells. Under non-limited, controlled conditions, the direct effect of multiplicity of infection (10−1−10 pfu/cell) on specific recombinant product yields of non-secreted β-galactosidase was found to be insignificant. Instead, the observed increased in accumulated product was directly correlated to the total number of infected cells during the production period and therefore ultimately dependent on an adequate supply of nutrients. Only the timing of recombinant virus and protein production was influenced by, and dependent on the multiplicity of infection. Evidence is presented in this study that indicates the extremely limited predictability of post-infection cell growth at very low multiplicities of infection of less than 0.1 pfu/cell. Due to the inaccuracy of the current virus quantification techniques, combined with the sensitivity of post-infection cell growth at low MOI, the possibility of excessive post-infection cell growth and subsequent nutrient limitation was found to be significantly increased. Finally, as an example, the degree of product stability and cellular and viral protein contamination at low multiplicity of infection is investigated for a secreted recombinant form of human apolipoprotein E. Comparison of human apolipoprotein E production and secretion at multiplicities of infection of 10−4−10 pfu/cell revealed increased product degradation and contamination with intracellular proteins at low multiplicities of infection. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
An experimental study was undertaken to quantify the effects of infection cell density, medium condition, and surface aeration on recombinant protein yields in insect cells. In the absence of surface aeration and fresh medium, insect cells generated higher product yields (on a per cell basis) when infected with recombinant baculovirus at low cell densities, LCD (3 x 10(5)-4 x 10(5) cells/mL), than at high cell densities, HCD (>0.9 x 10(6) cells/mL), for two distinct baculovirus types. Surface aeration of a HCD culture infected in spent medium improved beta-glactosidase yields 5-fold over the nonaerated case. Surface aeration and medium replenishment improved beta-galactosidase yields of a HCD culture by 20-fold (compared to a 1.6-fold improvement for a LCD culture), resulting in cultures with productivties that were independent of the cell density at infection.  相似文献   

10.
口蹄疫病毒3C蛋白酶在病毒的致病机理、聚蛋白前体的加工和RNA的复制上起着很重要的作用,是当前抗病毒研究的一个重要靶点.本研究从Asia Ⅰ型FMDV适应细胞毒中提取RNA,用RT-PCR技术扩增3C基因,首先克隆到pGEM-T载体,再亚克隆到杆状病毒转移载体pMelBac B中,构建出重组转移载体pMel-3C.最后将含有目的基因的转移载体与线性化的杆状病毒DNA共转染Sf9细胞,通过噬斑筛选和PCR鉴定,获得了重组杆状病毒.重组病毒经扩增后以10个MOI感染Sf9细胞,接种病毒72 h后收获细胞,样品经SDS-PAGE和Western blot证实3C蛋白获得表达,分子量约23kDa,与预测蛋白大小一致,且能被FMDV感染阳性血清所识别.本研究为空衣壳的体外组装及新型抗病毒药物设计的研究奠定了基础.  相似文献   

11.
Spodoptera frugiperda (Sf-9) insect cells have been grown in serum-free medium in 250-ml spinner flasks. The maximum cell density obtained in these cultures was dependent on the aeration rate of the culture. Similar yields of uninfected cells were obtained when cultures were stirred in spinner flasks at 80 rev min-1 and in a 4-1 stirred-tank bioreactor and the dissolved oxygen in the bioreactor was controlled at 20% of air saturation. Cells were infected with a recombinant baculovirus at different multiplicities of infection: the timing and maximum level of expression of the recombinant protein were dependent on the multiplicity of infection, the cell density at infection, and on the aeration rate of the culture. Oxygen-limited growth resulted in undetectable levels of recombinant protein (< 6 ng recombinant protein 10(-7) cells). Compared with the maximum yields observed in spinner flask cultures, higher levels of recombinant protein were produced when cells were grown and infected in the bioreactor. The level of dissolved oxygen in the bioreactor was controlled at 50% of air saturation.  相似文献   

12.
The baculovirus/insect cell expression system has provided a vital tool to produce a high level of active proteins for many applications. We have developed a very high-density insect cell perfusion process with an ultrasonic filter as a cell retention device. The separation efficiency of the filter was studied under various operating conditions. A cell density of over 30 million cells/mL was achieved in a controlled perfusion bioreactor and cell viability remained greater than 90%. Sf9 cells from a high-density culture and a spinner culture were infected with two recombinant baculoviruses expressing genes for the production of human chitinase and monocyte-colony inhibition factor. The protein yield on a cell basis from infecting high-density Sf9 cells was the same as or higher than that from the spinner Sf9 culture. Virus production from the high-density culture was similar to that from the spinner culture. The results show that the ultrasonic filter did not affect insect cells' ability to support protein expression and virus production following infection with baculovirus. The potential applications of the high-density perfusion culture for large-scale protein expression from Sf9 cells are also highlighted.  相似文献   

13.
Hu YC  Wang MY  Bentley WE 《Cytotechnology》1997,24(2):143-152
A continuous process of insect cell (S f9) growth and baculovirus infection is tested with the sequential combination of a CSTR and a tubular reactor. A tubular infection reactor enables continuous introduction of baculovirus and therefore avoids the ‘passage effect’ observed in two-stage CSTR systems. Moreover, a tubular reactor can be used to test cell infection kinetics and the subsequent metabolism of infected insect cells. Unlike batch and CSTR culture, cells in a horizontally positioned tubular reactor settle due to poor mixing. We have overcome this problem by alternately introducing air bubbles and media and by maintaining a linear velocity sufficient to keep cells suspended. This article addresses the development of the tubular reactor and demonstrates its use as an infection system that complements the two-stage CSTR. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Baculovirus expression vector system (BEVS) in host insect cells is a powerful technology to produce recombinant proteins, as well as virus-like particles (VLP). However, BEVS is based on baculovirus infection, which limits the recombinant protein production by inducing insect cell death. Herein a new strategy to enhance cell life span and to increase recombinant protein production was developed. As baculovirus infection induces cellular oxidative stress, the ability of several antioxidants to inhibit cell death was tested during infection. The production of rotavirus structural proteins was used as model to analyse this new strategy. We found that only catalase is able to partially prevent cell death triggered by baculovirus infection and to inhibit lipid peroxidation. An increase in recombinant protein production was coupled with the partial cell death inhibition. In summary, the addition of catalase is a promising strategy to improve recombinant protein production in BEVS, by delaying insect cell death.  相似文献   

15.
A baculovirus‐insect cell expression system potentially provides the means to produce prophylactic HIV‐1 virus‐like particle (VLP) vaccines inexpensively and in large quantities. However, the system must be optimized to maximize yields and increase process efficiency. In this study, we optimized the production of two novel, chimeric HIV‐1 VLP vaccine candidates (GagRT and GagTN) in insect cells. This was done by monitoring the effects of four specific factors on VLP expression: these were insect cell line, cell density, multiplicity of infection (MOI), and infection time. The use of western blots, Gag p24 ELISA, and four‐factorial ANOVA allowed the determination of the most favorable conditions for chimeric VLP production, as well as which factors affected VLP expression most significantly. Both VLP vaccine candidates favored similar optimal conditions, demonstrating higher yields of VLPs when produced in the Trichoplusia ni Pro? insect cell line, at a cell density of 1 × 106 cells/mL, and an infection time of 96 h post infection. It was found that cell density and infection time were major influencing factors, but that MOI did not affect VLP expression significantly. This work provides a potentially valuable guideline for HIV‐1 protein vaccine optimization, as well as for general optimization of a baculovirus‐based expression system to produce complex recombinant proteins. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

16.
Spodoptera frugiperda Sf-9 insect cells that undergo apoptosis by the treatment of apoptosis-inducing reagents were individually determined as `comet cells' having a tail of fragmented DNA during single cell gel electrophoresis, the fragmented DNA being migrated from the cells under an electric field of the electrophoresis. However, the apoptosis induction of the cells infected with a recombinant strain of Autographa californica nuclear polyhedrosis virus (AcMNPV) was blocked, probably by an intrinsic anti-apoptotic p35 gene of the virus, because the virus-infected cells did not have a tail of fragmented DNA on a single cell gel electrophoresis. The virus-infected cells were individually discriminated from non-infected cells by determining the anti-apoptotic nature of the cells. At higher multiplicity of infection and under better aeration conditions of virus-infected cultures, the apoptosis-suppressive ratio, which represented a ratio of non-comet cells, was increased more rapidly. This apoptosis-suppressive behavior was a good benchmark for assessing successful infection of insect cells with AcMNPV during very early infectious period and forecasting the subsequent production of recombinant proteins.  相似文献   

17.
The inability to sialylate recombinant glycoproteins is a critical limitation of the baculovirus-insect cell expression system. This limitation is due, at least in part, to the absence of detectable sialyltransferase activities and CMP-sialic acids in the insect cell lines routinely used as hosts in this system. SfSWT-1 is a transgenic insect cell line encoding five mammalian glycosyltransferases, including sialyltransferases, which can contribute to sialylation of recombinant glycoproteins expressed by baculovirus vectors. However, sialylation of recombinant glycoproteins requires culturing SfSWT-1 cells in the presence of fetal bovine serum or another exogenous source of sialic acid. To eliminate this requirement and extend the utility of SfSWT-1 cells, we have isolated a new baculovirus vector, AcSWT-7B, designed to express two mammalian enzymes that can convert N-acetylmannosamine to CMP-sialic acid during the early phase of infection. AcSWT-7B was also designed to express a model recombinant glycoprotein during the very late phase of infection. Characterization of this new baculovirus vector showed that it induced high levels of intracellular CMP-sialic acid and sialylation of the recombinant N-glycoprotein upon infection of SfSWT-1 cells cultured in serum-free medium supplemented with N-acetylmannosamine. In addition, co-infection of SfSWT-1 cells with AcSWT-7B plus a conventional baculovirus vector encoding human tissue plasminogen activator resulted in sialylation of this recombinant N-glycoprotein under the same culture conditions. These results demonstrate that AcSWT-7B can be used in two different ways to support recombinant N-glycoprotein sialylation by SfSWT-1 cells in serum-free medium. Thus, AcSWT-7B can be used to extend the utility of this previously described transgenic insect cell line for recombinant sialoglycoprotein production.  相似文献   

18.
19.
Vmw65, the Herpes Simplex Virus trans-activator of immediate-early genes, was expressed in insect cells using a recombinant baculovirus expression vector and partially purified. Insect cell-derived Vmw65 was shown to be indistinguishable from authentic Vmw65 present in purified HSV-1 virions based on electrophoretic mobility, immunoreactivity with a monoclonal antibody, and ability to interact with cellular factors to form a protein/DNA complex with oligonucleotides containing a TAATGARAT element.Abbreviations AcNPV Autographica californica nuclear polyhedrosis virus - HSV Herpes Simplex Virus - IE Immediate Early - moi multiplicity of infection - Sf9 Spodoptera frugiperda cells  相似文献   

20.
The UFL-AG-286 cell line, established from embryonic tissue of the lepidopteran insect Anticarsia gemmatalis, has been identified as a good candidate to be used as a cellular substrate in the development of a process for in vitro production of the Anticarsia gemmatalis multicapsid nucleopolyhedrovirus, a baculovirus widely used as bioinsecticide. In order to characterize the technological properties of this cell line and evaluate its feasibility to use it for the large-scale production of Anticarsia gemmatalis multicapsid nucleopolyhedrovirus, UFL-AG-286 cells were adapted to grow as agitated suspension cultures in spinner-flasks. Batch suspension cultures of adapted cells in serum-supplemented TC-100 medium grew with a doubling time of about 29 h and reached a maximum cell density higher than 3.5 × 106 viable cells ml−1. At the end of the growth period glucose was completely depleted from the culture medium, but l-lactate was not produced. Amino acids, with the exception of glutamine, were only negligibly consumed or produced. In contrast to other insect cell lines, UFL-AG-286 cells appeared to be unable to synthesize alanine as a metabolic way to dispose the by-product ammonia. The synchronous infection of suspension cultures with Anticarsia gemmatalis multicapsid nucleopolyhedrovirus in the early to medium exponential growth phase yielded high amounts of both viral progenies per cell and reduced the specific demands of UFL-AG-286 cells for the main nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号