首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen (N) enrichment often increases aboveground net primary productivity (ANPP) of the ecosystem, but it is unclear if belowground net primary productivity (BNPP) track responses of ANPP. Moreover, the frequency of N inputs may affect primary productivity but is rarely studied. To assess the response patterns of above‐ and belowground productivity to rates of N addition under different addition frequencies, we manipulated the rate (0–50 g N m?2 year?1) and frequency (twice vs. monthly additions per year) of NH4NO3 inputs for six consecutive years in a temperate grassland in northern China and measured ANPP and BNPP from 2012 to 2014. In the low range of N addition rates, BNPP showed the greatest negative response and ANPP showed the greatest positive responses with increases in N addition (<10 g N m?2 year?1). As N addition increased beyond 10 g N m?2 year?1, increases in ANPP dampened and decreases in BNPP ceased altogether. The response pattern of net primary productivity (combined above‐ and belowground; NPP) corresponded more closely to ANPP than to BNPP. The N effects on BNPP and BNPP/NPP (fBNPP) were not dependent on N addition frequency in the range of N additions typically associated with N deposition. BNPP was more sensitive to N addition frequency than ANPP, especially at low rates of N addition. Our findings provide new insights into how plants regulate carbon allocation to different organs with increasing N rates and changing addition frequencies. These root response patterns, if incorporated into Earth system models, may improve the predictive power of C dynamics in dryland ecosystems in the face of global atmospheric N deposition.  相似文献   

2.
滇西北高原纳帕海湿地土壤氮矿化特征   总被引:8,自引:4,他引:4  
解成杰  郭雪莲  余磊朝  许静 《生态学报》2013,33(24):7782-7787
采用树脂芯原位培育法,研究了纳帕海沼泽、沼泽化草甸和草甸土壤氮的矿化特征。结果表明,铵态氮(NH4+-N)为沼泽、沼泽化草甸土壤中无机氮的主要存在形式,分别占无机氮含量的96.76%和75.24%,而硝态氮(NO3--N)为草甸土壤中无机氮的主要存在形式,占无机氮含量的58.77%。植物生长期内,纳帕海湿地土壤的净氮矿化速率表现为沼泽化草甸 > 草甸 > 沼泽,表明干湿交替的土壤环境更利于土壤氮矿化作用的进行,土壤中氮素有效性和维持植物可利用氮素的能力更强。整个生长季,沼泽和草甸土壤氮矿化为硝化作用,而沼泽化草甸土壤氮矿化为氨化作用。土壤硝态氮含量、有机质含量、碳氮比和含水量均对纳帕海沼泽、沼泽化草甸和草甸土壤的氮矿化产生显著影响。  相似文献   

3.
To examine the linkage between forest cover type, litter inputs, and patterns of net N mineralization versus the turnover of N among soil microbes, we measured both the net and gross rates of N mineralization in replicated, adjacent old-growth eastern hemlock [Tsuga canadensis(L.) Carr.] or sugar maple (Acer saccharum Marsh.) stands in upper Michigan. Mean aboveground net primary production and annual litterfall mass were significantly higher (P < 0.01) in the maple forests (870 g·m-2·y-1 and 439 g·m-2·y-1, respectively) than in the hemlock forests (480 g·m-2·y-1 and 344 g·m-2·y-1, respectively). Forest floor and coarse woody debris mass, however, were significantly lower (P < 0.05) in the maple forests (2.2 and 0.1 kg·m-2, respectively) than in the hemlock forests (2.9 and 0.2 kg·m-2, respectively). Litterfall N concentration was not significantly different (P > 0.10) between the two forest types. In situ gross rates of N mineralization were higher (P < 0.06) in the maple forests than in the hemlock forests (7.5 and 6.1 mg N·kg soil-1·d-1 respectively), but in situ net N mineralization varied independently of forest type and stand-level litterfall N concentration. Cover type–dependent differences in detritus production and detritus C quality appear to result in different N turnover rates, but the balance between gross mineralization and immobilization of N is very sensitive to within stand variability and varies at a scale smaller than cover type alone can predict. Received 3 Feburary 1999; accepted 27 August 1999.  相似文献   

4.
Species richness (SR) and functional group richness (FGR) are often confounded in both observational and experimental field studies of biodiversity and ecosystem function. This precludes discernment of their separate influences on ecosystem processes, including nitrogen (N) cycling, and how those influences might be moderated by global change factors. In a 17‐year field study of grassland species, we used two full factorial experiments to independently vary SR (one or four species, with FGR = 1) and FGR (1–4 groups, with SR = 4) to assess SR and FGR effects on ecosystem N cycling and its response to elevated carbon dioxide (CO2) and N addition. We hypothesized that increased plant diversity (either SR or FGR) and elevated CO2 would enhance plant N pools because of greater plant N uptake, but decrease soil N cycling rates because of greater soil carbon inputs and microbial N immobilization. In partial support of these hypotheses, increasing SR or FGR (holding the other constant) enhanced total plant N pools and decreased soil nitrate pools, largely through higher root biomass, and increasing FGR strongly reduced mineralization rates, because of lower root N concentrations. In contrast, increasing SR (holding FGR constant and despite increasing total plant C and N pools) did not alter root N concentrations or net N mineralization rates. Elevated CO2 had minimal effects on plant and soil N metrics and their responses to plant diversity, whereas enriched N increased plant and soil N pools, but not soil N fluxes. These results show that functional diversity had additional effects on both plant N pools and rates of soil N cycling that were independent of those of species richness.  相似文献   

5.
利用PVC管顶盖埋管原位培育法测定了东灵山顶亚高山草甸 (紫苞风毛菊 (SaussureaiodostegiaHonce) 丝柄苔草 (CarexcapillarisL .)_箭叶锦鸡儿 (Caraganajubata (Pall.Poir.) )灌丛_硕桦林 (BetulacostataTrautv .)演替序列中土壤有机N的年度净矿化与硝化作用 ,并以之作为土壤供氮能力的指标 ,比较了锦鸡儿灌丛与硕桦林和草甸土壤的供氮能力和维持氮素的能力。结果表明 ,3个生态系统土壤无机氮库 (包括NH 4 N和NO-3 _N)及净N矿化与硝化速率都存在明显的季节变化 ;除 1996年 6月硕桦林 (P <0 .0 1)和草甸NH 4_N显著高于锦鸡儿灌丛 (P <0 .0 1) ,1996年 8月锦鸡儿灌丛NO-3 _N显著高于草甸 (P <0 .0 5 )外 ,在不同取样时期无机氮库大小在 3个生态系统之间都不存在显著差异 ;锦鸡儿灌丛每公顷的年度总矿化量 (16 .0 1kg·hm-2 )高于硕桦林 (12 .0 5kg·hm-2 )和草甸 (1.6 4kg·hm-2 ) ;净硝化量 (11.37kg·hm-2 )略高于草甸 (10 .90kg·hm-2 ) ,低于硕桦林 (14.36kg·hm-2 )。尽管锦鸡儿灌丛土壤无机氮含量 ,矿化、硝化速率并不明显高于硕桦林和草甸 ,但其总年度净矿化量最高 ,所以锦鸡儿灌丛土壤的供氮能力在 3个群落中最强。此外 ,由于锦鸡儿灌丛的总年度硝化量低于硕桦林 ,略高于草甸 ,因此 ,锦鸡儿灌  相似文献   

6.
Atmospheric deposition of biologically active nitrogen (N) has increased dramatically over the past 60 years, with far-reaching impacts on the structure and function of many ecosystems. Much research has examined the initial impacts of N enrichment; however, few studies have been multidecadal, and even fewer long-term studies have examined the longevity of N-induced impacts on N cycling after inputs cease. Here, we address this gap by reporting the state of key N pools and fluxes in a Minnesota grassland for plots that received N addition for 10 years and then none for 12 years, in comparison with plots that received annual N treatment for the entire 22 years. We found weak evidence for long-term N retention in plots that ceased receiving treatment; and in plots that continued to receive N over the 22-year period, retention that was high after 12 years (50–100% of inputs) was greatly reduced after 22 years (to 15%). In spite of this, net N mineralization rates remained elevated in plots that ceased receiving treatment 12 years prior, likely because N-rich litter maintained higher N-cycling rates. These results suggest (1) some systems do not retain much deposited N, with potentially large impacts on downstream habitats; (2) the previously reported high retention efficiencies for this and many other terrestrial ecosystems may be relatively short-lived as N sinks become saturated over time; and (3) the effects of even small amounts of retained N in N-limited environments may be particularly long-lasting. In total, these findings highlight the importance of long-term studies in evaluating the impacts of chronic N deposition to ecosystems, and urge additional research examining dynamics following N cessation to evaluate the reversibility of these impacts.  相似文献   

7.
Growing public interest in conserving peatlands has created a need for restoration and rapid indicators of progress in peat formation. Vegetation and hydrological indicators are commonly assessed, but changes in mineralization and decomposition rates might better indicate when peat formation is underway in restored peatlands. In Finland, we investigated differences in mineralization and decomposition in the upper peat layer of five undrained and eight drained Pinus‐dominated fens from 2006 to 2009. Forestry‐drained fens were restored in 2007 by harvesting either whole trees or only stems, and by damming and filling ditches. Before restoration, net N mineralization rate was slightly higher in the drained than in undrained fens, whereas soil pH and Betula leaf litter decomposition rate were lower. After restoration, net N mineralization rate was similar for the undrained and restored fens, except near ditches after stem harvest. Also, soil pH and decomposition rate of Betula leaf litter became similar for undrained and restored fens. We conclude that whole tree harvest is a more suitable method for peatland restoration than stem harvest and that mineralization and decomposition rates are suitable indicators for peat formation after restoration.  相似文献   

8.
Legumes are an important component of plant diversity that modulate nitrogen (N) cycling in many terrestrial ecosystems. Limited knowledge of legume effects on soil N cycling and its response to global change factors and plant diversity hinders a general understanding of whether and how legumes broadly regulate the response of soil N availability to those factors. In a 17‐year study of perennial grassland species grown under ambient and elevated (+180 ppm) CO2 and ambient and enriched (+4 g N m?2 year?1) N environments, we compared pure legume plots with plots dominated by or including other herbaceous functional groups (and containing one or four species) to assess the effect of legumes on N cycling (net N mineralization rate and inorganic N pools). We also examined the effects of numbers of legume species (from zero to four) in four‐species mixed plots on soil N cycling. We hypothesized that legumes would increase N mineralization rates most in those treatments with the greatest diversity and the greatest relative limitation by and competition for N. Results partially supported these hypotheses. Plots with greater dominance by legumes had greater soil nitrate concentrations and mineralization rates. Higher species richness significantly increased the impact of legumes on soil N metrics, with 349% and 505% higher mineralization rates and nitrate concentrations in four‐species plots containing legumes compared to legume‐free four‐species plots, in contrast to 185% and 129% greater values, respectively, in pure legume than nonlegume monoculture plots. N‐fertilized plots had greater legume effects on soil nitrate, but lower legume effects on net N mineralization. In contrast, neither elevated CO2 nor its interaction with legumes affected net N mineralization. These results indicate that legumes markedly influence the response of soil N cycling to some, but not all, global change drivers.  相似文献   

9.
Patterns of nitrogen (N) isotope composition (delta(15)N) and total N contents were determined in leaves, fine roots, root-associated ectomycorrhizal fungi (ECM) of adult beech trees (FAGUS SYLVATICA), and soil material under ambient (1 x O(3)) and double ambient (2 x O(3)) atmospheric ozone concentrations over a period of two years. From fine root to leaf material delta(15)N decreased consecutively. Under enhanced ozone concentrations total N was reduced in fine roots and delta(15)N showed a decrease in roots and leaves. In the soil and in most types of mycorrhizae, delta(15)N and total N were not altered due to ozone fumigation. The number of vital ectomycorrhizal root tips increased and the mycorrhizal community structure changed in 2 x O(3). Simultaneously, the specific rate of inorganic N-uptake by the roots was reduced under the double ozone regime. From these results it is assumed that 2 x O(3) changes N-nutrition of the trees at the level of N-acquisition, as indicated by enhanced mycorrhizal root tip density, altered mycorrhizal species composition, and reduced specific N-uptake rates.  相似文献   

10.
Long-term prescribed fires have increased woody canopy openness and reduced nitrogen (N) cycling (that is, net N mineralization) in an oak savanna in Minnesota, USA. It is unclear how fire-induced shifts from oak-dominated to C4 grass-dominated vegetation contribute to this decline in N cycling compared to direct effects of increasing fire frequency promoting greater N losses. We determined (1) the magnitude of decline in net N mineralization in oak versus grass-dominated patches with increasing fire frequency and (2) if differences in net N mineralization between oak and grass patches in frequently burned oak savanna (burned 8 out of 10 years on average during the last 40 years) could be attributed to differences in N losses through volatilization and leaching or to plant traits affecting decomposition and mineralization. In situ net N mineralization declined with increasing fire frequency overall, but this decline was less in oak- than in grass-dominated patches, with oak-dominated patches having more than two times higher net N mineralization than grass-dominated patches. Greater net N mineralization in oak-dominated patches occurred despite greater N losses through volatilization and leaching (on average 1.8 and 1.4 g m−2 y−1 for oak- and grass-dominated patches, respectively), likely because of higher plant litter N concentration in the oak-dominated patches. As total soil N pools in the first 15 cm did not differ between oak- and grass-dominated patches (on average 83 g N m−2), N inputs from atmospheric deposition and uptake from deep soil layers may offset higher N losses. Our results further show that net N mineralization rates decline within 5 years after tree death and subsequent colonization by C4 grasses to levels observed in grass-dominated patches. Although long-term prescribed fires often directly reduce N stocks and cycling because of increased N losses, this study has shown that fire-induced shifts in vegetation composition can strongly contribute to the declines in N cycling in systems that are frequently disturbed by fires with potential feedbacks to plant productivity.  相似文献   

11.
Is the sequential in situ incubation of undisturbed soil cores, developed for forest stands applicable to arable soils? The incubation of covered and uncovered soil cores allows the estimation of net nitrogen mineralization (NNM), plant nitrogen uptake (Nuptake) and potential leaching losses (Ntrans). The amounts and temporal dynamics of these N fluxes were determined at four arable soils in a two-year study. Results suggest that: (i) the method can not be recommended for the estimation of N uptake and leaching losses, but (ii) it is suitable for the estimation of NNM; (iii) incubations should preferably be started when soil is moist; (iv) the length of incubation periods should be reduced (<4 weeks); (v) dynamics of NNM is mainly determined by temperature and moisture conditions if there is no interference by agricultural management. Inputs of straw, manure, slurry or green manure strongly influence the amount and the dynamics of NNM.  相似文献   

12.
High rates of deforestation in the Brazilian Amazon have the potential to alter the storage and cycling of carbon (C) and nitrogen (N) across this region. To investigate the impacts of deforestation, we quantified total aboveground biomass (TAGB), aboveground and soil pools of C and N, and soil N availability along a land-use gradient in Rondônia, Brazil, that included standing primary forest, slashed primary and secondary forest, shifting cultivation, and pasture sites. TAGB decreased substantially with increasing land use, ranging from 311 and 399 Mg ha–1 (primary forests) to 63 Mg ha–1 (pasture). Aboveground C and N pools declined in patterns and magnitudes similar to those of TAGB. Unlike aboveground pools, soil C and N concentrations and pools did not show consistent declines in response to land use. Instead, C and N concentrations were strongly related to percent clay content of soils. Concentrations of NO3-N and NH4-N generally increased in soils following slash-and-burn events along the land-use gradient and decreased with increasing land use. Increasing land use resulted in marked declines in NO3-N pools relative to NH4-N pools. Rates of net nitrification and N-mineralization were also generally higher in postfire treatments relative to prefire treatments along the land-use gradient and declined with increasing land use. Results demonstrate the linked responses of aboveground C and N pools and soil N availability to land use in the Brazilian Amazon; steady reductions in aboveground pools along the land-use gradient were accompanied by declines in inorganic soil N pools and transformation rates.  相似文献   

13.
The stable isotope of nitrogen (15N) and an appropriate three-compartment model were used in two 24-h lasting feeding experiments to trace the flow of N through the copepod Acartia discaudata and Calanus helgolandicus fed on 15N-labelled Skeletonema costatum and Thalassiosira weissflogii, respectively. Details of the labelling technique and principles of the computation of N transport rates are given. At the end of a single 24-h feeding period only about one third of the total amount of N ingested by A. discaudata was incorporated into the copepod's body N; we refer to this rate as net incorporation. Most of the N ingested was lost as ammonium (48% of total N ingested), followed by losses in the form of eggs + fecal pellets (13%) and dissolved organic N (DON, 9%). The sum of net incorporation and the latter losses is defined as gross incorporation. Net incorporation by C. helgolandicus and N losses did not vary over time during a 24 h lasting time-series feeding experiment. On average, 79% of total N ingested was actually incorporated by the copepod whereas mean N losses as ammonium, eggs + fecal pellets represented only 12 and 9%, respectively. After a 24-h feeding period only 2% of N ingested was lost as DON. Inspection of individual DON pathways showed that both A. discaudata and C. helgolandicus highly contributed to total DON production via direct excretion (79 and 64%, respectively). The remaining DON appearing in the DON pool was derived from phytoplankton via direct release and/or indirect release (copepod ‘sloppy feeding’).  相似文献   

14.
Mt Kinabalu, Borneo, is characterized by a deep elevational gradient and mosaics of geological substrates. We chose a pair of two geological substrates (sedimentary vs ultrabasic) at five altitudes (800, 1400, 2100, 2700 and 3100 m a.s.l.). We investigated soil nitrogen (N) mineralization and nitrification rates using an incubation technique to assay the pattern and control of soil N status in this environmental matrix. In situ net mineralization rates decreased with elevation on both substrates. The decreasing pattern was linear across altitudes on ultrabasic rock, whereas on sedimentary rock it was depressed in the middle slope wet cloud zone. Sedimentary sites in this zone had low soil redox potential values and this anoxic soil condition might be related to slow N mineralization. The in situ rates were significantly greater (P < 0.05, anova) on sedimentary than on ultrabasic rock at the same altitudes except in the cloud zone. Net mineralization rates of the soils that were collected from different elevations and incubated in the same conditions were statistically invariable (P > 0.05) among the original elevations for sedimentary rock, but were variable (P < 0.05) for ultrabasic rock. Those of the soils that were collected from the same elevation and incubated at different elevations decreased significantly across altitudes (P < 0.05) for sedimentary rock, while they were invariable (P > 0.05) for ultrabasic rock. Thus, temperature had stronger effects on net N mineralization on sedimentary rock, whereas inherent soil quality had stronger effects on ultrabasic rock. Controls of soil N mineralization might be different between the two substrates, leading to diverse biogeochemical site conditions on Kinabalu.  相似文献   

15.
16.
I analyzed the rates of net N mineralization and nitrification of soils from seven sites in a Hawaiian wet montane forest. The sites differ in age, ranging from 400 to 4,100,000 yr, but are comparable in other variables (all at 1200 miasl with 4000 mm or more mean annual rainfall), and the chronosequence simulated a development of soils from basaltic lava. Soils were incubated for 20 days at 17.5 °C, which is nearly equivalent to a mean field air temperature of the sites, and at an elevated temperature of 25.5 °C under three treatments: 1) field-wet without amendments, 2) air dried to a permanent wilting point, and 3) fertilized with phosphate (NaH2PO4) at the rate of 50 g P per g dry soil. Both mineralization and nitrification rates varied significantly among the sites at the field temperature (p<.00001). Fractions of the mineralized organic matter (indexed by the N produced per g organic C) increased sharply from the youngest to the 5000-yr site before declining abruptly to a near constant value from the 9000 to the 1,400,000-yr sites. Total organic C in the top soils (<15 cm deep) increased almost linearly with age across the sites. Consequently, net NH4- and NO3-N produced on an area basis (g m-2 20 d-1) increased sharply from 0.2 in the youngest site to 1.2 in the 5000-yr site, then both became depressed once but steadily increased again. The fraction of organic matter mineralized, and the net N turnover rates were outstandingly high in the oldest site where a large amount of organic matter was observed; the topsoil organic matter which was used in this analysis appeared to be highly labile, whereas the subsurface organic matter could be relatively recalcitrant. As suggested by earlier workers, the initial increase in N turnover seemed to correspond to the increasing quantity of N in the soils through atmospheric deposition and biological fixation. The later decline in fraction of organic matter mineralized seemed to relate to increasing soil C/N ratios, increasingly recalcitrant organic matter, and poorer soil drainage with age. The elevated temperature treatment produced significantly higher amounts of N mineralization, except for the youngest site where N was most limiting, and for two sites where soil waterlogging might be severe. P fertilization invariably resulted in slower N turnovers, suggesting that soil microbes responded to added P causing N immobilization. The youngest site did not significantly respond to added P. The magnitude of immobilization was higher in older than in younger soils, suggesting that P more strongly limits microbial populations in the older soils.  相似文献   

17.
The effects of physical manipulation of hydroponically grown plants of spinach (Spinacia oleracea L., cvs Subito and Glares) on nitrate uptake fluxes were studied in a long-term experiment (3 days), and in short-term label experiments (2 h) with 13N-nitrate and 15N-nitrate. In the long-term experiment, net nitrate uptake rate (NNUR) was measured by following the nitrate depletion in the uptake solution, which was replaced at regular intervals. In the short-term experiments, NNUR and nitrate influx were measured by simultaneous application of 13N-nitrate and 15N-nitrate. Plants were gently transferred into the labelled uptake solution, as is usually done in nutrient uptake studies. In addition, a more severe physical manipulation was carried out, including blotting of the roots, to mimic pretreatments which involve more handling of the plants prior to uptake measurements. Nitrate influx was measured immediately after physical manipulation and after 2 h of recovery. To assess the impact of the physical manipulation the experimentally determined nitrate uptake fluxes were compared with the N demand for growth, defined as relative growth rate (RGR) times plant nitrogen concentration (PNC) of parallel plants, which were left undisturbed. Nitrate influx and efflux were both subject to changes after physical manipulation of the plants. Physical handling, however, did not always result in an alteration of NNUR, which complicates the determination of the length of the recovery period. The impact of the handling and the time course of the recovery depended on the severity of the disturbance and were independent of the light conditions during the experiments. Even after a gentle transfer of the plants, recovery, in most cases, was not complete within 2 h. The data emphasise the need for minimal disturbance of plants during the last hours prior to nutrient uptake measurements.  相似文献   

18.
Aims Ecological systems, especially soils, have been recently recognized as an important source of atmospheric nitric oxide (NO). However, the study on the contribution of plants to atmospheric NO budget is significantly lagged. The specific objectives of this study are to reveal the phylogenetic variation in NO emission potential existing in various plant species and find out the possible leaf traits affecting NO emission potential.Methods We measured NO emission potential, leaf N and C content, C:N ratio, specific leaf area, net photosynthetic rate (P n) and estimated photosynthetic N use efficiency (PNUE) of 88 plant species. Further investigation of the relationships between NO emission potential and leaf traits were performed by simple linear regression analysis and pair-wise correlation coefficients analysis.Important findings Major results are as follows: (1) NO emission from plant species exhibited large variations, ranging from 0 to 41.7 nmol m ?2 h-1, and the species frequency distributions of NO emission potential could be fitted to a log-normal curve. (2) Among 88 species, NO emission potential was the highest in Podocarpus macrophyllus, but lowest in Zanthoxylum nitidum and Vernicia montana. (3) NO emission potential has strong correlation to leaf N content, P n and PNUE. The variations in NO emission potential among diverse plant species may be closely related to leaf N level and net photosynthetic ability.  相似文献   

19.
Forest floor mineral soil mix (FMM) and peat mineral soil mix (PMM) are cover soils commonly used for reclamation of open‐pit oil sands mining disturbed land in northern Alberta, Canada; coarse woody debris (CWD) is another source of organic matter for land reclamation. We investigated net nitrogen (N) transformation rates in FMM and PMM cover soils near and away from CWD 4–6 years after oil sands reclamation. Monthly net nitrification and N mineralization rates varied over time; however, mean rates across the incubation periods and microbial biomass were greater (p < 0.05) in FMM than in PMM. Net N mineralization rates were positively related to soil temperature (p < 0.001) and microbial biomass carbon (p = 0.045). Net N transformation rates and inorganic N concentrations were not affected by CWD; however, the greater 15N isotope ratio of ammonium near CWD than away from CWD indicates that CWD application increased both gross N mineralization/nitrification (causing N isotope fractionation) and gross N immobilization (no isotopic fractionation). Microbial biomass was greater near CWD than away from CWD, indicating the greater potential for N immobilization near CWD. We conclude that (1) CWD application affected soil microbial properties and would create spatial variability and diverse microsites and (2) cover soil type and CWD application had differential effects on net N transformation rates. Applying FMM with CWD for oil sands reclamation is recommended to increase N availability and microsites.  相似文献   

20.
Aims Plants generally respond to nitrogen (N) fertilization with increased growth, but N addition can also suppress rhizosphere effects, which consequently alters soil processes. We quantified the influence of N addition on rhizosphere effects of two C4 grasses: smooth crabgrass (Digitaria ischaemum) and bermudagrass (Cynodon dactylon).Methods Plants were grown in nutrient-poor soil for 80 days with either 20 or 120 μg NH 4 NO 3 -N g dry soil-1. N mineralization rates, microbial biomass, extracellular enzyme activities and bacterial community structure were measured on both rhizosphere and bulk (unplanted) soils after plant harvest.Important findings Fertilization showed nominal differences in net N mineralization, extracellular enzyme activity and microbial biomass between the rhizosphere and bulk soils, indicating minimal influence of N on rhizosphere effects. Instead, the presence of plant roots showed the strongest impact (up to 80%) on rates of net N mineralization and activities of three soil enzymes indicative of N release from organic matter. Principal component analysis of terminal restriction fragment length polymorphism (T-RFLP) also reflected these trends by highlighting the importance of plant roots in structuring the soil bacterial community, followed by plant species and N fertilization (to a minor extent). Overall, the results indicate minor contributions of short-term N fertilization to changes in the magnitude of rhizosphere effects for both grass species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号