首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 687 毫秒
1.
目的: 观察健康志愿者不同功率递增速率完成症状限制性极限心肺运动试验(CPET)对CPET峰值运动相关核心指标的影响,及运动中呼吸交换率(RER)的变化。以探讨不同功率递增速率对CPET峰值运动相关指标的影响。方法: 选择12名健康志愿者在一周内不同工作天随机完成中等适度程度(30 W/min)及比较低(10 W/min)和比较高(60 W/min)3种不同功率递增速率CPET。按标准方法比较CPET数据主要峰值运动核心指标:峰值运动时的摄氧量、二氧化碳排出量、负荷功率、呼吸频率、潮气量、分钟通气量、心率、血压和氧脉搏,运动持续时间和CPET各时段的RER。对三组不同功率递增速率下各个指标的差异进行组间两两比较。结果: 与中等适度功率递增速率组比较,比较低和比较高功率递增速率组的峰值功率分别显著地降低和升高((162.04±41.59)W/min vs (132.92±34.55) W/min vs (197.42±46.14) W/min, P<0.01);运动时间显著延长和缩短((5.69±1.33) min vs (13.49±3.43) min vs (3.56±0.76) min,P<0.01);峰值RER(1.27±0.07 vs 1.18±0.06 vs 1.33±0.08,P<0.01~P<0.05)与恢复期RER最大值(1.72±0.16 vs 1.61±0.11 vs 1.81±0.14,P<0.01~P<0.05)均显著降低和升高。结论: 不同功率递增速率CPET显著改变峰值运动时的功率、运动持续时间、峰值RER和恢复期最大RER。CPET规范化操作要选择个体化适合受试者的中等适度功率递增速率,而且也不能以某一固定的RER值作为保证安全、受试者达到极限运动和提前终止运动的依据。  相似文献   

2.
目的: 通过心肺运动试验(CPET)进行二尖瓣关闭不全的运动病理生理学特征的相关研究。方法: 自2016年以来签署知情同意后,严格质控下完成规范化CPET极限运动的中重度二尖瓣关闭不全患者26例,取同期正常人11例为对照组。将CPET核心指标按照标准方法分析计算,并与正常人比较,进行组间统计学独立样本t检验。同时将患者是否存在心衰和波浪式呼吸(OB)分别分为两个亚组;其中无心衰11例,心衰15例;非OB 8例,OB18例,并分别对各亚组间比较其异同。结果: 正常人峰值摄氧量(85.60± 9.06)%pred及无氧阈(87.59 ±15.38)%pred等CPET核心指标均为正常范围。二尖瓣关闭不全患者CPET的峰值摄氧量为(48.15 ±12.11)%pred、峰值氧脉搏(66.57±12.20)%pred 、无氧阈(56.75 ±11.50)%pred、摄氧通气效率峰值平台(OUEP)(88.24 ±16.42)%pred、二氧化碳排出通气效率最低值(125.89 ±27.05)%pred和二氧化碳排出通气斜率(128.31 ±31.68)%pred,其中仅摄氧通气效率峰值平台属于正常偏低,其余指标均为显著异常;且与对照组均存在显著差异(P<0.01)。无心力衰竭组与心力衰竭组组间比较均无差异(P>0.05),但所有指标均与对照组有显著差异(P<0.05);非OB组与OB组组间比较均无差异(P>0.05),但均与对照组有显著差异(P<0.05)。结论: 二尖瓣关闭不全病人除摄氧通气有效性正常偏低外,所有心肺运动核心指标均显著异常。且有无心衰和OB均未影响其心肺运动功能状态。  相似文献   

3.
目的: 观察健康志愿者不同功率递增速率完成症状限制性极限心肺运动试验(CPET)对CPET亚极限运动相关核心指标的影响。方法: 选择12名健康志愿者在一周内不同工作天随机完成中等适度程度(30 W/min)及比较低(10 W/min)和比较高(60 W/min)3种不同功率递增速率CPET。按标准方法比较12名志愿者CPET亚极限运动相关核心指标:无氧阈(AT)、单位功率摄氧量(ΔVO2/ΔWR)、摄氧通气有效性峰值平台(OUEP)、二氧化碳通气当量平均90 s最低值(Lowest VE/ VCO2)、二氧化碳通气当量斜率(VE/ VCO2 Slope)及截距(intercept)和无氧阈时的摄氧通气效率值(VO2/ VE@AT)和无氧阈时的二氧化碳通气当量值(VE/ VCO2@AT)。对三组不同功率递增速率下各个指标的差异组间两两比较。结果: 中等适度功率递增速率组与比较低和比较高功率递增速率组相比摄氧通气有效性峰值平台(42.22±4.76 vs 39.54±3.30 vs 39.29±4.29)和二氧化碳通气当量平均90 s最小值(24.13±2.88 vs 25.60±2.08 vs 26.06±3.05)明显好,差异有统计学意义(P<0.05);比较低、比较高功率递增速率组与中等适度功率递增速率组相比,单位功率摄氧量显著升高和降低((8.45±0.66 vs 10.04±0.58 vs 7.16±0.60)ml/(min·kg)),差异有统计学意义(P<0.05);无氧阈值没有发生明显改变((0.87±0.19 vs 0.87±0.19 vs 0.89±0.19)L/min),差异无统计学意义(P>0.05);结论: 比较低、比较高功率递增速率可以明显改变摄氧通气有效性、二氧化碳排出通气有效性、单位功率摄氧量等CPET亚极限运动相关指标;选择比较低和比较高的功率递增速率和适度功率递增速率CPET相比明显降低了健康个体的摄氧通气有效性和二氧化碳排出通气有效性。CPET规范化操作要求选择适合受试者的功率递增速率,这样得到的CPET亚极限相关指标才最能反应受试者的真实功能状态。  相似文献   

4.
目的: 通过症状限制性极限运动心肺运动试验(CPET),从整体整合角度研究慢性心力衰竭患者(CHF)的运动病理生理学特征。方法: 选2016年10月至2017年10月就诊于中国医学科学院阜外医院签署知情同意书后的CHF 83例,并选同期12例正常人作为对照。在严格定标、规范化操作下按照美国加州大学洛杉矶分校医学中心标准完成连续递增功率方案的症状限制性CPET,并检测运动中呼吸循环代谢等功能指标。结果: CHF病人CPET核心指标中峰值摄氧量为(14.33±2.69) ml/(min·kg), (44.25±14.74)%pred显著低于正常对照组(29.42±5.46) ml/(min·kg), (83.88±6.28)%pred。此外,CHF组患者的无氧阈(AT)、峰值氧脉搏、摄氧通气效率峰值平台(OUEP)、二氧化碳通气当量最小值(Lowest VE/VCO2)、二氧化碳通气当量斜率(VE/VCO2 Slope)均与正常对照组有显著统计学差异(P<0.01);CHF肺功能核心指标一秒用力呼气容积(FEV1)、用力肺活量(FVC)、一秒率(FEV1/FVC)、肺一氧化碳弥散量(DLCO)百分预计值均显著低于正常对照组(P<0.01)。CHF组收缩压的5个功能状态均显著低于正常对照组(P<0.05),舒张压无统计学差异,心率在无氧阈、峰值和恢复2 min时均显著低于正常对照组(P<0.01)。分钟通气量、潮气量和呼吸频率在静息和热身状态下显著高于正常对照组(P<0.05),在运动极限时显著低于正常对照组(P<0.05),潮气量在恢复期显著高于正常对照组(P<0.05)。摄氧量在无氧阈、峰值和恢复2 min显著高于正常对照组(P<0.01);氧脉搏在无氧阈、峰值显著高于正常对照组(P<0.01);脉搏氧饱和在5个功能状态均显著低于正常对照组(P<0.01)。结论: 心源性疾病导致的CHF患者整体功能下降主要源于循环受限,同时呼吸和代谢也有受限。  相似文献   

5.
目的: 探讨研究症状限制性极限运动心肺运动试验(CPET)评价个体化精准运动整体方案强化管控3月后(简称强化管控)的长期慢病患者整体功能的改善。方法: 选取2014年至2016年由我们团队强化管控的长期心脑血管代谢慢病为主的患者20例,签署知情同意书后完成CPET,根据CPET及连续功能学检测结果制定以个体化适度运动强度为核心的整体管理方案,强化管控3月后再行CPET,个体化分析每例患者强化管控前后CPET指标的变化、计算差值和百分差值。结果: 本研究心脑血管代谢性慢病为主的患者20例(18男2女),年龄(55.75±10.80,26~73)岁,身高(172.20±8.63,153~190)cm,体重(76.35±15.63,53~105)kg,所有患者CPET和强化管控期间均无任何危险事件发生。①强化管控后患者静态肺功能指标及静息收缩压、心率收缩压乘积和空腹血糖等均显著改善(P<0.05)。②强化管控前峰值摄氧量为(55.60±15.69,34.37~77.45)%pred和无氧阈为(60.11±12.26,43.29~80.63)%pred;强化管控后峰值耗氧量为(71.85±21.04,42.40~102.00)%pred和无氧阈为(74.95±17.03,51.90~99.47)%pred;管控后较管控前峰值摄氧量和无氧阈显著提高分别达(29.09±7.38,17.78~41.80)%和(25.16±18.38,1.77~81.86)%(P均<0.01);其他核心指标峰值氧脉搏、峰值负荷功率、摄氧通气效率平台和递增功率运动持续时间均显著升高(P均<0.01),二氧化碳排出通气效率最低值及二氧化碳排出通气斜率也显著好转(P<0.01)。③个体化分析而言,强化管控后15例上述8项CPET核心指标全部改善,另5例7项指标改善;全部病例峰值摄氧量(%pred)提高>15%以上,16例>20%,13例>25%,10例>30%。结论: CPET能安全客观定量地评估人体整体功能状态和治疗效果、指导制定个体化精准运动强度。个体化精准运动整体方案强化管控三个月能安全有效逆转长期心脑血管代谢等慢病患者的整体功能状态和异常指标。  相似文献   

6.
目的: 探讨以术前心肺运动试验(CPET)指标精准预测胸腔镜肺切除术后并发症风险的价值。方法: 选取448例患者术前完成含静态肺功能检查(PFT)的CPET,术后随访至出院,以有无并发症分组:418例无并发症、30例有并发症(含1例死亡)。计算峰值摄氧量 (Peak VO2)等核心指标,比较两亚组的异同,选取其预测风险的最佳分切值和危险系数(OR)。结果: ①本研究患者男184/女264例,年龄(54±12,16~79)岁,吸烟85例、淋巴结转移23例、高血压68例、糖尿病45例;Peak VO2和峰值负荷功率(Peak Work Rate)分别为(93.31±17.73,44~158)%pred和(99.70±22.93,53~179) %pred;用力肺活量(FVC)、最大肺活量(VC)和第一秒用力呼气容积(FEV1)占用力肺活量比值(FEV1/FVC)分别为(99.46±15.60,42~150)%pred、(101.58±15.77,44~148)%pred和(98.36±9.27,52~134)%pred。2性别、年龄、吸烟史、淋巴结转移及核心指标的Peak VO2(%pred)、Peak Work Rate(%pred)、FVC、VC、静息收缩压 (Rest SBP)和峰值收缩压(Peak SBP)均有显著差异(P<0.01);Peak VO2 (ml/(min·kg))、峰值氧脉搏(Peak VO2/HR,%pred)、二氧化碳排出通气斜率(VE/VCO2 Slope)、无氧阈时二氧化碳排出通气比值(VE/VCO2@AT)、峰值心率(Peak HR,bpm)、呼吸交换率(RER)、FEV1和空腹血糖也有差异(P<0.05);其它指标无差异。③分切点为Rest SBP(140 mmHg)和FEV1(80%pred)的OR分别为4.24和3.72 (P<0.01);而Peak VO2(80%pred)、Peak SBP(180 mmHg)、Peak VO2 (20 ml/(min·kg))和VE/VCO2 Slope(30)的OR分别为2.66、2.62、2.43和2.12 (P<0.05)。结论: 功能状态好的肺切除手术患者,术前CPET核心指标能精准预测术后并发症的风险,值得深入研究。  相似文献   

7.
目的: 应用症状限制极限负荷心肺运动试验(CPET)评估稳定性冠心病患者经皮冠状动脉腔内血管成形术(PCI)治疗前后的整体心肺功能变化。方法: 入选2014年8月至12月在本院经冠脉造影和心脏超声等检查诊断为稳定性冠心病患者59例,择期行PCI治疗31例(PCI组),另单纯药物保守治疗28例为对照组。患者治疗前、后均进行CPET。结果: 所有患者均安全完成CPET,无任何并发症。药物对照组治疗前后所有功能指标均无明显变化(P>0.05)。PCI组治疗后仅无氧阈、峰值摄氧量和峰值氧脉搏比治疗前明显提高(P<0.05),其他指标变化不显著(P>0.05)。CPET评估个体化分析发现PCI组治疗后升高(≥10%)峰值摄氧量和峰值氧脉搏比例明显高于对照组(P<0.05)。结论: PCI通过冠状动脉血运重建可明显改善患者心肺功能,提高运动能力。CPET是客观定量评估冠心病治疗效果的一种客观、定量、安全、有效方法。  相似文献   

8.
目的: 探讨门诊运动康复和住院运动康复对慢性心力衰竭(CHF)患者心脏康复治疗效果的影响。方法: 选择2015 年9 月至2018 年9 月间在北京康复医院临床诊断为CHF患者36 例,按照随机原则和患者参与意愿分为3组:对照组(n=12):进行除运动锻炼治疗之外的常规心脏康复指导;住院运动康复组(n=12)和门诊运动康复组(n=12):患者在我院分别住院或门诊进行运动锻炼为核心的心脏康复。根据心肺运动试验(CPET)制定个体化运动处方。功率车运动强度为无氧阈以上Δ50%功率负荷,30 min/d,每周5 d,共12 周。治疗前、后分别评估患者CPET指标、超声心动图指标、6 min步行距离(6MWD)、生活质量(QoL)评分等。结果: 所有CHF患者安全无并发症完成症状限制性CPET,运动康复组患者安全完成全程12 周运动康复。组间比较显示,治疗前,3组患者CPET指标、超声心动图指标、6MWD和QoL均无明显差异(P>0.05)。治疗后,住院和门诊运动康复组患者无氧阈(ml/min, ml/(min·kg), %pred)、峰值摄氧量(ml/min, ml/(min·kg), %pred)、峰值氧脉搏(ml/beat)、峰值功率(W, %pred)、左心室射血分数、6MWD较对照组升高(P<0.05),QoL 评分较对照组降低(P<0.05);门诊运动康复组和住院运动康复组之间比较,CPET指标、超声心动图指标、6MWD和QoL评分等均无明显差异(P>0.05)。治疗前后比较显示,对照组患者治疗后上述指标与治疗前比较,差异均无统计学意义(P>0.05);治疗后住院运动康复组和门诊运动康复组患者无氧阈(ml/min, ml/(min·kg))、峰值摄氧量(ml/min, ml/(min·kg), %pred)、峰值氧脉搏(ml/beat, %pred)、峰值功率(W/min、%pred)、左心室射血分数和6MWD均较治疗前升高(P<0.05),QoL 评分较治疗前降低(P<0.05)。结论: 门诊运动康复可显著改善CHF患者心肺功能、运动耐力和生活质量,与住院运动康复效果无明显差异。门诊康复作为心脏康复一种有效的治疗模式,值得大力推广。  相似文献   

9.
目的: 肥厚型心肌病(HCM),以心肌肥厚为主要特征的心肌疾病,猝死率高。临床症状表现为呼吸困难、乏力、胸痛等。症状限制性极限运动心肺运动试验(CPET)在整体整合生理和医学(HIPM)理论指导下是唯一评估人体整体功能状态检查,肥厚型心肌病患者在心肺运动中核心数据变化值得进一步探讨。方法: 选择2017年4月至2020年1月在阜外医院就诊签署知情同意书后完成CPET受试者244例为研究对象,其中219例肥厚型心肌病(肥厚心组)和无诊断疾病健康人25例(正常组),观察两组CPET核心指标的异同。结果: ①肥厚心组男163女56例,正常组11男14女;肥厚心组年龄(46.7±12.8,16.0~71.0)岁;正常组年龄(43.7±10.4,26.0~61.0)岁。②肥厚心组CPET核心指标的峰值摄氧量(Peak VO2)为(65.2±13.8,22.8~103.4)%pred;无氧阈(AT)为(66.4±13.0,33.7~103.5)%pred;峰值氧脉搏(Peak O2 pulse)为(84.3±19.0,90.9~126.0)%pred;摄氧效率平台(OUEP)为(99.2±13.4,69.1~155.5)%pred;分钟通气量和二氧化碳排出量比值最小值(Lowest VE/VCO2)为(108.0±13.2,70.4~154.0)%pred;分钟通气量和二氧化碳排出量比值斜率(VE/VCO2 Slope)为(108.5±17.9,66.9~164.9)%pred, 肥厚心组较正常组在峰值摄氧量,无氧阈,峰值氧脉搏,摄氧效率平台等百分预计值(%pred)等指标均显著降低(P<0.01或P<0.05);而Lowest VE/VCO2和VE/VCO2 Slope(%pred)显著升高(P<0.05),差异均有统计学意义。个体而言,部分患者就诊时整体功能状态尚在正常范围内。③CPET中Peak VO2与其他核心指标AT、OUEP、Peak O2 pulse、峰值收缩压呈正相关;与Lowest VE/VCO2 和VE/VCO2 Slope呈负相关。结论: 肥厚型心肌病患者能安全完成CPET,CPET指标具有特异性,不仅可用于整体功能评测、疾病诊断与鉴别诊断、危险分层、疗效评估和精准预后预测,并可用于整体论指导下的个体化整体方案慢病有效管理,值得进一步深入研究和临床推广应用。  相似文献   

10.
目的: 验证临床受试者所完成的心肺运动试验(CPET)为最大极限运动,进一步设计完善Max试验验证CPET结果客观定量功能评估的准确性及以某特定指标的特定数值作为停止运动的标准是否可行。方法: 选择2017年9月至2019年1月在阜外医院签署知情同意书后进行CPET和Max试验受试者216例。其中正常受试者41例,因CPET峰值呼吸交换率(RER)≤1.10,或运动中心率和血压不上升,对CPET极限运动结果存在质疑的临床患者175例进行研究。其中60例已初步报告,本研究进一步扩大研究。Max试验方法:完成CPET测试后,先蹬车≥60 r/min,再施加130%峰值功率的恒定功率,鼓励受试者运动至不能坚持的极限状态。计算分析Max试验30 s的最大心率和最大摄氧量、及其与峰值心率和峰值摄氧量之间的差值和百分差值。百分差值=(Max值-峰值值)/Max值× 100%。评测标准:①若心率和摄氧量任一指标的差值百分比≤-10%(Max测试的数值低于CPET峰值数据)则定义Max试验操作失败,否则为成功;2若心率和摄氧量的差值百分比均在-10%~10%,则Max试验操作成功,证明CPET数据为极限运动,CPET 峰值相关数据较为准确;③若心率和摄氧量差值任一指标差值百分比≥10%时,则Max试验操作成功,证明CPET结果为非极限运动。结果: 病例组峰值摄氧量(L/min、ml/(min·kg)、%pred)、无氧阈(L/min、ml/(min·kg)、%pred)、峰值氧脉搏(ml/beat、%pred)、峰值RER、峰值收缩压(mmHg)、峰值运动负荷(W/min)、峰值心率(bpm)、摄氧有效性峰值平台(OUEP)(比值、%pred)低于正常组,二氧化碳通气有效性平均90 s最低值(Lowest Ve/VCO2)(比值、%pred)、二氧化碳通气效率斜率(Ve/VCO2 Slope)(比值、%pred)高于正常组(P<0.05)。所有正常组与病例组均安全无任何事件完成CPET和Max试验。216例受试者中,Max试验成功198例(91.7%),其中证明CPET为极限运动182例,为非极限运动16例;失败18例(8.3%)。结论: 在临床检查中,若对CPET结果是否为最大极限存在质疑,利用Max试验可验证CPET是否为极限运动。Max试验方法安全可行,值得进一步深入研究和临床推广应用。  相似文献   

11.
目的: 明确肺动脉高压及合并心脏内右向左分流(R-L)患者的心肺运动试验(CPET)气体交换变化。方法: 本文通过回顾性分析阜外医院从2016-10至2017-08签署知情同意书后完成CPET的73例肺动脉高压病人CPET数据,采取双盲方式抽取四位医生作为判读者分别独立识别R-L后,结果分为四组:①分流阳性组(n=20)、②分流可疑组(n=9)、③无分流组(n=37)、④分流延迟开放组(n=6)。选择同期完成CPET正常人14例作为对照。结果: 分流阳性组在运动开始时分钟通气量、二氧化碳排出通气效率、氧气通气效率和呼气末氧分压相对于静息期的改变值骤升,分别为(7.36±2.72) L/min、(1.84±3.59)、(5.02±4.34)、(3.75±2.64) mmHg),明显高于对照组的((4.26±2.59) L/min、(2.22±2.08)、(-1.46±4.68)、(-3.96±2.82) mmHg);而呼气末二氧化碳分压相对于静息期的改变值骤降(-1.63±1.66) mmHg,明显低于对照组的(2.22±2.08) mmHg(P均<0.01)。分流延迟开放组在运动后期呼吸商(RER)、二氧化碳排出通气效率、氧气通气效率和呼气末氧分压相对于静息期的改变值骤升,分别为(0.40±0.08)、(11.07±5.60)、(30.55±7.89)、(13.72±2.21) mmHg,明显高于对照组的(0.38±0.12)、(5.67±4.6)、(4.54±3.83)、(5.51±4.24) mmHg;而呼气末二氧化碳分压相对于静息期的改变值骤降(-6.82±1.96) mmHg,明显区别于对照组的(5.67±4.6) mmHg,在恢复期分流延迟开放组二氧化碳排出通气效率、氧气通气效率相对于峰值功率时的改变值(分别为-8.38±3.24、-13.14±6.47),明显低于对照组(6.22±2.87、16.56±4.2)(P均<0.01)。结论: 肺动脉高压患者较正常人CPET的整体功能和通气效率指标降低;肺动脉高压合并右向左分流患者不仅在静息通气效率受限更剧;且特征性地运动初始时出现PETO2明显上升、PETCO2明显下降,RER跳升到1.0左右,VE/VCO2 不降反升与VO2/VE不升反降, 常有SpO2显著下降,还有VE更大幅度上升;延迟开放型上述特征性变化发生在运动接近峰值的1~3 min而非运动初始,且运动停止后迅速反向变回以示重新关闭。  相似文献   

12.
目的: 整体整合生理学医学新理论-呼吸循环代谢等系统一体化调控提出了呼吸为循环指标变异性起源的假说,我们对人睡眠期间的呼吸和心率变异分别分析,探索心率变异的起源。方法: 本研究回顾性分析了2014年以来行心肺运动试验(CPET)、多导睡眠图(PSG)鼻气流和心电图监测的8例无疾病诊断的正常人和10例无睡眠呼吸异常的慢性疾病患者,分析夜晚睡眠期间鼻气流的呼吸周期与心电图R-R间期心率变异周期的关系。一个完整的呼吸周期包括吸气过程和紧接着的呼气过程,分析计算呼吸周期数、平均呼吸周期时间等指标。心率由心电图的R-R间期计算获得,连续一次心率由最低点上升至最高点,再由最高点下降至最低点,为一个心率变异周期,计算心率变异周期数、平均心率变异时间、心率变异平均幅度等指标。比较同一人呼吸和心率变异指标之间的相互关系,以及两组人群之间的异同。结果: 正常人峰值摄氧量、无氧阈等CPET核心指标均显著优于无睡眠呼吸异常的慢性疾病患者(P<0.05)。正常人AHI((1.7±1.3)次/小时)和无睡眠呼吸异常慢性疾病患者AHI((2.9±1.2)次/小时)无差异(P>0.05)。正常人呼吸周期数与心率变异周期数((6581.63±1411.90)次、(6638.38±1459.46)次)、平均呼吸周期时间与平均心率变异周期时间((4.19±0.57)s、(4.16±0.62)s)均高度一致,无差异(P>0.05)。无睡眠呼吸异常的慢性疾病患者上述指标比较((7354.50±1443.50)次与(7291.20±1399.31)次、(4.20±0.69)s与(4.23±0.68)s)也是高度一致,无统计学差异(P>0.05)。正常人呼吸周期数/心率变异周期数(0.993±0.027)与无睡眠呼吸异常的慢性疾病患者呼吸周期数/心率变异周期数(1.008±0.024)比值均接近1。正常人心率变化平均幅度((5.74±3.21) bpm)略高于无睡眠呼吸异常的慢性疾病患者((2.88±1.44) bpm,P<0.05)。结论: 正常人和无睡眠呼吸异常的慢性疾病患者无论功能状态如何,心率变异与呼吸存在极其相似的一致性,其心率变异的始发因素均为呼吸所致。  相似文献   

13.
目的: 探讨心衰患者(CHF)波浪呼吸的周期长度、振幅与运动能力的关系。方法: 237例心力衰竭患者进行症状限制性极限心肺运动试验(CPET)。将CPET每次呼吸的原始数据每秒切割,再进行单位时间的平均计算、分析。波浪式呼吸(OB)定义为CPET期间连续3次及其以上的呼吸波动,其中分钟通气量(VE)波动幅度超过同期均值的25%。存在OB的CHF患者(OB+)根据其峰值摄氧量(Peak VO2)分为3个亚组。第1亚组(轻度CHF)Peak VO2≥16 ml/(min·kg),第2亚组(中度CHF)Peak VO2为12~16 ml/(min·kg),第3亚组(重度CHF)Peak VO2≤12 ml/(min·kg)。结果: 237例CHF患者中,78例OB+患者(32.6%)出现波浪呼吸。在OB+的CHF患者中,OB周期时间长度与Peak VO2r=-0.82)、Peak VO2%pred(r=-0.65)、AT(r=-0.78)呈负相关,与Lowest VE/VCO2呈正相关(r=0.61)。结论: 心衰患者波浪呼吸的平均周期时间长度与整体运动能力呈负相关。  相似文献   

14.
目的: 探讨心力衰竭患者在运动期间诱发的异常波浪式呼吸模式(EIOB)的临床特点及发生机制。方法: 回顾分析38例NYHA Ⅲ-Ⅳ级患者完成的症状限制性功率递增极限心肺运动试验(CPET)。观察分析计算心力衰竭患者在CPET中EIOB的发生时间、频率、振幅等临床特点。结果: 本组患者男17女21在38例患者中,31例发生EIOB,发生率为81.6%。EIOB组每分通气量(VE )波浪振幅是(12±4)L/m(为平均值的81%±30%),周期(77.0±20.0)s。EIOB组中OB发生在运动前、运动中功率低于无氧阈时、恢复期或者全程分别为24、31、4和4例;除VE 外,在CPET的各项参数中,全部31例患者均表现EIOB的指标为VO2、VCO2、RER和PETO2;29例患者 VE / V CO2、VO2/ VE 和BF出现EIOB;26例患者PETCO2出现EIOB;25例患者VT、VO2/HR出现EIOB;2例患者HR出现EIOB。结论: 严重心力衰竭患者易发生EIOB。就心脏功能对呼吸调控的影响及心衰患者呼吸异常发生机制进行了探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号