首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
在大鼠牵拉心房和急性扩张血容量所致的肾效应   总被引:1,自引:0,他引:1  
赵工  何瑞荣 《生理学报》1987,39(5):471-477
在28只麻醉大鼠,观察了牵拉心房和急性扩容时的肾效应。用5—7g的砝码牵拉大鼠右心房30min(n=6)时,尿量、尿钠和尿钾分别增加98%、127%和59%;牵拉左心房(n=4)所致的肾效应与牵拉右心房的基本相同。切断双侧迷走神经后,牵拉右心房的肾效应无明显改变。在切断迷走神经的大鼠,观察了双线结扎右心耳对急性扩容后肾效应的影响。急性扩容在假手术大鼠引起明显的利尿、钠尿和钾尿效应(P<0.01);而结扎右心耳的大鼠,钠尿效应约为假手术大鼠的一半,但尿量和尿钾排泄量与假手术组无明显异差。上述肾效应不受切断迷走神经的影响,因此不是通过容量感受性反射引起的。根据以上结果,我们推测,牵拉心房或急性扩容引起的尿量、尿铜和尿钾的增多,可能是心房钠尿因子释放增多所致,而结扎右心耳则导致释放入血流的心房钠尿因子减少。  相似文献   

2.
赵工  何瑞荣 《生理学报》1990,42(5):453-459
本实验观察了心房肽Ⅱ(Atriopeptin Ⅱ,APⅡ)对麻醉大鼠血压(AP)、心率(HR)和肾交感神经传出放电(RSNA)的影响,并与硝普钠对 AP 和 RSNA 的影响作比较。结果如下:(1)缓冲神经完整和迷走神经完整条件下(n=12)静脉注射 APⅡ(50μg/kg)后,动脉收缩压(SAP)降低23.0±1.66 mmHg(Μ±SE,p<0.001),HR 减慢9±3.5b/min(p<0.05),RSNA 降低4.89±2.95%(P>0.05)。迷走神经切断后,静脉注射 APⅡ引起的~⊿SAP 虽有所减小,但与切断迷走神经前的反应比较,无统计学意义,HR 减慢不再出现,而 RSNA 则有所增加;(2)缓冲神经切断和迷走神经完整条件下(n=7),静脉注射 APⅡ时 SAP 降低27.4±3.25mmHg(P<0.001),HR 减慢13±3.1b/min(P<0.01),RSNA 降低11.67±1.95%(P<0.001)。切断迷走神经后,静脉注射 APⅡ引起的 SAP 降低程度有明显減小(P<0.01),HR减慢不再出现,RSNA 则反而增加(3)无论在迷走神经完整还是切断条件下,静脉注射硝普钠(n=6) SAP 均明显降低,同时伴有 RSNA 的反射性增加。以上结果表明:APⅡ的降压效应,部分是通过迷走神经传入纤维;在切断缓冲神经条件下,APⅡ可经由迷走神经传入纤维的激活而反射地抑制 RSNA。  相似文献   

3.
孙双丹  张琪 《生理学报》1989,41(1):56-62
为研究心钠素(ANF)和精氨酸加压素(AVP)的相互作用在原发性高血压发病中的意义,对卒中易感型自发性高血压大鼠(SHRsp)和对照大鼠(WKY)侧脑室(icv)或静脉(iv)注射人ANF-(99-126)观察其对血浆、下丘脑和垂体AVP含量以及平均动脉压(MAP)和尿量(UV)、尿钠(U_(Na)V)排泌的影响。静脉注射ANF后10min,SHRsp和WKY大鼠的MAP分别下降9.4%和12.2%(P<0.05),UV分别增加9和20倍(P<0.01),U_(Na)V增加16和29倍(P<0.01)。侧脑室注射ANF对两种大鼠的MAP、UV和U_(Na)V排泌均无明显作用。静脉或侧脑室注射ANF均使两种大鼠的血浆AVP水平明显下降,其中SHRsp的血浆AVP浓度下降程度(iv,-58%;icv,-31%)弱于WKY大鼠(iv,-80%;icv,-65%),下丘脑AVP含量在两种大鼠中都明显增加,而垂体AVP含量无明显变化。 结果表明,人ANF-(99-126)有明显的抑制AVP释放和降压、利尿、利纳作用,而SHRsp对这些作用的敏感性都降低,提示SHRsp对ABF的反应减弱可能在自发性高血压大鼠的发病中具有一定的意义。  相似文献   

4.
汪亦欣  姚泰 《生理学报》1987,39(1):26-32
在清醒家兔中,侧脑室内注射200μl 高张盐溶液引起血压升高,心率减慢,肾神经放电抑制和尿钠排出明显增多等反应,但肾血流量没有明显改变。切断双侧肾神经后,脑室内注射高张盐溶液引起的升压反应仍存在,但尿钠排出增多的反应不再出现。在肾神经完整的动物中,事先于侧脑室内注射纳洛酮(20μg/kg)对脑室内注射高张盐溶液引起的促尿钠排出作用没有明显影响。另外,电针“足三里”穴或电刺激腓深神经均不能进一步加深侧脑室内注射高张盐溶液引起的肾神经放电抑制,也不能使尿钠排出量进一步增加。以上结果表明,侧脑室内注射高张盐溶液引起的促尿钠排出作用依赖于肾神经的完整,内阿片肽在此反应中可能不起重要作用。  相似文献   

5.
李智  何瑞荣 《生理学报》1989,41(4):328-337
对81只麻醉兔,在静脉注射新福林和硝普钠升降血压而改变动脉压力感受器活动的条件下,观察心率,后肢血管阻力和肾交感神经活动的反射性变化。主要结果如下:(1) 由新福林升高血压时,心率减慢、后肢血管阻力降低和肾交感神经活动抑制;硝普钠降低血压时引起相反效应。各指标的反射性变化有良好的可重复性。(2) 切断两侧减压神经或切断两侧窦神经后,静注新福林和硝普钠诱发的心率反射性变化均显著减弱(P<0.01);切断两侧减压神经较切断两侧窦神经后减弱得更为明显,其中对于新福林升压时的心率减慢反应差异显著(P<(0.05)。相反,对于新福林和硝普钠引起的后肢血管阻力反射性变化,与缓冲神经部分切断之前相比无明显差异;在对照肾交感神经活动已增高的基础上,硝普钠降压时肾交感神经活动的反射性兴奋效应降低,而新福林升压时的肾交感神经活动反射性抑制效应与神经切断前相比无明显差异。(3) 缓冲神经全部切断(SAD)后,新福林和硝普钠引起的平均动脉血压(MAP)变动幅度显著增大(P<0.05)。此时心率、后肢血管阻力和肾交感神经活动的反射调节效应均明显减弱(P<0.001)。(4) 进一步切断两侧迷走神经后,残留的反射效应即行消失。 以上结果表明,颈动脉窦和主动脉弓压力感受器传入以单纯相加的方式对心率进行反射性调节,以主  相似文献   

6.
本文探讨肾神经传入纤维对肾排泄功能的影响及其机制。在戊巴比妥钠麻醉猫中,切除双侧颈动脉窦神经、主动脉神经和迷走神经(SAD+VD),电刺激肾神经传入纤维使动脉血压明显升高,去神经肾的尿量,排钠量显著增多,排钾量和肾小球滤过率不变。神经完好肾的排钠量显著增加,尿量、排钾量和肾小球滤过率均无显著变化。在刺激肾神经传入纤维时,将动脉血压控制在对照期血压水平,两侧肾的尿量、排钠量、排钾量显著减少;神经完好肾的肾小球滤过率减少,而去神经肾的肾小球滤过率无显著改变。脊髓横断不能消除神经完好肾上述肾排泄功能的改变,但可消除去神经肾排泄功能的改变。这些结果表明,在SAD+VD猫中,控制动脉血压不变时,刺激肾神经传入纤维可使有神经肾和去神经肾排尿、排钠和排钾减少。在神经完好肾中这些反应可在脊髓水平完成。  相似文献   

7.
在室旁核(PVN)假损毁兔与PVN损毁兔血量扩张(VE)引起尿流量增加,峰值分别为0.59±0.09与0.31±0.03 ml/min (P<0.01),排钠量增加峰值分别为66.76±6.74与36.05±3.44μmol/min (P<0.01),而在PVN假损毁兔与PVN完好兔对VE的反应无显著差别(P>0.05),表明PVN损伤可明显减弱 VE 引起的促钠排泄与利尿效应.颈迷走神经切断并不能改变 PVN损伤的上述作用.双侧肾神经切断兔损毁 PVN对VE引起促钠排泄效应无显著影响,但显著减弱其利尿效应 (P<0.02).PVN损毁对VE时肾小球滤过率(GFR)与肾血浆流量(RPF)无显著影响.结果表明PVN参与VE通过迷走传入神经引起促钠排泄与利尿反应的调节,而肾交感传出神经参与其中促钠排泄的作用.  相似文献   

8.
肾神经在扩张心房时对尿量和尿钠排出的作用   总被引:1,自引:0,他引:1  
高原  林茂樟 《生理学报》1988,40(2):191-196
单侧肾去神经的麻醉狗,用乳胶小囊扩张肺静脉-心房连接部,观察到神经完好肾的尿流量与排钠量均显著增加(P<0.01);去神经肾的尿流量仍显著增加(P<0 01),但排钠量无明显变化(P>0.05);两侧肾的肾小球滤过率(GFR)及肾血浆流量(RPF)均保持稳定;神经完好肾的静脉血浆肾素活性(PRA)及血管紧张素Ⅱ水平(PAⅡ)均明显降低,PAⅡ降低的幅度与尿流量增加的幅度无相关(r=-0.2975,P>0.05);与排钠量增加的幅度也无相关(r=-0.2359,P>0.05);去神经肾的PRA和PAⅡ都没有显著变化。说明在刺激心房感受器引起的利尿与尿钠排泄的反应中,肾神经主要促进肾对尿钠的排出。肾神经的这种作用既不是通过改变GFR和RPF,也不是抑制肾素的释放,而可能是由于直接影响肾小管对钠的重吸收。  相似文献   

9.
詹昌德  潘敬运 《生理学报》1993,45(3):305-309
本文在氯醛糖麻醉猫中探讨室旁核毁损前、后,电刺激肾神经传入纤维对血浆皮质醇浓度的影响。在动脉压力感受器完整猫中,刺激肾神经传入纤维对血浆皮质醇浓度无明显影响,但在动脉压力感受器去神经和迷走神经切断(SAD+VD)后,电刺激肾神经中枢端引起血浆皮质醇浓度升高。微量注射红藻氨酸毁损双侧室旁核后,可阻断刺激肾神经传入纤维引起的血浆皮质醇浓度升高,这些结果表明:动脉压力感受性反射可抑制刺激猫肾神经传入纤维引起的血浆皮质醇浓度升高;室旁核在刺激肾神经传入纤维引起的血浆皮质醇浓度升高效应中起重要作用。  相似文献   

10.
兔室旁核对血量扩张引起促纳排泄与利尿的作用   总被引:2,自引:0,他引:2  
Zhang B  Lin MZ  Han GC 《生理学报》2000,52(1):75-80
在室旁核 (PVN)假损毁兔与PVN损毁兔血量扩张 (VE)引起尿流量增加 ,峰值分别为 0 5 9± 0 0 9与0 3 1± 0 0 3ml/min (P <0 0 1) ,排钠量增加峰值分别为 66 76± 6 74与 3 6 0 5± 3 4 4μmol/min (P <0 0 1) ,而在PVN假损毁兔与PVN完好兔对VE的反应无显著差别 (P >0 0 5 ) ,表明PVN损伤可明显减弱VE引起的促钠排泄与利尿效应。颈迷走神经切断并不能改变PVN损伤的上述作用。双侧肾神经切断兔损毁PVN对VE引起促钠排泄效应无显著影响 ,但显著减弱其利尿效应 (P <0 0 2 )。PVN损毁对VE时肾小球滤过率 (GFR)与肾血浆流量 (RPF)无显著影响。结果表明PVN参与VE通过迷走传入神经引起促钠排泄与利尿反应的调节 ,而肾交感传出神经参与其中促钠排泄的作用  相似文献   

11.
K P Patel 《Life sciences》1991,48(3):261-267
The relationship between the renal nerves and vasopressin in terms of the natriuretic and diuretic responses to atrial natriuretic factor (ANF--0.25 microgram/kg/min for 15 min), was investigated in unilaterally denervated anesthetized rats before and after the administration of a vasopressin V2 specific antagonist (AVPX)--(40 micrograms/kg bolus followed by 0.4 microgram/kg/min infusion). Administration of the AVPX or ANF did not alter the arterial pressure. Acute renal denervation or AVPX administration independently produced significant increases in sodium and water excretion. ANF infusion by itself produced a greater increase in urine flow and sodium excretion from the denervated kidney compared to the intact kidney before the administration of AVPX. However, after the administration of AVPX renal responses to ANF from the intact kidneys were enhanced such that they were not significantly different from the denervated kidneys. These results suggest that the full physiological response to ANF may be masked by tonic renal nerve activity or antidiuretic actions of vasopressin. Furthermore, since combined renal denervation and AVPX administration does not produce any greater potentiation of the renal responses to ANF than either of these manipulations alone, it is suggested that they may act via a common mechanism, possibly altering activity in the renal nerves.  相似文献   

12.
The relationship between renal perfusion pressure and urinary sodium is involved in arterial pressure regulation. The aim of this study was to investigate the role of renal nerves and angiotensin II in the pressure-natriuresis relationship. Experiments were performed in anaesthetised cats in which one kidney was surgically denervated. Renal perfusion pressure (RPP), renal blood flow (RBF) glomerular filtration rate (GFR, creatinine clearance), urinary volume (V) and sodium excretion (Una + V) were separately measured from both kidneys. RPP was progressively reduced in two consecutive steps by a suprarenal aortic snare. Two groups of animals were studied: the first without any pharmacological treatment (Untreated), the second during treatment with an angiotensin converting enzyme inhibitor (Captopril, 0.4 mg/Kg intravenously followed by an infusion of 0.4 mg/Kg/h). In the Untreated group RPP was reduced from 152.4 +/- 7.3 to 113.6 +/- 5.8 and 83.0 +/- 4.4 mmHg during the first and second step respectively. RBF and GFR were only slightly reduced during the second step of reduced RPP. In control conditions V and UNa + V were greater in the denervated compared to the innervated kidney. The graded decrease in RPP reduced both V and UNa + V in the innervated as well as in the denervated kidney. In the Captopril group V and UNa + V were larger than in the Untreated group in both the innervated and the denervated kidney. A decrease of RPP similar to that observed in the Untreated group, produced similar haemodynamic changes. Also in the Captopril group the graded decrease in RPP reduced both V and UNa + V in the innervated as well as in the denervated kidney. Matching UNa + V against RPP values significant correlations were found in the innervated and denervated kidneys of both groups. Both renal denervation and ACE inhibition were accompanied by an increased gain of the pressure-natriuresis curve, but only renal denervation shifted the crossing of the pressure axis to the left. In the ACE inhibited animals renal denervation only shifted the curve to the left. In conclusion our data suggest that i) at each level of RPP renal nerves and angiotensin II decrease renal sodium excretion, ii) renal nerves and angiotensin II increase the slope of the renal function curve, iii) renal nerves shift to the right the renal function curve.  相似文献   

13.
This study was to determine whether the presence or absence of renal nerves and vasopressin altered the diuretic and natriuretic responses to acute volume expansion. Two forms of volume expansion were used: (i) inflation of a small balloon in the veno-atrial junction and (ii) an infusion of isotonic saline at a rate of 1 ml/min for a period of 15 min, approximately 7% of body weight. Balloon inflation produced a significant diuresis from both the intact and denervated kidneys but only produced a significant natriuresis from the intact kidney. Volume expansion (infusion of saline) produced a significant diuresis and natriuresis from both intact and denervated kidneys. Blocking the V2 receptor for vasopressin with a V2-specific receptor blocker d(CH2)5[D-Ile2,Val4]AVP (40 micrograms/kg bolus dose followed by infusion of 4 micrograms/kg/min) did not alter the diuretic and natriuretic responses to volume expansion. However, the absence of renal nerves or the absence of actions of vasopressin produced a significant reduction in the capacity of the kidneys to increase the relative amount of diuresis or natriuresis, thus losing the control over output; i.e., absence of renal nerves only allowed 12-fold increase in diuresis to volume expansion compared with 25-fold in the intact state and absence of vasopressin only allowed 4.6-fold increase in diuresis to volume expansion compared with 25-fold in the intact state. Examining the "volume reflex" in terms of a control system trying to regulate fluid balance, the presence of either renal nerves or actions of vasopressin allows the volume regulating system a greater range in which to control the diuresis and natriuresis (making it possible to fine tune the output to much greater extent).  相似文献   

14.
To investigate the involvement of vagal afferents in renal nerve release of catecholamines, we compared norepinephrine, dopamine, and epinephrine excretion from innervated and chronically denervated kidneys in the same rat. The difference between innervated and denervated kidney excretion rates was taken as a measure of neurotransmitter release from renal nerves. During saline expansion, norepinephrine excretion from the innervated kidney was not statistically greater than from denervated kidneys. Vagotomy increased norepinephrine release from renal nerves. Thus vagal afferents participated in the suppression of renal sympathetic nerve activity during saline expansion. No significant vagal control of dopamine release by renal nerves was detected under these conditions. Bilateral carotid ligation stimulated renal nerve release of both norepinephrine and dopamine in saline-expanded rats. The effects of carotid ligation and vagotomy were not additive with respect to norepinephrine release by renal nerves. However, the baroreflex-stimulated renal nerve release of dopamine was abolished by vagotomy. Electrical stimulation of the left cervical vagus with a square wave electrical pulse (0.5 ms duration, 10 V, 2 Hz) increased dopamine excretion exclusively from the innervated kidney of hydropenic rats. No significant change in norepinephrine excretion was observed during vagal stimulation. Increased dopamine excretion during vagal stimulation was associated with a larger natriuretic response from the innervated kidney than from its denervated mate (p less than 0.05). We conclude that under appropriate conditions vagal afferents stimulate renal release of dopamine and produce a neurogenically mediated natriuresis.  相似文献   

15.
A hallmark of overt congestive heart failure (CHF) is attenuated cGMP production by endogenous atrial natriuretic peptide (ANP) with renal resistance to ANP. ANP and brain natriuretic peptides (BNP) are of myocardial origin, whereas urodilatin (Uro) is thought to be derived from kidney. All three peptides are agonists to the natriuretic peptide-A receptor. Our objective was to compare the cardiorenal and humoral actions of ANP, BNP, and Uro in experimental overt CHF. We determined cardiorenal and humoral actions of 90 min of intravenous equimolar infusion of ANP, BNP, and Uro (2 and 10 pmol.kg-1.min-1) in three separate groups of anesthetized dogs with rapid ventricular pacing-induced overt CHF (240 beats/min for 10 days). BNP resulted in increases in urinary sodium excretion (U(Na)V) (2.2+/-0.7 to 164+/-76 microeq/min, P<0.05) and glomerular filtration rate (GFR) (27+/-4 to 52+/-11 ml/min, P<0.05) that were greater than those with Uro (P<0.05), whereas ANP did not result in increases in U(Na)V or GFR. Increases in plasma cGMP (25+/-2 to 38+/-2 pmol/ml, P<0.05) and urinary cGMP excretion with BNP (1,618+/-151 to 6,124+/-995 pmol/min, P<0.05) were similar to those with Uro; however, there was no change with ANP. Cardiac filling pressures were reduced in all three groups. These studies also support the conclusion that in experimental overt CHF, renal resistance to natriuretic peptides in increasing rank order is BNP相似文献   

16.
The influence of renal nerves on proximal Na+ reabsorption was studied in clearance experiments with unilaterally renal-denervated conscious dogs prepared by surgical bladder division. Two types of experiments were made : A. maximal water diuresis, and B. Total blockade of distal NaCl reabsorption with ethacrynic acid and chlorothiazide. In maximal water diuresis CH2O + CNa was used as a measure of fluid delivery to the distal nephron. At similar GFR on both sides, the proximal reabsorption estimated as GFR--(CH2O + CNa) was 38.4 +/- 5.6 ml/min for the intact and 35.9 +/- 4.2 ml/min for the denervated kidney (n = 6, difference NS). After distal tubular blockade, proximal Na+ reabsorption calculated as filtered load minus urinary excretion was 3.84 +/- 0.43 mmol/min for the intact and 3.91 +/- 0.36 mmol/min for the denervated kidney (n = 6, difference NS). The fractional reabsorption of NA+ was 64.9 +/- 1.0% for the intact and 66.9 +/- 1.1% for the denervated kidney (difference NS). In contrast to data from renal denervation studies with anaesthetized animals, the present experiments did not show any difference in proximal reabsorption between the innervated- and denervated kidney. We conclude that in absence of anaesthesia renal efferent nerves have no major effect on NaCl transport in dog proximal tubule.  相似文献   

17.
Kopczyńska B 《Life sciences》2007,80(19):1738-1745
Anaesthetized and spontaneously breathing rats were used to study the cardio-respiratory effects of intravenous anandamide administration. To investigate the role of particular levels of the afferent pathway in this response rats were challenged with bolus injection of anandamide (1 mg kg(-1)) into the femoral vein while intact, following bilateral superior laryngeal nerves (SLNs) section and after midcervical vagotomy. To test the hypothesis that the activation of the vanilloid receptors (VR1) as well as cannabinoid receptors (CB1) contributes to the anandamide-induced response administrations of anandamide were preceded by nonselective VR1 antagonist ruthenium red or selective CB1 antagonist AM281. Anandamide evoked apnoea of mean duration of 4.84+/-0.75 s in all animals while intact which was shortened by subsequent neurotomies, after SLNs section to 3.3+/-0.57 s (P<0.05) and after midcervical vagi section to 1.99+/-0.24 s (P<0.01). In post-apnoeic breathing tidal volume (V(T)) was reduced in all neural states. Anandamide evoked hypotension in the intact and SLNs neurotomized rats. Midcervical vagotomy reduced this fall in blood pressure. Both antagonists ruthenium red and AM281 eliminated post-anandamide apnoea and hypotension but had no effect on post-apnoeic depression of V(T). Subsequent SLNs and cervical vagi sections did not eliminate but only reduced post-anandamide depression of breathing. Midcervical vagotomy lessened anandamide-induced hypotension. Apnoeic and hypotensive response to anandamide was mediated by both VR1 and CB1 receptors. Post-anandamide decline of V(T) might depend on different type of receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号