首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
生长抑素(somatostatin,SST)通过与细胞膜上的G蛋白偶联的生长抑素受体(somatostatin receptors,SSTRs)结合而发挥其抑制细胞增殖的作用,因而生长抑素类似物(somatostatin analogue, SSA)常被用于肿瘤辅助治疗。然而,治疗效果存在相当大的个体差异,推测生长抑素类似物治疗效果不佳,与内源性生长抑素受体表达缺失或者表达量和亚型组合有关。为此,检测各亚型SSTR在几例罕见的神经内分泌肿瘤中的表达,并检测过表达SSTR2和SSTR5以及受体激活对细胞增殖的抑制效果,分析受体激活的可能机制,有助于临床筛选适合SSA肿瘤辅助治疗的病例,预估SSA的治疗效果。免疫组化检测肿瘤组织SSTR1-5的表达。在培养的293T细胞中过表达SSTR2和SSTR5,免疫共沉淀检测受体相互作用,免疫荧光和共聚焦显微镜检测受体细胞内定位。用MTT法检测受体过表达及激活对培养的人肺癌细胞NCI-H460细胞增殖的影响,用流式细胞技术检测细胞周期分布。SSTR1-5在10例神经内分泌肿瘤组织中均有不同程度的表达,表达亚型及表达量与肿瘤类型和年龄无关,SSTR5在所有肿瘤组织中均表达。SSTR2与SSTR5可形成受体相互作用。SSTR2与SSTR5活化后相互作用增加并定位于细胞质。共表达SSTR2和SSTR5显著抑制细胞增殖,并与受体激活剂呈现剂量相关性。SSTR2/SSTR5的共表达及激活显著减少S期的细胞而滞留于G1期。  相似文献   

2.
利用cDNA末端快速扩增(RACE)技术克隆了鳜(Siniperca chuatsi)脑中2种生长抑素受体(somatostatin receptor,SSTR2和SSTR3)cDNA全长序列。结果显示,鳜SSTR2 cDNA全长1 820 bp,含开放阅读框1 146 bp,编码382个氨基酸;SSTR3 cDNA全长1 874 bp,含开放阅读框1 458 bp,编码486个氨基酸。SSTR均由5个结构区域组成:N端、7个转膜区(TMD)、3个细胞外袢(ECLs)、4个细胞内袢(ICLs)和C末端。NJ系统进化树分析显示,鳜SSTR2和SSTR3分别形成相对独立的分支,两者间的氨基酸序列相似度为51.2%,表明它们是由不同基因编码而成。利用实时荧光定量RT-PCR技术检测了鳜SSTR2和SSTR3 mRNA的组织表达特征,它们均在多种组织中广泛表达,SSTR2 mRNA在肝中表达量最高,SSTR3 mRNA在胃中表达量最高。SSTR2、SSTR3表达差异反映它们可能参与不同生理调控作用。  相似文献   

3.
生长抑素受体家族(somatostatin receptors,SSTRs)是一类介导生长抑素及其类似物,具有多种生物学效应的G蛋白偶联受体家族,其生理功能和作用机制长期以来倍受关注.研究表明,这些细胞膜上存在的特定膜受体包括SSTR1、SSTR2、SSTR3、SSTR4以及SSTR5,可以通过cAMP、PTP和MAPK信号通路,在调控GH分泌、诱导细胞凋亡、抑制肿瘤细胞增生、抑制胰岛素作用和抑制细胞生长等生物学过程发挥重要的作用,同时表现出与其它G蛋白偶联受体性质相似的动力学特征.本文将SSTRs的结构、分布和生理功能、配体选择性、下游信号通路,以及该受体家族的动力学特征最新研究进展作一综述.  相似文献   

4.
猕猴发育过程中肠肝组织生长抑素及其受体表达演变规律   总被引:5,自引:1,他引:4  
Guo MM  Tan QH  Fan H  Huang MH  Wang CH  Qiu XQ  Tang CW 《生理学报》2005,57(6):719-724
探讨在猕猴发育过程中生长抑素(somatostatin,SST)及其受体在肠肝组织的演变规律。通过手术途径获得胚胎6月、新生2 d、新生45 d和成年猕猴的回肠、肝脏、门静脉和外周血等标本。应用放射免疫分析法测定各标本中的SST含量; 通过免疫组化方法观察SST在肠、肝组织内的分布;利用原位杂交检测SST受体2(somatostatin receptor 2,SSTR2)的表达。结果显示:(1)胚胎6月的猕猴,小肠内SST含量为(27.3±16.6)ng/mg蛋白;黏膜隐窝处SST呈弱阳性染色,肌层 SST染色阴性。在发育过程中,小肠内SST含量逐渐增加,成年期时达最高水平(120.1±35.3)ng/mg蛋白,较胚胎6月显著增加(P<0.01)。(2)成年小肠黏膜隐窝处及肌间神经丛SST呈强阳性染色。(3)胚胎6月,小肠粘膜上皮可见大量SSTR2 表达,成年时SSTR2表达下调,且主要定位于腺上皮隐窝处;胚胎及新生期肌层SSTR2染色阴性,成年时小肠肌间神经丛则可见阳性SSTR2染色。(4)肝脏在发育过程中SST及SSTR2含量逐渐降低;发育的各个时期,小肠组织的SST含量均明显高于肝脏组织含量,门静脉SST水平也始终高于外周血。总之,位于小肠黏膜隐窝处的SST和SSTR2随着发育逐渐增加,来自肠道的SST进入门静脉后迅速被降解。SST阳性的肠肌间神经丛仅在发育成熟后才出现。  相似文献   

5.
目的:探讨生长抑素受体亚型SSTR2和SSTR3在不同类型、不同部位淋巴瘤中的表达情况并分析其临床意义.方法:采用RT-PCR法检测105例4种不同淋巴瘤石蜡标本中SSTR2和SSTR3的基因表达情况.结果:SSTR2及SSTR3在粘膜相关性淋巴瘤阳性表达率分别为(8/27),(6/27),弥漫大B细胞型淋巴瘤(14/36),(12/36),NK/T细胞淋巴瘤(9/22),(6/22),伯基特淋巴瘤(6/20),(7/20),SSTR2的总阳性率为(37/105),SSTR3的总阳性率为(31/105).其中病变位于膈上的SSTR2的总阳性率为(24/105),膈下的总阳性率(14/105),而SSTR3在膈上的总阳性率为(19/105),膈下的为(11/l0S).结论:部分淋巴瘤组织中至少表达一种生长抑素受体,且表达率较低,但淋巴瘤是对放射性敏感的肿瘤,低表达的生长抑素受体对淋巴瘤的诊断及靶向治疗方面是否有意义,还需要进一步研究.  相似文献   

6.
目的探讨生长抑素受体(somatostatin receptor,SSTR)、血管内皮生长因子(vascular endothelial growth factor,VEGF)在子宫内膜癌组织中的表达及其与肿瘤血管形成的关系。方法应用免疫组织化学方法检测60例子宫内膜癌组织中SSTR各亚型、VEGF及CD34标记的微血管密度(microvessel denisity,MVD)的表达情况,探讨其与子宫内膜癌临床病理学特征及肿瘤血管形成的关系。结果在60例子宫内膜癌组织中,SSTR各亚型(SSTR1、SSTR2、SSTR3、SSTR4及SSTR5)的阳性表达率分别为70.0%,15.0%。21.7%,23.3%及18.3%;SSTR3、SSTR4在中高分化组表达阳性率明显高于低分化组(P〈0.05)。VEGF的阳性表达率为83.3%,VEGF在低分化组表达阳性率明显高于中高分化组、深肌层浸润组表达阳性率明显高于浅肌层浸润组、FIGO分期≥II期组表达阳性率明显高于I期组(P〈0.05)。子宫内膜癌组MVD(44.85±15.78)明显高于正常子宫内膜组MVD(18.96±4.30)(P〈0.01)。SSTR5的表达与VEGF呈负相关,VEGF阳性表达组子宫内膜癌组织MVD高于VEGF阴性组。结论联合检测SSTR和VEGF对子宫内膜癌预后的评估有一定临床意义。生长抑素类似物(somatostatin analogs,SSTA)可能为子宫内膜癌的诊治提供新的靶点。  相似文献   

7.
目的:探讨乳腺癌荷瘤鼠模型中肿瘤组织中的生长押素受体(SSTR)的表达水平与99mTc-DOTANOC显像的相关性研究.方法:配体交换法标记99mTc-DOTANOC,通过尾静脉注射乳腺癌荷瘤鼠模型,行99mTc-DOTANOC显像,勾画ROI计算肿瘤与对侧正常组织(T/NT)的放射性比值并测定肿瘤及主要脏器单位组织的放射性摄取百分值(%ID/g),采用逆转录聚合酶反应(RT-PCR)检测肿瘤组织中各SSTR亚型mRNA的表达水平,对SSTR亚型表达水平与T/NT放射性摄取比值进行相关性研究.结果:99mTc-DOTANOC乳腺癌荷瘤鼠模型显像示肿瘤部位有较高的放射性浓聚,与对侧正常组织T/NT比值较高,4h达到2.41±0.21;99mTc-DOTANOC荷瘤鼠体内生物分布示药物在肿瘤部位有较高的摄取;RT-PCR示乳腺癌组织中有着丰富的SSTR表达,SSTR3和SSTR2亚型表达水平较高,两者mRNA的表达水平与荷瘤鼠显像T/NT比值呈正相关(两者分别r=0.94,r=81,P<0.05).结论:乳腺癌细胞株MDA-MB-435 高表达SSTR2和SSTR3,其中SSTR3和SSTR2 mRNA表达水平与肿瘤组织对99mTc-DOTANOC的摄取呈正相关.第三代生长抑素类似物99mTc-DOTANOC受体显像对乳腺癌有较好的影像诊断价值.  相似文献   

8.
NDRG2在人胚胎组织中的表达分布特点   总被引:17,自引:0,他引:17  
Hu XL  Yao LB  Zhang YQ  Deng YC  Liu XP 《生理学报》2006,58(4):331-336
本文旨在研究NDRG2在不同胎龄人胚胎组织中的表达水平及细胞定位。利用RT-PCR和Western blot研究NDRG2 mRNA和蛋白在胎心、肺、肝和肾中的表达水平,免疫组织化学分析NDRG2蛋白在多种胚胎组织中的分布特点。结果表明,NDRG2在胚胎组织中的表达随胚龄的延长而增加。NDRG2 mRNA和蛋白在胎心和肺中的变化一致;在胎肝中mRNA表达低而蛋白表达高,在胎肾中则相反。NDRG2蛋白阳性反应产物存在于细胞胞浆,见于小肠绒毛上皮细胞、结肠上皮细胞、皮肤表层细胞及毛囊、肺内小气道内衬上皮细胞、肝细胞、心肌细胞、胸腺小体、肾小管上皮细胞。结果提示,NDRG2蛋白可能不是一个组织特异性蛋白,并在组织和器官的形成中起作用。  相似文献   

9.
目的:设计并合成生长抑素受体SSTR5基因siRNA序列,并构建其短发夹shRNA慢病毒表达质粒.方法:以小鼠SSTR5基因为靶序列,用在线软件分析、设计并合成其有效siRNA,退火形成双链DNA后,与经BamH I和EcoR I双酶切线性化慢病毒表达载体pSHR-Pμro/GFP连接,产生pLV-shSSTR5重组慢病毒质粒.将重组质粒转化大肠杆菌DH 5α感受态细胞,PCR筛选阳性克隆,测序鉴定.结果:构建的重组表达质粒PCR产物为161bp,其中插入的SSTR5-siRNA片段为61bp,测序结果与参考序列完全一致.结论:成功构建了小鼠SSTR5基因特异性shRNA慢病毒表达质粒,为进一步采用RNAi技术研究小鼠SSTR5基因表达对其生长情况的影响奠定了基础.  相似文献   

10.
生长抑素在大鼠乳腺组织中的分布和定位   总被引:1,自引:0,他引:1  
目的研究生长抑素在大鼠乳腺组织中的分布和定位。方法本实验应用即用型快速免疫组化方法对处女期、妊娠6 d、12 d、18 d和泌乳6 d、12 d、18 d的SD大鼠的乳腺进行生长抑素检测。结果发现从处女期到泌乳期大鼠乳腺组织中均有生长抑素的表达,且主要分布于上皮细胞的胞质和腺泡的分泌物中。结论大鼠乳腺上皮细胞的胞质和腺泡的分泌物中有生长抑素的分布。  相似文献   

11.
Somatostatin (SST) is a peptide hormone that exerts inhibitory effects mediated through binding to specific cell surface G protein-coupled receptors, of which five distinct subtypes (SSTR1-SSTR5) have been characterized. Our study performed on mouse cochlear hair cells shows the expression and localization of the three receptors (SSTR3-SSTR5) in wild-type (WT), single-knockout (SSTR1 KO) and double-knockout SSTR1/SSTR2 (DKO) mice. Similar SSTRs expression were observed in the inner hair cells (IHC), outer hair cells (OHC) and supporting cells of cultivated P7 mouse organ of Corti (OC) explants as well as in cultivated cochlear neuroepithelial supporting cells (NEsc). We found differences in the expression of SSTR3-5 in WT, SSTR1 KO and DKO mouse cochlea, which might be explained as a compensatory effect in the cochlea after the loss of SSTR1 and/or SSTR2.  相似文献   

12.
Neuroendocrine tumours (NETs) may occur at many sites in the body although the majority occur within the gastroenteropancreatic axis. Non-gastroenteropancreatic NETs encompass phaeochromocytomas and paragangliomas, medullary thyroid carcinoma, anterior pituitary tumour, broncho-pulmonary NETs and parathyroid tumours. Like most endocrine tumours, NETs also express somatostatin (SST) receptors (subtypes 1–5) whose ligand SST is known to inhibit endocrine and exocrine secretions and have anti-tumour effects. In the light of this knowledge, the idea of using SST analogues in the treatment of NETs has become increasingly popular and new studies have centred upon the development of new SST analogues. We attempt to review SST receptor (SSTR) biology primarily in neuroendocrine tissues, focusing on pituitary tumours. A full data search was performed through PubMed over the years 2000–2009 with keywords ‘somatostatin, molecular biology, somatostatin receptors, somatostatin signalling, NET, pituitary’ and all relevant publications have been included, together with selected publications prior to that date. SSTR signalling in non-neuroendocrine solid tumours is beyond the scope of this review. SST is a potent anti-proliferative and anti-secretory agent for some NETs. The successful therapeutic use of SST analogues in the treatment of these tumours depends on a thorough understanding of the diverse effects of SSTR subtypes in different tissues and cell types. Further studies will focus on critical points of SSTR biology such as homo- and heterodimerization of SSTRs and the differences between post-receptor signalling pathways of SSTR subtypes.  相似文献   

13.

Background

Somatostatin (SST) via five Gi coupled receptors namely SSTR1-5 is known to inhibit cell proliferation by cytostatic and cytotoxic mechanisms. Heterodimerization plays a crucial role in modulating the signal transduction pathways of SSTR subtypes. In the present study, we investigated human SSTR2/SSTR3 heterodimerization, internalization, MAPK signaling, cell proliferation and apoptosis in HEK-293 cells in response to SST and specific agonists for SSTR2 and SSTR3.

Results

Although in basal conditions, SSTR2 and SSTR3 colocalize at the plasma membrane and exhibit heterodimerization, the cell surface distribution of both receptors decreased upon agonist activation and was accompanied by a parallel increase in intracellular colocalization. Receptors activation by SST and specific agonists significantly decreased cAMP levels in cotransfected cells in comparison to control. Agonist-mediated modulation of pERK1/2 was time and concentration-dependent, and pronounced in serum-deprived conditions. pERK1/2 was inhibited in response to SST; conversely receptor-specific agonist treatment caused inhibition at lower concentration and activation at higher concentration. Strikingly, ERK1/2 phosphorylation was sustained upon prolonged treatment with SST but not with receptor-specific agonists. On the other hand, SST and receptor-specific agonists modulated p38 phosphorylation time-dependently. The receptor activation in cotransfected cells exhibits Gi-dependent inhibition of cell proliferation attributed to increased PARP-1 expression and TUNEL staining, whereas induction of p21 and p27Kip1 suggests a cytostatic effect.

Conclusion

Our study provides new insights in SSTR2/SSTR3 mediated signaling which might help in better understanding of the molecular interactions involving SSTRs in tumor biology.  相似文献   

14.
Somatostatin (SST) inhibition of hormone hypersecretion from tumors is mediated by somatostatin receptors (SSTRs). SSTRs also play an important role in controlling tumor growth through specific antiproliferative actions. These receptors are well expressed in numerous normal and tumor tissues and are susceptible to regulation by a variety of factors. Estradiol, a potent trophic and mitogenic hormone in its target tissues, is known to modulate the expression of SST and its receptors. Accordingly, in the present study, we determined the effects of tamoxifen, a selective estrogen receptor (ER) modulator (SERM), and estradiol on SSTR1 and SSTR2 expression at the mRNA and protein levels in ER-positive and -negative breast cancer cells. We found that SSTR1 was upregulated by tamoxifen in a dose-dependent manner but no effect was seen with estradiol. In contrast, SSTR2 was upregulated by both tamoxifen and estradiol. Combined treatment caused suppression of SSTR1 below control levels but had no significant effect on SSTR2. Treatment with SSTR1-specific agonist was significantly more effective in suppressing cell proliferation of cells pre-treated with tamoxifen. Taking these data into consideration, we suggest that tamoxifen and estradiol exert variable effects on SSTR1 and SSTR2 mRNA and protein expression and distributional pattern of the receptors. These changes are cell subtype-specific and affect the ability of SSTR agonists to inhibit cell proliferation.  相似文献   

15.
Somatostatin (SST) analogs have been successfully used in the medical treatment of acromegaly, caused by GH hypersecreting pituitary adenomas. Patients on SST analogs rarely develop tachyphylaxis despite years of continuous administration. It has been recently proposed that a functional association between SST receptor (SSTR) subtypes 2 and 5 exists to account for this behavior; however, a physical interaction has yet to be identified. Using both coimmunoprecipitation and photobleaching fluorescence resonance energy transfer microscopy techniques, we determined that SSTR2 and SSTR5 heterodimerize. Surprisingly, selective activation of SSTR2 and not SSTR5, or their costimulation, modulates the association. The SSTR2-selective agonist L-779,976 is more efficacious at inhibiting adenylate cyclase, activating ERK1/2, and inducing the cyclin-dependent kinase inhibitor p27(Kip1) in cells expressing both SSTR2 and SSTR5 compared with SSTR2 alone. Furthermore, cell growth inhibition by L-779,976 treatment was markedly extended in coexpressing cells. Trafficking of SSTR2 is also affected upon heterodimerization, an attribute corresponding to modifications in beta-arrestin association kinetics. Activation of SSTR2 results in the recruitment and stable association of beta-arrestin, followed by receptor internalization and intracellular receptor pooling. In contrast, heterodimerization increases the recycling rate of internalized SSTR2 by destabilizing its interaction with beta-arrestin. Given that SST analogs show preferential binding to SSTR2, these data provide a mechanism for their effectiveness in controlling pituitary tumors and the absence of tolerance seen in patients undergoing long-term administration.  相似文献   

16.
Radiolabeled somatostatin analogs have become powerful tools in the diagnosis and staging of neuroendocrine tumors, which express somatostatin receptors. The aim of this study was to evaluate a new somatostatin analog, 6‐hydrazinopyridine‐3‐carboxylic acid‐Ser3‐octreotate (HYNIC‐SATE) radiolabeled with 99mTc, using ethylenediamine‐N,N′‐diacetic acid and tricine as coligands, to be used as a radiopharmaceutical for the in vivo imaging of somatostatin receptor subtype 2 (SSTR2)‐positive tumor. Synthesis of the peptide was carried out on a solid phase using a standard Fmoc strategy. Peptide conjugate affinities for SSTR2 were determined by receptor binding affinity on rat brain cortex and C6 cell membranes. Internalization rate of 99mTc‐HYNIC‐SATE was studied in SSTR2‐expressing C6 cells that were used for intracranial tumor studies in rat brain. A reproducible in vivo C6 glioma model was developed in Sprague–Dawley rat and confirmed by histopathology and immunohistochemical analysis. Biodistribution and imaging properties of this new radiopeptide were also studied in C6 tumor‐bearing rats. Radiolabeling was performed at high specific activities, with a radiochemical purity of >96%. Peptide conjugate showed high affinity binding for SSTR2 (HYNIC‐SATE IC50 = 1.60 ± 0.05 n m ) and specific internalization into rat C6 cells. After administration of 99mTc‐HYNIC‐SATE in C6 glioma‐bearing rats, a receptor specific uptake of radioactivity was observed in SSTR‐positive organs and in the implanted intracranial tumor and rapid excretion from nontarget tissues via kidneys. 99mTc‐HYNIC‐SATE is a new receptor‐specific radiopeptide for targeting SSTR2‐positive brain tumor and might be of great promise in the scintigraphy of SSTR2‐positive tumors. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
Colonic mucus barrier is regarded as the first defense line against bacteria and antigens from directly attaching to the epithelium, which would further lead to intestinal inflammation activation and pathological conditions. As MUC2 mucin is the predominant component of the mucus, understanding the regulatory mechanisms of MUC2 is important for mucus barrier protection. Somatostatin (SST) has been found to play a role in colon protection through various manners. However, whether SST involves in colonic mucus barrier regulation is still unclear. The aim of this study is to investigate the effects and potential mechanisms of SST on colonic MUC2 expression and mucus secretion. In vivo study, exogenous somatostatin (octreotide) administration effectively stimulated mice colonic MUC2 expression and mucus secretion. In human goblet-like cell LS174T cells, SST exposure also significantly stimulated MUC2 expression and mucus secretion. Further studies indicated that SST receptor 5 (SSTR5) was significantly activated by SST, whereas specific SSTR5 siRNA transfection of LS174T cells significantly blocked SST-induced increase in MUC2 expression and mucus secretion. In addition, SSTR5 agonist L817,818 also upregulated MUC2 expression and mucus secretion in LS174T cells. Mechanistic studies further demonstrated that SST/SSTR5-mediated MUC2 upregulation was dependent on Notch-Hes1 pathway suppression by detecting notch intracellular domain (NICD) and Hes1 proteins. Taken together, our findings suggested that SST could participate in colonic mucus barrier regulation through SSTR5-Notch-Hes1-MUC2 signaling pathway. These findings provide a deep insight into the role of SST on colonic mucus regulation under physiological conditions.  相似文献   

18.
Abstract: Somatostatin (SRIF) induces its diverse physiological actions through interactions with different receptor subtypes. Multiple SRIF receptor subtypes have recently been cloned. To analyze the physical properties of receptor subtype SSTR2, two different peptide-directed antibodies were generated against SSTR2. Antibody “2e3,” directed against the peptide SSCTINWPGESGAWYT (residues 191–206), corresponding to a region in the predicted third extracellular domain of mouse SSTR2, and antibody “2i4,” directed against the peptide SGTEDGERSDS (residues 333–343) from the predicted cytoplasmic tail of mouse SSTR2, were developed. In Chinese hamster ovary (CHO) cells stably expressing the mouse SSTR2 gene (CHOB), the antibody 2e3 recognized specifically a protein of 93-kDa protein by immunoblotting. No specific immunoreactivity was detected by 2e3 in nontransfected CHO cells or CHO cells stably expressing vector alone or human SSTR1 or mouse SSTR3 genes. The antibody 2i4 specifically immunoprecipitated SSTR2 solubilized from CHOB cells that could be labeled with the SSTR2-specific ligand 125I-MK-678. Furthermore, both 2e3 and 2i4 specifically immunoprecipitated 93-kDa [35S]methionine-labeled proteins from CHOB cells, indicating that they recognize the same proteins. In contrast to studies in CHOB cells, immunoblotting studies showed that 2e3 detected specifically a single 148-kDa protein from different regions of the rat brain that have previously been shown to express high levels of SSTR2 mRNA and SRIF receptors with high affinity for 125I-MK-678. In contrast, no immunoreactivity was detected in rat kidney, liver, or lung, which do not express SSTR2. No 93-kDa protein was detected specifically in the rat brain. The 148-kDa protein detected by 2e3 is an SRIF receptor because 2e3 and 2i4 specifically immunoprecipitated solubilized rat brain SRIF receptors that could be reversibly labeled with 125I-MK-678. As in rat brain, 2e3 interacted specifically with a single 148-kDa protein in rat pituitary, in the rat pancreatic cell line AR42J, and in the HEK 293 cell line derived from human kidney, all of which express SSTR2 mRNA and SRIF receptors with high affinity for 125I-MK-678. These findings indicate that rat brain and pituitary, as well as a pancreatic and a kidney cell line, express primarily a form of SSTR2 different from CHOB cells. The multiple forms of SSTR2 may result from differential post-translational processing of SSTR2 because 2e3 immunoprecipitated 41-kDa in vitro translation products generated from mRNA extracted from CHOB and AR42J cells. This 41-kDa protein has the predicted size of unprocessed SSTR2. These results demonstrate that 2e3 and 2i4 antibodies interact specifically with SSTR2. Detection of two different size proteins by the SSTR2 peptide-directed antibodies suggests the existence of multiple forms of SSTR2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号