首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 54 毫秒
1.
番茄晚疫病是河北省番茄生产上最具毁灭性的病害之一,对引起该病害的致病疫霉群体结构进行分析有利于病害的防治。利用对峙培养法和菌落直径法对2007-2008年采自河北省保定、沧州和唐山分离自番茄的49个致病疫霉菌株进行了交配型和甲霜灵抗性的表型测定,结果表明该群体所有菌株均为A1交配型,以甲霜灵敏感菌株为主,抗性菌株仅7株。利用聚合酶链式反应-限制性片段长度多态性(PCR-RFLP)、简单序列重复(SSR)和扩增片段长度多态性(AFLP)等分子技术对该群体的基因型进行了分析,结果表明供试菌株线粒体基因型均为Ia型,共鉴定出了Ⅰ、Ⅱ和Ⅲ3种SSR基因型,AFLP聚类分析在相似系数0.87时可以形成α、β和γ等3个不同的分支。河北省所有番茄上致病疫霉菌株均分布在α分支上,该分支又可进一步分为7个亚分支。AFLP亚分支与甲霜灵抗性和地理来源均无明显相关性,但Ⅱ型SSR与甲霜灵抗性和地理来源有明显的相关性。综合表型和基因型数据说明河北省番茄上致病疫霉群体结构比较单一,遗传多样性程度较低。  相似文献   

2.
致病疫霉在中国云南的马铃薯田间形成卵孢子   总被引:8,自引:0,他引:8  
  相似文献   

3.
致病疫霉(Phytophthora infestans)引起的晚疫病是马铃薯的一种毁灭性病害。有效控制马铃薯晚疫病需要明确致病疫霉的群体遗传结构特征。采用8对SSR引物对采自福建省福州、长乐、漳州2010年分离的95株马铃薯致病疫霉进行遗传多样性分析。结果共检测出21个等位基因和26个基因型。三个地点致病疫霉菌群体间的平均遗传分化系数FST为0.22,在8个位点中有5个位点的等位基因频率分布差异显著。三个群体的观测纯合度小于期望纯合度,观测杂合度大于期望杂合度,以无性生殖为主。结果表明福建群体的遗传多样性高,群体间的存在较高的遗传分化度。  相似文献   

4.
马铃薯致病疫霉研究进展   总被引:3,自引:0,他引:3       下载免费PDF全文
马铃薯致病疫霉(Phytophthora infestans)属卵菌纲(Oomycetes)霜霉目(Peronosporales)腐霉科(Pythiaceae)疫霉属(Phytophthora),是马铃薯和番茄晚疫病病原菌。由于晚疫病对马铃薯生产的毁灭性和严重性,对致病疫霉的研究一直是关注的重点。本文首先对病害引起的症状、发生特点及流行规律进行阐述,对有性生殖发生的遗传规律和多种交配型共存的大环境下病原菌群体结构变异特点进行归纳总结。随着2009年致病疫霉基因组测序的完成,本文比对了疫霉属目前已完成测序各个种的基因组学特点,介绍了致病疫霉在效应子克隆方面的研究进展及线粒体基因组研究现状,阐述了功能基因组学的两个重要技术:高密度遗传连锁图谱(high density linkage mapping)和全基因组关联分析(genome-wide association study,GWAS),及其在挖掘致病疫霉重要功能基因上的应用。本文有助于了解致病疫霉研究热点及后续突破方向,可为深入解析致病疫霉的功能基因及致病机制提供参考,对开发马铃薯晚疫病菌药物靶标及预测病害的大规模流行趋势也具有重要意...  相似文献   

5.
为明确福建省马铃薯晚疫病菌线粒体DNA单倍型组成和分布情况,采用PCR-RFLP方法分析了2010—2012年从福建省7个地区(福州,长乐,漳州,青口,龙海,霞浦,龙岩)分离的526个马铃薯晚疫病菌株的线粒体DNA单倍型及频率分布。结果表明Ⅰa型为主要单倍型,占72.8%,其次是Ⅱb型,占26.42%,最少的Ⅱa型,占0.76%,没有检测到Ⅰb型。与文献报道历史材料相比较,说明福建省马铃薯晚疫病菌线粒体DNA单倍型的组成发生较大变化,而且福建省马铃薯晚疫病菌线粒体单倍型组成比云南、四川和贵州等地区更为复杂。  相似文献   

6.
通过交配型和甲霜灵抗性以及线粒体DNA单倍型、SSR和AFLP基因型分析对40个超级生理小种菌株进行了遗传多样性分析。在被测菌株中发现了A1、A2和自育3种不同类型的交配型。其中,A1和自育型菌株数量多,分别为21株和14株,而A2交配型仅5株。甲霜灵抗性测定检测出高抗菌株26株,敏感菌株14株。线粒体DNA单倍型测定出Ia型和IIa型两种,比例接近1:1。基于5个基因座被测40个超级生理小种菌株共鉴定出了7种SSR基因型。利用6对荧光引物共检测到258条AFLP谱带,其中多态性谱带204条,多态性为79.1%。将供试的40个菌株划分为38个基因型,几乎每个菌株都为1个特有基因型。而且,我国南方和北方超级生理小种群体存在着明显的遗传差异。结果表明我国致病疫霉超级生理小种具有丰富的遗传多样性,可以推断致病疫霉中的任何小种都可在多个抗病基因的强大选择压力下,在短时间内通过与之对应的无毒基因快速突变而成为超级生理小种。当前对致病疫霉生理小种的鉴定及监测对生产上利用抗病品种防控晚疫病的指导意义不大。  相似文献   

7.
[目的]分析致病疫霉效应蛋白Pi16275的超量表达对病原菌致病性的影响,明确Pi16275的亚细胞定位,筛选Pi16275在植物中的互作靶标蛋白及靶标蛋白在抵御病原菌侵染过程中的作用,初步揭示Pi16275在病原菌侵染植物过程中的作用机制.[方法]利用农杆菌介导的烟草瞬时表达系统在烟草叶片表皮细胞中瞬时表达Pi162...  相似文献   

8.
致病疫霉Phytophthora infestans为马铃薯晚疫病的重要病原菌。通过从昆明市寻甸县采集110P和H-6两株致病疫霉,明确其染色体倍性、交配型、线粒体单倍型、毒性和甲霜灵敏感性,经对峙培养,利用改良的卵孢子萌发方法获得有性生殖F1代群体POP1(60株),并对POP1进行表型和基因型测定。结果表明:冷冻处理24h为最佳条件,卵孢子萌发率达5.09%±0.15%;POP1的交配型、毒性和甲霜灵敏感性均发生了分离,其中交配型分离比为A1:A2:A1A2:自育型(SF)=16:5:17:22,毒性分离比为抗性(R):敏感性(S)=11:49,甲霜灵敏感性分离比为抗性(R):敏感性(S)=2:58;3个表型的分离均偏离孟德尔单基因显性遗传特点。基于8对SSR多态性引物对POP1基因型分析表明,遗传相似系数为0.98时,可将所有菌株分为14个基因型;遗传相似系数为0.95时,可将POP1分为6个分支,其中优势群体为S1,占分离群体的61.67%。关联分析进一步表明,8对SSR所代表的基因型和几个重要表型有显著相关性(R2=0.6667)。本研究建立了高效的致病疫霉卵孢子萌发体系,解析了有性生殖后代群体遗传结构特点,为深入探索致病疫霉的变异规律及病害流行趋势提供了理论基础。  相似文献   

9.
马铃薯晚疫病菌卵孢子萌发的初步研究   总被引:4,自引:0,他引:4       下载免费PDF全文
描述了马铃薯晚疫病菌卵孢子萌发的方式并研究了菌株组合、卵孢子形成时间、在琼脂培养基上培养时间及光照对卵孢子萌发的影响,结果表明不同菌株组合卵孢子萌发率为0—7.2%,对峙培养20天后形成的卵孢子的萌发率最高达8.7%,在琼脂培养基上培养25-30d 萌发率最高达11.4%,卵孢子形成时黑暗及在琼脂培养基上萌发时光照萌发率最高达11.8%。  相似文献   

10.
几种真菌发酵液对致病疫霉的抑制作用   总被引:24,自引:0,他引:24       下载免费PDF全文
测定了8种真菌发酵液在5种不同浓度下对致病疫霉菌丝生长、游动孢子静止、静止胞萌发、附着胞形成和侵入丝形成等不同阶段的影响。结果表明,供试真菌不同浓度的发酵液,对致病疫霉上述各个阶段均有一定程度的抑制作用,并均随发酵液浓度增加,抑制作用逐渐增强,浓度为100%时,抑制作用均达到最高。其中,立枯丝核菌发酵液的抑制作用最强,浓度为100%时,对致病疫霉菌丝生长的抑制率达到90.4%,而静止胞萌发率仅为2.4%,附着胞及侵入丝均未见形成。  相似文献   

11.
    
Phytophthora blight induced by Phytophthora capsici causes significant yield loss in a number of vegetable crops. It is imperative to understand the diversity and aggressiveness of the pathogen to design more efficient disease management programs. A collection of P. capsici strains isolated from different vegetable crops in Georgia, USA, were characterised in this study. Of the 49 isolates tested, 24 were A1 and 25 were A2 mating type, respectively, with both mating types found in the same fields. Variability of the isolates was assessed in terms of their aggressiveness on six pepper genotypes. The isolates differed in their aggressiveness on different pepper cultivars with 10 pathotypes identified. No correlation between aggressiveness of the isolates and their host origin or geographical location of isolation was observed. Randomly amplified polymorphic DNA (RAPD) analysis was used to evaluate genetic variability among P. capsici populations. RAPD analysis using 15 random primers resulted in 133 reproducible bands and cluster analysis separated the isolates into 5 groups. Analysis of molecular variance showed that there was moderate genetic differentiation associated with host origin and geographical location of the isolates. No correlation was found between RAPD groups and pathotypes or mating types. These results indicate that P. capsici populations infecting vegetable crops in Georgia were genetically diverse, which should be taken into account in developing resistant cultivars or other disease management programmes.  相似文献   

12.
    
  相似文献   

13.
    
Foliar and postharvest applications of phosphite (Phi)‐based fungicides are used to control the oomycete Phytophthora infestans which is responsible for the occurrence of late blight in potatoes. Optimisation of the usage of Phi‐based fungicides for disease control during the growing season and in subsequent storage can lead to improved potato production and processing quality. In order to assess the efficiency of Phi translocation to tubers, following foliar and postharvest treatments of potato crops with the Phi‐based fungicides, the amount of Phi in tubers was determined by a high‐performance ion chromatography method. The quantity of Phi found in tubers increased with the total amount of Phi‐based fungicides applied during the growing season. Foliar applications of Phi resulted in an uneven distribution of Phi in the three tuber regions analysed, with high concentrations being identified in the tuber cortex (32.5–166.4 µg g?1 fresh tissue) and medulla regions followed by the skin area. Postharvest treatment of tubers led to a different distribution of Phi, with the highest concentrations of Phi found in the skin (411.0–876.6 µg g?1 fresh tissue) followed by the cortex and medulla regions. As foliar treatments are essential to protect the aerial parts of the plants during the growth season, the best disease management practices of tubers should include the postharvest treatment in addition to foliar applications. The use of both types of treatments ensures that concentrations of Phi in excess of 100 µg g?1 fresh tissue are present in tuber skin and cortex areas; such concentrations are needed to suppress the growth of P. infestans on tubers during storage.  相似文献   

14.
  总被引:7,自引:0,他引:7  
The necessity to develop potato and tomato crops that possess durable resistance against the oomycete pathogen Phytophthora infestans is increasing as more virulent, crop-specialized and pesticide resistant strains of the pathogen are rapidly emerging. Here, we describe the positional cloning of the Solanum bulbocastanum-derived Rpi-blb2 gene, which even when present in a potato background confers broad-spectrum late blight resistance. The Rpi-blb2 locus was initially mapped in several tetraploid backcross populations, derived from highly resistant complex interspecific hybrids designated ABPT (an acronym of the four Solanum species involved:S. acaule, S. bulbocastanum, S. phureja and S. tuberosum), to the same region on chromosome 6 as the Mi-1 gene from tomato, which confers resistance to nematodes, aphids and white flies. Due to suppression of recombination in the tetraploid material, fine mapping was carried out in a diploid intraspecific S. bulbocastanum F1 population. Bacterial artificial chromosome (BAC) libraries, generated from a diploid ABPT-derived clone and from the resistant S. bulbocastanum parent clone, were screened with markers linked to resistance in order to generate a physical map of the Rpi-blb2 locus. Molecular analyses of both ABPT- and S. bulbocastanum-derived BAC clones spanning the Rpi-blb2 locus showed it to harbor at least 15 Mi-1 gene homologs (MiGHs). Of these, five were genetically determined to be candidates for Rpi-blb2. Complementation analyses showed that one ABPT- and one S. bulbocastanum-derived MiGH were able to complement the susceptible phenotype in both S. tuberosum and tomato. Sequence analyses of both genes showed them to be identical. The Rpi-blb2 protein shares 82% sequence identity to the Mi-1 protein. Significant expansion of the Rpi-blb2 locus compared to the Mi-1 locus indicates that intrachromosomal recombination or unequal crossing over has played an important role in the evolution of the Rpi-blb2 locus. The contrasting evolutionary dynamics of the Rpi-blb2/Mi-1 loci in the two related genomes may reflect the opposite evolutionary potentials of the interacting pathogens.  相似文献   

15.
16.
  总被引:1,自引:0,他引:1  
A total of 241 isolates of Phytophthora infestans were collected in 1997, 2006 and 2007 in eight European countries and characterized with molecular markers (simple sequence repeats, SSR genotypes) and phenotypic traits such as sensitivity to fungicides, mating type and aggressiveness. The mating type distribution changed from mainly A1 in 1997 to a majority of A2 in 2007. No resistant isolates were detected for fluazinam and mandipropamid, whereas the proportion of isolates resistant to mefenoxam (MFX) was high and increased over the years. There was no genetic link between mating type and MFX resistance. Aggressiveness (product between lesion expansion and sporulation capacity) was slightly higher for MFX‐resistant compared to sensitive isolates and for isolates collected later compared to earlier in the same season. It was about equally high for A1 and A2 types, and for French isolates in 1997 and British isolates in 2007, but lower for French isolates in 2007. Six different SSR genotype families were distinguished. In 1997, populations were dominated by genotype families I and III/IV, which significantly declined in 2007 being largely displaced by genotype families II (‘blue 13’ type) and V, which are by coincidence mainly A2 MFX resistant and A1 MFX sensitive, respectively. However, mating type and MFX resistance were genetically not linked to SSR genotypes.  相似文献   

17.
    
Abstract

Phytophthora infestans is one of the most destructive pathogens of potato and causal agents of notorious disease late blight. Different chemicals are used to control the pathogen of late blight but the most commonly used is metalaxyl; its extensive use of has caused decreased sensitivity in the P. infestans population. The metalaxyl sensitivity of the Pakistani population of P. infestans is investigated in the present study. For this purpose, 178 isolates of P. infestans were obtained from the lesions of diseased potato leaves and stems, and samples were collected from the different potato-growing areas of Pakistan, where late blight is a problem. Sensitivity of the isolates of P. infestans was investigated by metalaxyl sensitivity test and with the help of test isolates were divided into three categories, i.e. sensitive, intermediate and resistant, based on their Co-efficient of mycelial growth inhibition (CMGI) values. During the study, highest percentage (50.17%) of resistant isolates was observed in the population of Punjab (zone 2), whereas the lower percentage (33.33%) was observed in the population of Swat valley (zone 6b). In the present study, it was discovered that P. infestans late blight-causing fungus has adopted more resistance against metalaxyl because of its wide use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号