首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
过氧化物酶V(peroxiredoxin V, Prx V)是过氧化物酶家族(peroxiredoxins, Prxs)中的一员,具有清除细胞内活性氧(reactive oxygen species, ROS)的功能。该文主要阐明了Prx V在顺铂(cisplatin, CDDP)诱导Hep G2人肝癌细胞凋亡过程中的调控作用。该研究利用顺铂处理Hep G2肝癌细胞,通过荧光显微照相、流式细胞术、蛋白质免疫印迹分析等方法检测细胞内活性氧(ROS)水平、细胞凋亡情况以及凋亡相关蛋白水平。研究结果表明,顺铂可引起细胞内的ROS水平升高导致细胞凋亡,同时造成细胞内Prx V蛋白质表达水平下降。利用慢病毒载体过量表达Prx V基因后,顺铂诱导的Prx V过量表达型HepG2细胞凋亡率明显低于Mock组,同时促凋亡蛋白cleavage-Caspase-3、Bad、cleavage-PARP表达水平也明显被下调,说明Prx V在顺铂诱导HepG2细胞凋亡过程中具有一定的抑制作用。该研究初步探究了Prx V在顺铂诱导的HepG2肝癌细胞凋亡过程中的调控作用,为肝癌的治疗研究提供了新的思路和治疗靶点。  相似文献   

2.
过氧化物酶V(peroxiredoxin V,Prx V)是过氧化物酶(peroxiredoxin)家族中的一员,广泛存在于线粒体、溶酶体及细胞质中,具有有效地清除细胞内一氧化氮(nitric oxide,NO)和活性氧(reactive oxygen species,ROS)的功能。该文阐明β-拉帕醌(β-lapachone)引起SW480结肠癌细胞凋亡过程中Prx V的作用及其机制。该研究利用β-拉帕醌处理SW480细胞系,通过3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐[3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide,MTT]法、荧光显微镜照相、流式细胞术、蛋白质免疫印迹分析等方法检测细胞存活率、细胞内ROS水平、细胞凋亡情况以及凋亡相关蛋白质水平的变化。结果表明,β-拉帕醌通过抑制Prx V水平,致使细胞内ROS水平升高,激活线粒体依赖性凋亡途径,导致SW480结肠癌细胞凋亡。研究结果初步揭示了β-拉帕醌诱发SW480结肠癌细胞发生凋亡的机制,为结肠癌的治疗提供了新思路。  相似文献   

3.
MFN1介导的线粒体融合在心肌细胞凋亡中的作用研究   总被引:1,自引:0,他引:1       下载免费PDF全文
目的:探讨线粒体融合关键蛋白MFN1介导的线粒体融合在调控心肌细胞凋亡中的作用。方法:通过si RNA降低体外培养H9C2心肌细胞中MFN1的表达后,采用Western blot检测线粒体细胞色素c(Cyto c)释放及其下游凋亡效应分子Caspase9与Caspase3活性,流式细胞术检测细胞内活性氧(ROS)的产生情况,流式细胞术检测细胞凋亡的情况。结果:干扰MFN1可显著促进H9C2心肌细胞内细胞色素c由线粒体释放至胞浆,促进Caspase9与Caspase3的激活,增加细胞内活性氧ROS产生并提高细胞凋亡率(均P0.05)。结论:MFN1介导的线粒体融合可保护心肌细胞凋亡,其机制可能与抑制ROS产生与细胞色素C释放有关。  相似文献   

4.
为了研究敌敌畏(dichlorvos,DDVP)对人肾细胞的毒性效应。应用MTT比色法检测敌敌畏对人肾细胞系293T细胞增殖的影响,流式细胞仪检测293T细胞的凋亡情况,荧光二氯荧光素二乙酸(DCF-DA)测定细胞内的活性氧(reactive oxidative species,ROS)水平。结果表明:用浓度为0.5 mmol/L、1 mmol/L、5 mmol/L、10 mmol/L、15 mmol/L和20 mmol/L的敌敌畏分别处理293T细胞1 h后发现敌敌畏对293T的生长抑制具有剂量效应,计算得到1 h的IC_(50)值为10.406 mmol/L;不同浓度敌敌畏(0.5 mmol/L,5 mmol/L,10 mmol/L)处理1 h 293T细胞发现细胞产生明显的凋亡现象,随着处理浓度的增加,细胞的凋亡率升高,检测细胞内活性氧水平发现细胞内活性氧水平也随之升高。结果提示敌敌畏能够通过凋亡途径抑制293T细胞的增殖,其作用机制可能是通过增加293T细胞内活性氧水平,促进细胞凋亡,进而抑制细胞增殖。  相似文献   

5.
为研究胰高血糖素样肽-1(Glucogon like peptide-1,GLP-1)对晚期糖基化终产物(Advanced Glycation End Products,AGEs)诱导成纤维细胞凋亡的影响及其机制研究。体外培养成纤维细胞,实验分为5组:正常对照组,200 mg/L AGEs试验组,AGEs(200 mg/L)+GLP-1(5 nmol/L)组,AGEs(200 mg/L)+GLP-1(10 nmol/L)以及AGEs(200 mg/L)+GLP-1(20 nmol/L)组,处理24 h。通过CCK-8比色法检测细胞存活率,相差显微镜观察细胞形态,双氯荧光素(DCFH-DA)染色荧光显微镜摄片观察细胞内活性氧(ROS)水平;运用Hoechst33258检测试剂盒及流式细胞术检测成纤维细胞的凋亡率,Western Blot检测凋亡相关蛋白Caspase-3、Bcl-2的表达量。结果表明:与正常组相比,200 mg/L AGEs组降低成纤维细胞生存率,活性氧(ROS)生成量增加;与AGEs组相比,AGEs+GLP-1组成浓度依赖性提高细胞生成率,活性氧(ROS)含量减少。与正常组相比,AGEs组导致促凋亡蛋白Caspase-3增加,抑制凋亡蛋白Bcl-2减少,细胞凋亡率升高;AGEs+GLP-1组较AGEs组下调促凋亡蛋白Caspase-3,上调抑制蛋白凋亡Bcl-2,细胞凋亡率减少。由此可见,GLP-1可以通过拮抗活性氧(ROS)发挥对AGEs诱导的成纤维细胞凋亡的保护作用。  相似文献   

6.
目的:探讨Genistein对卵巢癌铂类耐药细胞CP70增殖、凋亡的影响及与细胞内活性氧水平的关系。方法:采用MTT法检测Genistein对CP70细胞增殖的影响;流式细胞仪分析不同药物处理后对细胞凋亡的影响,线粒体膜电位及细胞内ROS水平的变化情况。结果:Genistein对CP70细胞增殖表现出剂量和时间依赖性的抑制作用,并能诱导其凋亡;Genistein作用于CP70细胞后,可使其线粒体膜电位降低,并引发了细胞内ROS水平的显著升高;ROS抑制剂NAC预处理CP70细胞后,有效抑制了ROS的产生,并降低了细胞凋亡率,与未加NAC组相比差异有显著性(P0.05)。结论:Genistein能抑制铂类耐药卵巢癌细胞CP70的增殖,并促进其凋亡,这与细胞内ROS水平的升高有关,可能是Genistein抗肿瘤诱导细胞凋亡的机制之一。  相似文献   

7.
目的:探讨Genistein增加顺铂诱导的耐药卵巢癌细胞SKOV-3凋亡的可能作用机制.方法:倒置相差显微镜下观察药物处理后细胞形态学的变化;MTT比色法检测不同药物处理后对SKOV-3细胞增殖的影响;流式细胞仪检测药物处理后细胞的凋亡情况;流式细胞仪和荧光显微镜检测细胞内活性氧(ROS)的水平.结果:10ug/ml的Genistein和2.5ug/ml的顺铂联用24h后,引起了细胞内ROS的增加,细胞的凋亡率也显著增高,与单用顺铂组相比差异有显著性(P<0.05);用NAC预处理细胞2h后,有效抑制了ROS的产生,并增加了细胞的活性,降低了细胞的凋亡率,与未加NAC组相比差异有显著性(P<0.05).结论:Genistein增加顺铂诱导的耐药卵巢癌细胞SKOV一3的凋亡与细胞内ROS水平的升高有关,这可能是Genistein增加顺铂诱导的耐药卵巢癌细胞SKOV-3凋亡的作用机制之一.  相似文献   

8.
目的分析高浓度血管紧张素Ⅱ(AngⅡ)刺激人脐静脉内皮细胞(HUVECs)时细胞内活性氧(ROS)、NOX4mRNA水平和细胞凋亡的变化。方法倒置显微镜下观察人脐静脉内皮细胞形态;免疫组化法检测人脐静脉内皮细胞Ⅷ因子相关抗原的表达;RT—PCR检测HUVECs中NOX4的表达;流式细胞仪检测各组细胞内ROS生成量和细胞凋亡率,Hoechst染色分析细胞凋亡。结果高AngⅡ刺激HUVECs时,NOX4mRNA表达上调,细胞内ROS生成增加,细胞凋亡增加。结论高AngⅡ上调HUVCEs内NOX4mR—NA表达并促进细胞内ROS生成和细胞凋亡。  相似文献   

9.
探讨蛋白酶体抑制剂MG132 在诱导人白血病K562细胞凋亡过程中作用.分别以不同浓度的蛋白酶体抑制剂MG132 处理人白血病细胞K562,通过MTT法检测K562细胞活力,应用Annexin Ⅴ和PI 双染的细胞流式法检测K562细胞凋亡率和细胞内活性氧(ROS) 水平,应用酶标仪法检测K562细胞内Caspase- 3活性变化的情况.结果表明,随着MG132浓度的增加,各个指标与对照组比较差异均有显著性(P<0.05):K562细胞增殖明显受到抑制;细胞凋亡率明显增加,且当MG132浓度为900 nmol/L时,细胞凋亡率达36.5 %;同时,ROS 水平和caspase- 3活性明显升高.因次,蛋白酶体抑制剂MG132可显著抑制人白血病细胞K562增殖并促进其凋亡.  相似文献   

10.
该文研究了体外培养肝细胞内钙离子浓度改变对细胞存活率、凋亡和增殖的影响。建立了H2O2诱导小鼠胚胎肝细胞损伤模型,CCK-8检测细胞存活率,Fura-2/AM负载检测细胞内[Ca2+]i;免疫荧光和Western blot分别检测STIM1和Orai1在细胞内的定位和含量;流式细胞术检测细胞凋亡;Brdu掺入检测细胞增殖。结果显示,H2O2刺激后细胞存活率降低为对照组的73%,凋亡细胞比例增加,增殖细胞数目显著减少,细胞内[Ca2+]i升高,STIM1和Orai1蛋白质水平增加,且STIM1可与Orai1蛋白质共定位。2-APB预处理组可以降低细胞内[Ca2+]i,减少STIM1和Orai1蛋白质表达水平,抑制STIM1和Orai1蛋白质的相互作用。结果表明,H2O2可通过影响细胞内钙离子稳态导致细胞凋亡。  相似文献   

11.
Several types of lymphoid and myeloid tumor cells are known to be relatively resistant to radiation-induced apoptosis compared to normal lymphocytes. The intracellular generation of reactive oxygen species was measured in irradiated spleen cells from C57BL/6 and BALB/c mice and murine tumor cells (EL-4 and P388) by flow cytometry using dichlorodihydrofluoresceindiacetate and dihydrorhodamine 123 as fluorescent probes. The amount of reactive oxygen species generated per cell was low in the tumor cells compared to spleen cells exposed to 1 to 10 Gy of gamma radiation. This could be due to the higher total antioxidant levels in tumor cells compared to normal cells. Further, the changes in mitochondrial membrane potential and cytoplasmic Ca2+ content were appreciable in lymphocytes even at a dose of 1 Gy. In EL-4 cells, no such changes were observed at any of the doses used. About 65% of spleen cells underwent apoptosis 24 h after 1 Gy irradiation. However, under the same conditions, EL-4 and P388 cells failed to undergo apoptosis, but they accumulated in G2/M phase. Thus the intrinsic radioresistance of tumor cells may be due to a decreased generation of reactive oxygen species after irradiation and down-regulation of the subsequent events leading to apoptosis.  相似文献   

12.
Exposure of cells to ionizing radiation leads to formation of reactive oxygen species, which are associated with radiation-induced cytotoxicity. Therefore, compounds that scavenge reactive oxygen species may confer radioprotective effects. Superoxide dismutase (SOD) mimetics have been shown to be protective against cell injury caused by reactive oxygen species. The objective of this study was to investigate the effects of manganese(III) tetrakis(N-methyl-2-pyridyl)porphyrin (MnTMPyP), a cell-permeable SOD mimetic, on radiation-dependent toxicity. We investigated the protective role of MnTMPyP against ionizing radiation in U937 cells and mice. On exposure to ionizing radiation, there was a distinct difference between control cells and cells pretreated with MnTMPyP with respect to viability, cellular redox status, and oxidative damage to cells. Lipid peroxidation, oxidative DNA damage, and protein oxidation were significantly lower in the cells treated with MnTMPyP when the cells were exposed to ionizing radiation. The [GSSG]/[GSH + GSSG] ratio and the generation of intracellular reactive oxygen species were higher and the [NADPH]/[NADP+ + NADPH] ratio was lower in control cells compared with MnTMPyP-treated cells. Ionizing radiation-induced mitochondrial damage, as reflected by the altered mitochondrial permeability transition, increase in accumulation of reactive oxygen species, reduction of ATP production, and morphological change, was significantly higher in control cells than in MnTMPyP-treated cells. MnTMPyP administration for 14 days at a daily dosage of 5 mg/kg provided substantial protection against killing and oxidative damage in mice exposed to whole-body irradiation. These data indicate that MnTMPyP may have great application potential as a new class of in vivo, non-sulfur-containing radiation protectors.  相似文献   

13.
Cisplatin and gentamycin are both ototoxic and they have been shown to induce cochlear cell apoptosis. Although radiation is also ototoxic, radiation-induced apoptosis in cochlear cells has not been studied. This study aimed to investigate the biophysical changes of dose-related radiation-induced cochlear cell apoptosis in an experimental model. Post gamma-irradiation apoptosis was demonstrated in the cochlear cell-line OC-k3 by flow cytometry and TUNEL assay. This was dose-dependant with enhanced apoptosis resulting after 20 than 5 Gy, and occurred predominantly at 72 h post-irradiation. Microarray analysis showed associated dose-dependant apoptotic gene regulation changes. Western blotting revealed p53 up-regulation of at 72 h and phosphorylation at 3, 24, 48 and 72 h after irradiation. Early activation of c-jun occurred at 3 h, but was not sustained with time. Associated dose-dependant intracellular generation of reactive oxygen species (ROS) was also demonstrated using 2′, 7′-dichlorofluorescein diacetate. In conclusion, this study demonstrated a dose-dependant cochlear cell apoptosis and associated ROS generation after irradiation, with p53 possibly playing a key role. Based on this ROS-linked apoptotic model, anti-oxidants and anti-apoptotic factors could potentially be used to prevent radiation-induced sensori-neural hearing loss. As these medications can be delivered topically through the middle ear, their systematic side effects could therefore be minimized.  相似文献   

14.
Ionizing radiation induces the production of reactive oxygen species, which play an important causative role in apoptotic cell death. Therefore, compounds that scavenge reactive oxygen species may confer regulatory effects on apoptosis. Superoxide dismutase (SOD) mimetics have been shown to be protective against cell injury caused by reactive oxygen species. We investigated the effects of the manganese (III) tetrakis(N-methyl-2-pyridyl)porphyrin (MnTMPyP), a cell-permeable SOD mimetic, on ionizing radiation-induced apoptosis. Upon exposure to 2 Gy of gamma-irradiation, there was a distinct difference between the control cells and the cells pre-treated with 5 microM MnTMPyP for 2 h with regard to apoptotic parameters, cellular redox status, mitochondria function, and oxidative damage to cells. MnTMPyP effectively suppressed morphological evidence of apoptosis and DNA fragmentation in U937 cells exposed to ionizing radiation. The [GSSG]/[GSH+GSSG] ratio and the generation of intracellular reactive oxygen species were higher and the [NADPH]/[NADP(+)+NADPH] ratio was lower in control cells compared to MnTMPyP-treated cells. The ionizing radiation-induced mitochondrial damage reflected by the altered mitochondrial permeability transition, the increase in the accumulation of reactive oxygen species, and the reduction of ATP production were significantly higher in control cells compared to MnTMPyP-treated cells. MnTMPyP pre-treated cells showed significant inhibition of apoptotic features such as activation of caspase-3, up-regulation of Bax and p53, and down-regulation of Bcl-2 compared to control cells upon exposure to ionizing radiation. This study indicates that MnTMPyP may play an important role in regulating the apoptosis induced by ionizing radiation presumably through scavenging of reactive oxygen species.  相似文献   

15.
Withaferin A (Wit A), a natural compound derived from the medicinal plant Withania somnifera, has been reported for the anti-tumor effects, including the inhibition of tumor cell growth, metastasis and angiogenesis. In this study, we investigated the effect of Wit A on radiation-induced apoptosis in human renal cancer cells (Caki cells). Our results showed that, compared with Wit A or radiation alone, the combination of both resulted in a significant enhancement of apoptosis, showing the increase in the cleavage of caspase-3 and PARP as well as sub-G1 cell population. In addition, reactive oxygen species (ROS) generation was correlated with the enhancement of radiation-induced apoptosis by Wit A. Wit A downregulated Bcl-2 protein levels and ectopic expression of Bcl-2 in Caki cells attenuated the apoptosis induced by Wit A plus radiation. Taken together, these results indicate that Wit A enhanced radiation-induced apoptosis in Caki cells through ROS generation, down-regulation of Bcl-2 and Akt dephosphorylation. Thus, our study shows that Wit A may be used as an effective radiosensitizer in cancer therapy.  相似文献   

16.
The modification of radiation-induced apoptosis in splenocytes by a vitamin-containing dietary supplement was studied. For 45 days prior to irradiation at a lethal dose of 6 Gy, mice received a dietary supplement containing vitamins with antioxidant properties and microelements. The expression of TRPM-2 (a marker for programmed cell death), bcl-2 (the product of which has been shown to prevent apoptosis), superoxide dismutase, and catalase genes was studied at different time intervals after irradiation. Radiation-induced alterations in gene expression were different in the control and the antioxidant mixture-fed mice. The antioxidant mixture administration resulted in an inhibition of TRPM-2 expression both before and after irradiation. The bcl-2 mRNA content steadily increased after irradiation in splenocytes from antioxidant mixture-fed mice, while in the control group 2-h after irradiation only trace amount of bcl-2 mRNA was detected. In splenocytes from control mice, the expression of superoxide dismutase and catalase genes significantly decreased within 2-h after irradiation; whereas in mice receiving the antioxidant mixture, inhibition of catalase gene expression was not as prominent. The expression of superoxide dismutase gene was still high 24-h after irradiation. The antioxidant administration decreased the radiation-induced apoptosis and delayed internucleosomal fragmentation of DNA. Our data suggest that radiation-induced alteration of gene expression is, at least in part, determined by reactive oxygen species.  相似文献   

17.
目的:比较研究巴西莓果粉Herbal Clean Energy和诺尼果粉Noni GIA通过消除自由基、降低造血细胞凋亡等作用对8Gy大剂量γ线照射后小鼠活存的影响。方法:将C57BL/6J小鼠随机分组、每组雌雄各半,单一果粉在相同灌胃剂量下采用照前灌胃10天、照后灌胃10天以及照前照后灌胃10天三种灌胃方式,首先观察了小鼠在用钴60γ线8Gy致死剂量照后40天活存率;其次在上述相同条件处理下,照后10天对小鼠外周血白细胞计数、CD4+和CD8+淋巴细胞类型、活性氧、骨髓造血细胞凋亡率等分析。结果:生理盐水灌胃组C57BL/6J小鼠受8Gy照射在第18天全部死亡(n=20,下同),死亡率100%,而照前10天灌胃后照射8Gy试验组:巴西莓和诺尼果粉组照后40天活存10/20只,诺尼果粉组第40天活存9/20,巴西莓果粉组第40天活存8/20。在照后灌胃的组别中,诺尼果粉组第40天活存7/20,巴西莓和诺尼果粉组第40天活存4/20只,巴西莓果粉组第40天活存2/20。照射前后单独或联合灌胃两种果粉组外周血白细胞均有升高,而骨髓造血细胞凋亡降低,而且果粉灌胃小鼠外周血Th/Tc比率同对照组相比明显保持于正常值范围。红细胞和血小板数据无明显变化,活性氧含量则呈现无规律表现。结论:巴西莓和诺尼果粉对小鼠抗辐射有预防作用,其细胞学表现为保持造血增殖能力、降低造血细胞凋亡,并维持Th/Tc免疫平衡;显示果粉对保持造血和免疫能力是提高抵抗辐射损伤、提高活存的基础。同时表明,服用巴西莓果粉和诺尼果粉,对人体防止辐射损伤有预防作用。  相似文献   

18.
Exposure of cells to γ-rays induces the production of reactive oxygen species (ROS) that play a main role in ionizing radiation damage. We have investigated the radioprotective effect of phloroglucinol (1,3,5-trihydroxybenzene), phlorotannin compound isolated from Ecklonia cava, against γ-ray radiation-induced oxidative damage in vitro and in vivo. Phloroglucinol significantly decreased the level of radiation-induced intracellular ROS and damage to cellular components such as the lipid, DNA and protein. Phloroglucinol enhanced cell viability that decreased after exposure to γ-rays and reduced radiation-induced apoptosis via inhibition of mitochondria mediated caspases pathway. Phloroglucinol reduced radiation-induced loss of the mitochondrial membrane action potential, reduced the levels of the active forms of caspase 9 and 3 and elevated the expression of bcl-2. Furthermore, the anti-apoptotic effect of phloroglucinol was exerted via inhibition of mitogen-activated protein kinase kinase-4 (MKK4/SEK1), c-Jun NH2-terminal kinase (JNK) and activator protein-1 (AP-1) cascades induced by radiation exposure. Phloroglucinol restored the level of reduced glutathione (GSH) and protein expression of a catalytically active subunit of glutamate-cysteine ligase (GCL), which is a rate-limiting enzyme in GSH biosynthesis. In in vivo study, phloroglucinol administration in mice provided substantial protection against death and oxidative damage following whole-body irradiation. We examined survival with exposure to various radiation doses using the intestinal crypt assay and determined a dose reduction factor (DRF) of 1.24. Based on our findings, phloroglucinol may be possibly useful as a radioprotective compound.  相似文献   

19.
Lee JH  Tak JK  Park KM  Park JW 《Biochimie》2007,89(12):1509-1516
Ionizing radiation induces the production of reactive oxygen species, which play an important causative role in apoptotic cell death. Therefore, compounds that scavenge reactive oxygen species may confer regulatory effects on apoptosis. Recently, it has been shown that the decomposition product of the spin-trapping agent α-phenyl-N-t-butylnitrone, N-t-butyl hydroxylamine (NtBHA), mimics α-phenyl-N-t-butylnitrone and is much more potent in delaying reactive oxygen species-associated senescence. We investigated the effects of NtBHA on ionizing radiation-induced apoptosis. Upon exposure to 2 Gy of γ-irradiation, there was a distinct difference between the control cells and the cells pre-treated with 0.1 mM NtBHA for 2 h in regard to apoptotic parameters, cellular redox status, mitochondria function, and oxidative damage to cells. NtBHA effectively suppressed morphological evidence of apoptosis and DNA fragmentation in U937 cells exposed to ionizing radiation. The generation of intracellular reactive oxygen species was higher and the GSH level was lower in control cells compared to NtBHA-treated cells. The ionizing radiation-induced mitochondrial damage reflected by the altered mitochondrial permeability transition, the increase in the accumulation of reactive oxygen species, and the reduction of ATP production were significantly higher in control cells compared to NtBHA-treated cells. NtBHA pre-treated cells showed significant inhibition of apoptotic features such as activation of caspase-3, up-regulation of Bax and p53, and down-regulation of Bcl-2 compared to control cells upon exposure to ionizing radiation. This study indicates that NtBHA may play an important role in regulating the apoptosis induced by ionizing radiation presumably through scavenging of reactive oxygen species.  相似文献   

20.
The potential of naturally occurring antioxidants to reduce the cellular oxidative damage induced by ionizing radiation has been studied for more than a decade for their pharmacological application during cancer treatment. It is already known that radioprotective efficacy of phytochemicals might influence various end points of radiation damage. Flavonoids are well-known natural radioprotectors, and their biological effects depend upon their chemical structure. In the present study, radioprotective effect of black tea rich in flavonoids was evaluated against gamma radiation-induced oxidative damage on normal lymphocytes and compared with erythroleukemic K562 cells. Pre-treatment with black tea extract (BTE) significantly reduced radiation-induced loss of cell viability, generation of reactive oxygen species, mitochondrial dysfunction, activation of caspase-3 and apoptosis in normal lymphocytes compared to K562 cells. BTE also regulates the activity of endogenous antioxidant enzymes. The changes in the mRNA expression of bax, bcl2, p53 and Nrf2 were also followed to evaluate regulation of radiation-induced apoptosis by BTE. These findings suggest that black tea may have the potential of a natural radioprotective agent which can be used as adjunct with radiation during cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号