首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
《Palaeoworld》2016,25(2):292-302
Demosponges are among the most primitive biomineralized metazoans to appear first in the fossil record with hard skeletons; their confirmed earliest fossils are from the lower Cambrian rocks about 520 Ma, with putative demosponge biomarkers reported from 713 to 635 Ma sediments. In this study, we use mitogenomic data to approach the early divergence timescale of demosponges using relaxed molecular clock techniques and likelihood-evaluated fossil calibration strategies. We found that among various molecular dating models, the correlated rate model yielded time estimates of demosponges in this analysis which is most congruent with the fossil appearance dates of demosponges. Our dating analyses show that crown groups of Demospongiae appeared at about 704 (674–741) Ma, and the silicification in demosponges (divergence of spicular sponges) began about 633 (616–648) Ma indicating a gap of over 100 million years between the origin of silicification and their first unequivocal appearance of siliceous spicules in the fossil record (520–525 Ma); demosponges with tetraxon-type spicules (Tetractinellida) are dated here at about 514 (498–530) Ma, an estimate comparable with the earliest tetraxial megasclere fossil records (510–520 Ma, Ordian Age, middle Cambrian).  相似文献   

2.
The earliest evolution of the animals remains a taxing biological problem, as all extant clades are highly derived and the fossil record is not usually considered to be helpful. The rise of the bilaterian animals recorded in the fossil record, commonly known as the ‘Cambrian explosion’, is one of the most significant moments in evolutionary history, and was an event that transformed first marine and then terrestrial environments. We review the phylogeny of early animals and other opisthokonts, and the affinities of the earliest large complex fossils, the so‐called ‘Ediacaran’ taxa. We conclude, based on a variety of lines of evidence, that their affinities most likely lie in various stem groups to large metazoan groupings; a new grouping, the Apoikozoa, is erected to encompass Metazoa and Choanoflagellata. The earliest reasonable fossil evidence for total‐group bilaterians comes from undisputed complex trace fossils that are younger than about 560 Ma, and these diversify greatly as the Ediacaran–Cambrian boundary is crossed a few million years later. It is generally considered that as the bilaterians diversified after this time, their burrowing behaviour destroyed the cyanobacterial mat‐dominated substrates that the enigmatic Ediacaran taxa were associated with, the so‐called ‘Cambrian substrate revolution’, leading to the loss of almost all Ediacara‐aspect diversity in the Cambrian. Why, though, did the energetically expensive and functionally complex burrowing mode of life so typical of later bilaterians arise? Here we propose a much more positive relationship between late‐Ediacaran ecologies and the rise of the bilaterians, with the largely static Ediacaran taxa acting as points of concentration of organic matter both above and below the sediment surface. The breaking of the uniformity of organic carbon availability would have signalled a decisive shift away from the essentially static and monotonous earlier Ediacaran world into the dynamic and burrowing world of the Cambrian. The Ediacaran biota thus played an enabling role in bilaterian evolution similar to that proposed for the Savannah environment for human evolution and bipedality. Rather than being obliterated by the rise of the bilaterians, the subtle remnants of Ediacara‐style taxa within the Cambrian suggest that they remained significant components of Phanerozoic communities, even though at some point their enabling role for bilaterian evolution was presumably taken over by bilaterians or other metazoans. Bilaterian evolution was thus an essentially benthic event that only later impacted the planktonic environment and the style of organic export to the sea floor.  相似文献   

3.
Morphologically complex trace fossils, recording the infaunal activities of bilaterian animals, are common in Phanerozoic successions but rare in the Ediacaran fossil record. Here, we describe a trace fossil assemblage from the lower Dunfee Member of the Deep Spring Formation at Mount Dunfee (Nevada, USA), over 500 m below the Ediacaran–Cambrian boundary. Although millimetric in scale and largely not fabric‐disruptive, the Dunfee assemblage includes complex and sediment‐penetrative trace fossil morphologies that are characteristic of Cambrian deposits. The Dunfee assemblage records one of the oldest documented instances of sediment‐penetrative infaunalization, corroborating previous molecular, ichnologic, and paleoecological data suggesting that crown‐group bilaterians and bilaterian‐style ecologies were present in late Ediacaran shallow marine ecosystems. Moreover, Dunfee trace fossils co‐occur with classic upper Ediacaran tubular body fossils in multiple horizons, indicating that Ediacaran infauna and epifauna coexisted and likely formed stable ecosystems.  相似文献   

4.
In the past an ‘explosion’ in diversity and abundance of small shelly fossils and of trace fossils has served to mark the base of the Cambrian. However, no evidence has been presented to prove that the ‘explosions’ of the two groups were synchronous. We describe small shelly fossils and trace fossils from the same phosphatic limestone beds that indicate that the two events were separate in time. The small shelly fossils are Anabarites trisulcatus, Hyolithellus cf. H. isiticus, Microcornus? sp., Protohertzina anabarica, P. unguliformis, P. sp. A, Pseudorthotheca sp. A, Rushtonia? sp. A, four types of tuberculate plates and one type of reticulate plate. These fossils represent a restricted, ‘pre-explosion’ fauna and are assigned to the Anabarites-Circotheca-Protohertzina Assemblage Zone, an uppermost Precambrian zone in the Meishucun Stage, Yunnan Province, China. A point at the top of this zone has received strong international endorsement for future designation as the base of the Cambrian. Associated with the small shelly fossils are the trace fossils Cruziana sp. A, Cruziana? sp. B, Rusophycus sp. A, Palaeophycus rubdark and arthropod scratch marks. If found in isolation, this trace fossil assemblage would be considered as post-Precambrian because it includes large, highly organized arthropod traces that are traditionally accepted as occurring above the trace fossil ‘explosion’. We therefore conclude that the trace fossil ‘explosion’ predates the small shelly fossil ‘explosion’. If the proposed location of the base of the Cambrian in Yunnan is accepted, the small shelly fossil ‘explosion’ concept and its relationship to the boundary would not be greatly modified. The trace fossil ‘explosion’, however, would no longer indicate the base of the Cambrian and the ranges of some trace fossils would be extended into the Precambrian.  相似文献   

5.
The earliest fossil record of the animals and its significance   总被引:3,自引:0,他引:3  
The fossil record of the earliest animals has been enlivened in recent years by a series of spectacular discoveries, including embryos, from the Ediacaran to the Cambrian, but many issues, not least of dating and interpretation, remain controversial. In particular, aspects of taphonomy of the earliest fossils require careful consideration before pronouncements about their affinities. Nevertheless, a reasonable case can now be made for the extension of the fossil record of at least basal animals (sponges and perhaps cnidarians) to a period of time significantly before the beginning of the Cambrian. The Cambrian explosion itself still seems to represent the arrival of the bilaterians, and many new fossils in recent years have added significant data on the origin of the three major bilaterian clades. Why animals appear so late in the fossil record is still unclear, but the recent trend to embrace rising oxygen levels as being the proximate cause remains unproven and may even involve a degree of circularity.  相似文献   

6.
刺细胞动物是一类具有刺细胞的水生无脊椎动物,分布在世界各地的海洋和淡水中。作为后生动物最早分化出的一支,刺细胞动物对研究后生动物的起源和早期演化具有极其重要的意义,也为研究后生动物系统发育、地层对比和古地理恢复等方面提供了重要的科研线索。本文简要介绍了刺细胞动物早期(埃迪卡拉纪至寒武纪苗岭世)的化石记录和研究现状,将刺细胞动物的早期演化分为四个时期,分别为前寒武纪、寒武纪纽芬兰世、寒武纪第二世和寒武纪苗岭世,并对上述四个时期的刺细胞动物进行论述。目前的研究表明:1)前寒武纪的刺细胞动物化石记录虽然比较丰富,但充满争议,目前尚未有比较确切的刺细胞动物记录;2)寒武纪纽芬兰世如宽川铺生物群中保存了较多的刺细胞动物胚胎及发育序列化石,是研究刺细胞动物演化的重要窗口;3)寒武纪第二世,以澄江生物群为代表的布尔吉斯页岩型化石保存了软躯体的刺细胞动物。与此同时,在第二世中已经出现了最早的珊瑚化石记录;4)寒武纪苗岭世刺细胞动物主要以布尔吉斯页岩型化石保存(如布尔吉斯页岩生物群和凯里生物群),同时期在美国犹他州发现的刺细胞动物印痕化石表明了这个时期几乎所有的刺细胞动物大类已经出现。本文根据上述时期的研究,对今后刺细胞动物化石的研究提供一些建议和讨论。  相似文献   

7.
Twenty candidate fossils with claim to be the oldest representative of the Phylum Porifera have been re‐analysed. Three criteria are used to assess each candidate: (i) the diagnostic criteria needed to categorize sponges in the fossil record; (ii) the presence, or absence, of such diagnostic features in the putative poriferan fossils; and (iii) the age constraints for the candidate fossils. All three criteria are critical to the correct interpretation of any fossil and its placement within an evolutionary context. Our analysis shows that no Precambrian fossil candidate yet satisfies all three of these criteria to be a reliable sponge fossil. The oldest widely accepted candidate, Mongolian silica hexacts from c. 545 million years ago (Ma), are here shown to be cruciform arsenopyrite crystals. The oldest reliable sponge remains are siliceous spicules from the basal Cambrian (Protohertzina anabarica Zone) Soltanieh Formation, Iran, which are described and analysed here in detail for the first time. Extensive archaeocyathan sponge reefs emerge and radiate as late as the middle of the Fortunian Stage of the Cambrian and demonstrate a gradual assembly of their skeletal structure through this time coincident with the evolution of other metazoan groups. Since the Porifera are basal in the Metazoa, their presence within the late Proterozoic has been widely anticipated. Molecular clock calibration for the earliest Porifera and Metazoa should now be based on the Iranian hexactinellid material dated to c. 535 Ma. The earliest convincing fossil sponge remains appeared at around the time of the Precambrian‐Cambrian boundary, associated with the great radiation events of that interval.  相似文献   

8.
The increase in trace fossil diversity across the Neoproterozoic-Cambrianboundary often is presented in terms of tabulations of ichnogenera.However, a clearer picture of the increase in diversity andcomplexity can be reached by combining trace fossils into broadgroups defined both on morphology and interpretation. This alsofocuses attention on looking for similarites between Neoproterozoicand Cambrian trace fossils. Siliciclastic sediments of the Neoproterozoicpreserve elongate tubular organisms and structures of probablealgal origin, many of which are very similar to trace fossils.Such enigmatic structures include Palaeopascichnus and Yelovichnus,previously thought to be trace fossils in the form of tightmeanders. A preliminary two or tripartite terminal Neoproterozoic tracefossil zonation can be be recognized. Possibly the earliesttrace fossils are short unbranched forms, probably younger thanabout 560 Ma. Typical Neoproterozoic trace fossils are unbranchedand essentially horizontal forms found associated with diverseassemblages of Ediacaran organisms. In sections younger thanabout 550 Ma a modest increase in trace fossil diversity occurs,including the appearance of rare three-dimensional burrow systems(treptichnids), and traces with a three-lobed lower surfaces.  相似文献   

9.
A sequence of Lower Ordovician (Arenig) turbidites in Co. Wexford, Eire, has yielded one of the earliest diverse ichnofaunas yet recorded from deep water sediments comprising: Chondrites, Glockerichnus, Gordia, Helminthopsis, Lorenzinia, Neonereites, Palaeophycus, Paleodictyon, Planolites, Sublorenzinia, Taenidium, Taphrhelminthopsis, Teichichnus and Tomaculum. This ichnofauna is critical in any analysis of the colonisation of the deep seas by trace fossil‐producing animals.

A world‐wide review shows that the earliest trace fossils are mainly from Late Precambrian shelf sea environments, but many more evolved during very rapid diversification in the pre‐trilobite Lower Cambrian.

There was little increase in diversity in shallow water after the Lower Cambrian but a progressive colonisation of the deep ocean took place and this accelerated during the Ordovician, when the main lineages of deep sea trace fossils were established there. Rosetted, patterned, meandering and simple spiral forms evolved in shallow water in the Upper Precambrian and pre‐trilobite Lower Cambrian and only later migrated into the deep sea, whereas complex, closely programmed, spiral traces may have evolved there.  相似文献   

10.
11.
Hemichordates are known as fossils from at least the earliest mid-Cambrian Period (ca. 510 Ma) and are well represented in the fossil record by the graptolithinid pterobranchs ("graptolites"), which include the most abundantly preserved component of Paleozoic macroplankton. However, records of the soft tissues of fossil hemichordates are exceedingly rare and lack clear anatomical details. Galeaplumosus abilus gen. et sp. nov. from the lower Cambrian of China, an exceptionally preserved fossil with soft parts, represents by far the best-preserved, the earliest, and the largest hemichordate zooid from the fossil record; it provides new insight into the evolution of the group. The fossil is assigned to the pterobranch hemichordates on the basis of its morphological similarity to extant representatives. It has a zooidal tube (coenecium) with banding throughout comparable to that in the extant pterobranchs and a zooid with paired annulated arms bearing paired rows of annulated tentacles; it also displays a putative contractile stalk. G. abilus demonstrates stasis in pterobranch morphology, mode of coenecium construction, and probable feeding mechanism over 525 million years.  相似文献   

12.
Multiple lines of evidence indicate that Earth's land masses became green some 2.7 Ga ago, about 1 billion years after the advent of life. About 2.2 billion years later, land plants abruptly appear in the fossil record and diversify marking the onset of ecologically complex terrestrial communities that persist to the present day. Given this long history of land colonization, surprisingly few studies report direct fossil evidence of emergent vegetation prior to the continuous record of life on land that starts in the mid-Silurian (ca. 420–425 Ma ago). Here we compare stable carbon isotope signatures of fossils from seven Ordovician–Silurian (450–420 Ma old) Appalachian biotas with signatures of coeval marine organic matter and with stable carbon isotope values predicted for Ordovician and Silurian liverworts (BRYOCARB model). The comparisons support a terrestrial origin for fossils in six of the biotas analyzed, and indicate that some of the fossils represent bryophyte-grade plants. Our results demonstrate that extensive land floras pre-dated the advent of vascular plants by at least 25 Ma. The Appalachian fossils represent the oldest direct evidence of widespread colonization of continents. These findings provide a new search image for macrofossil assemblages that contain the earliest stages of land plant evolution. We anticipate they will fuel renewed efforts to search for direct fossil evidence to track the origin of land plants and eukaryotic life on continents further back in geologic time.  相似文献   

13.
The poorly known fossil record of fur seals and sea lions (Otariidae) does not reflect their current diversity and widespread abundance. This limited fossil record contrasts with the more complete fossil records of other pinnipeds such as walruses (Odobenidae). The oldest known otariids appear 5–6 Ma after the earliest odobenids, and the remarkably derived craniodental morphology of otariids offers few clues to their early evolutionary history and phylogenetic affinities among pinnipeds. We report a new otariid, Eotaria crypta, from the lower middle Miocene ‘Topanga’ Formation (15–17.1 Ma) of southern California, represented by a partial mandible with well-preserved dentition. Eotaria crypta is geochronologically intermediate between ‘enaliarctine’ stem pinnipedimorphs (16.6–27 Ma) and previously described otariid fossils (7.3–12.5 Ma), as well as morphologically intermediate by retaining an M2 and a reduced M1 metaconid cusp and lacking P2–4 metaconid cusps. Eotaria crypta eliminates the otariid ghost lineage and confirms that otariids evolved from an ‘enaliarctine’-like ancestor.  相似文献   

14.
Echinoderms are a major group of invertebrate deuterostomes that have been an important component of marine ecosystems throughout the Phanerozoic. Their fossil record extends back to the Cambrian, when several disparate groups appear in different palaeocontinents at about the same time. Many of these early forms exhibit character combinations that differ radically from extant taxa, and thus their anatomy and phylogeny have long been controversial. Deciphering the earliest evolution of echinoderms therefore requires a detailed understanding of the morphology of Cambrian fossils, as well as the selection of an appropriate root and the identification of homologies for use in phylogenetic analysis. Based on the sister‐group relationships and ontogeny of modern species and new fossil discoveries, we now know that the first echinoderms were bilaterally symmetrical, represented in the fossil record by Ctenoimbricata and some early ctenocystoids. The next branch in echinoderm phylogeny is represented by the asymmetrical cinctans and solutes, with an echinoderm‐type ambulacral system originating in the more crownward of these groups (solutes). The first radial echinoderms are the helicoplacoids, which possess a triradial body plan with three ambulacra radiating from a lateral mouth. Helicocystoids represent the first pentaradial echinoderms and have the mouth facing upwards with five radiating recumbent ambulacra. Pentaradial echinoderms diversified rapidly from the beginning of their history, and the most significant differences between groups are recorded in the construction of the oral area and ambulacra, as well as the nature of their feeding appendages. Taken together, this provides a clear narrative of the early evolution of the echinoderm body plan.  相似文献   

15.
Exceptional fossil preservation and the cambrian explosion   总被引:11,自引:1,他引:10  
Exceptionally preserved, non-biomineralizing fossils contributeimportantly to resolving details of the Cambrian explosion,but little to its overall patterns. Six distinct "types" ofexceptional preservation are identified for the terminal Proterozoic-Cambrianinterval, each of which is dependent on particular taphonomiccircumstances, typically restricted both in space and time.Taphonomic pathways yielding exceptional preservation were particularlyvariable through the Proterozoic-Cambrian transition, at leastin part a consequence of contemporaneous evolutionary innovations.Combined with the reasonably continuous record of "Doushantuo-typepreservation," and the fundamentally more robust records ofshelly fossils, phytoplankton cysts and trace fossils, thesetaphonomic perturbations contribute to the documentation ofmajor evolutionary and biogeochemical shifts through the terminalProterozoic and early Cambrian. Appreciation of the relationship between taphonomic pathwayand fossil expression serves as a useful tool for interpretingexceptionally preserved, often problematic, early Cambrian fossils.In shale facies, for example, flattened non-biomineralizingstructures typically represent the remains of degradation-resistantacellular and extracellular "tissues" such as chaetae and cuticles,whereas three-dimensional preservation represents labile cellulartissues with a propensity for attracting and precipitating earlydiagenetic minerals. Such distinction helps to identify theacuticular integument of hyolithids, the chaetae-like natureof Wiwaxia sclerites, the chaetognath-like integument of Amiskwia,the midgut glands of various Burgess Shale arthropods, and themisidentification of deposit-feeding arthropods in the Chengjiangbiota. By the same reasoning, putative lobopods in the SiriusPasset biota and putative deuterostomes in the Chengiang biotaare better interpreted as arthropods.  相似文献   

16.
17.
Extant panarthropods (euarthropods, onychophorans and tardigrades) are hallmarked by stunning morphological and taxonomic diversity, but their central nervous systems (CNS) are relatively conserved. The timing of divergences of the ground pattern CNS organization of the major panarthropod clades has been poorly constrained because of a scarcity of data from their early fossil record. Although the CNS has been documented in three-dimensional detail in insects from Cenozoic ambers, it is widely assumed that these tissues are too prone to decay to withstand other styles of fossilization or geologically older preservation. However, Cambrian Burgess Shale-type compressions have emerged as sources of fossilized brains and nerve cords. CNS in these Cambrian fossils are preserved as carbon films or as iron oxides/hydroxides after pyrite in association with carbon. Experiments with carcasses compacted in fine-grained sediment depict preservation of neural tissue for a more prolonged temporal window than anticipated by decay experiments in other media. CNS and compound eye characters in exceptionally preserved Cambrian fossils predict divergences of the mandibulate and chelicerate ground patterns by Cambrian Stage 3 (ca 518 Ma), a dating that is compatible with molecular estimates for these splits.  相似文献   

18.
The group Cnidaria includes 'jellyfish', soft-bodied anemone and anemone-like forms and calcified corals. These diploblastic organisms have a fossil record extending back to the earliest metazoans of the Neoproterozoic; however certain cnidarians of the subclass Zoantharia, characterized by soft-bodied anemone-like forms, are absent or poorly represented in the fossil record. Despite the paucity of fossils, it is thought that calcification by soft anemone-like animals was responsible for producing the skeleton that allowed the preservation of the first corals. We report discovery of an abundant assemblage of in situ soft-bodied polyps with tissues. They are preserved in exquisite detail and come from the well-known Lower Cambrian Chengjiang biota of Yunnan, China. The soft-bodied polyps display a simple anatomy that is comparable to some extant anemones of the order Actinaria. The new fossils are assigned to Archisaccophyllia kunmingensis n. gen. et n. sp. Their simple and conservative form suggests that these fossils may represent some kind of ancestral rootstock. The preserved life assemblage provides a unique snapshot of Lower Cambrian anemone life and provides clues for relationships with extant actiniarians as well as calcified corals.  相似文献   

19.
The sudden appearance in the fossil record of the major animal phyla apparently records a phase of unparalleled, rapid evolution at the base of the Cambrian period, 545 Myr ago. This has become known as the Cambrian evolutionary ‘explosion’, and has fuelled speculation about unique evolutionary processes operating at that time. The acceptance of the palaeontological evidence as a true reflection of the evolutionary narrative has been criticised in two ways: from a reappraisal of the phylogenetic relationships of the early fossils, and from predicitions of molecular divergence times, based on six appropriate metazoan genes. Phylogenetic analysis of the arthropods implies an earlier, Precambrian history for most clades, and hence an extensive period of cladogenesis unrecorded by fossils. A similar argument can be applied to molluscs, lophophorates and deuterostomes. Molecular evidence implies divergence between clades to at least 1000 Myr ago. The apparent paradox between the sudden appearance of recognisable metazoans and their extended evolutionary history might be explained by a sudden Cambrian increase in body size, which was accompanied by skeletisation. A new paradigm suggests that the ‘explosion’ in the record may have been decoupled from the evolutionary innovation.  相似文献   

20.
We report new discoveries of embryos and egg capsules from the Lower Cambrian of Siberia, Middle Cambrian of Australia and Lower Ordovician of North America. Together with existing records, embryos have now been recorded from four of the seven continents. However, the new discoveries highlight secular and systematic biases in the fossil record of embryonic stages. The temporal window within which the embryos and egg capsules are found is of relatively short duration; it ends in the Early Ordovician and is roughly coincident with that of typical "Orsten"-type faunas. The reduced occurrence of such fossils has been attributed to reducing levels of phosphate in marine waters during the early Paleozoic, but may also be owing to the increasing depth of sediment mixing by infaunal metazoans. Furthermore, most records younger than the earliest Cambrian are of a single kind-large eggs and embryos of the priapulid-like scalidophoran Markuelia. We explore alternative explanations for the low taxonomic diversity of embryos recovered thus far, including sampling, size, anatomy, ecology, and environment, concluding that the preponderance of Markuelia embryos is due to its precocious development of cuticle at an embryonic stage, predisposing it to preservation through action as a substrate on which microbially mediated precipitation of authigenic calcium phosphate may occur. The fossil record of embryos may be limited to a late Neoproterozoic to early Ordovician snapshot that is subject to dramatic systematic bias. Together, these biases must be considered seriously in attempts to use the fossil record to arbitrate between hypotheses of developmental and life history evolution implicated in the origin of metazoan clades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号