首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
2.
Rivers can provide important sources of energy for riparian biota. Stable isotope analysis (δ13C, δ15N) together with linear mixing models, were used to quantify the importance of aquatic insects as a food source for a riparian arthropod assemblage inhabiting the shore of the braided Tagliamento River (NE Italy). Proportional aquatic prey contributions to riparian arthropod diets differed considerable among taxa. Carabid beetles of the genus Bembidion and Nebria picicornis fed entirely on aquatic insects. Aquatic insects made up 80% of the diet of the dominant staphylinid beetle Paederidus rubrothoracicus. The diets of the dominant lycosid spiders Arctosa cinerea and Pardosa wagleri consisted of 56 and 48% aquatic insects, respectively. In contrast, the ant Manica rubida fed mainly on terrestrial sources. The proportion of aquatic insects in the diet of lycosid spiders changed seasonally, being related to the seasonal abundance of lycosid spiders along the stream edge. The degree of spatial and seasonal aggregation of riparian arthropods at the river edge coincided with their proportional use of aquatic subsidies. The results suggest that predation by riparian arthropods is a quantitatively important process in the transfer of aquatic secondary production to the riparian food web.  相似文献   

3.
New terrestrial and freshwater arthropods are described from the Windyfield cherts, a suite of silicified sinters deposited 700m north‐east of the Rhynie cherts and part of the same Early Devonian hot‐spring complex. The diverse assemblage consists of Heterocrania rhyniensis (Hirst and Maulik, 1926a), here recognized as a euthycarcinoid; scutigeromorph centipede material assigned to Crussolum sp.; the crustacean Lepidocaris; trigonotarbid arachnids; a new arthropod of myriapod affinities named Leverhulmia mariae gen. et sp. nov.; and the distinctively ornamented arthropod cuticle of Rhynimonstrum dunlopi gen. et sp. nov. The Leverhulmia animal preserves gut content identifying it as an early terrestrial detritivore. Abundant coprolites of similar composition and morphology to the gut contents of the euthycarcinoid crowd the matrix. Chert texture, faunal associations, and study of modern analogues strongly suggest that the terrestrial arthropods were ubiquitous Early Devonian forms with no particular special adaptation to localized conditions around the terrestrial hot‐spring vents. The aquatic arthropods represent biota from ephemeral cool‐water pools in the vicinity of the hot‐spring vents.  相似文献   

4.
Abstract Resources are usually considered to be limited in caves and underground habitats. Therefore, lower metabolic rates of ectotherms in these environments should be advantageous. The standard metabolic rate (SMR) of the common harvestman Pachylus paessleri Roewer, 1913 (Arachnida, Opiliones) is determined at two ambient temperatures. Repeatability of SMR is estimated by two methods: (i) product–moment correlation on residuals of body mass and (ii) variance components. Estimations of the thermal sensitivity of metabolic rate (individual Q10). SMR of P. paessleri at 20 °C show a mean of 19.01 ± 6.04 and 14.99 ± 3.64 μL CO2 h?1 for males and females, respectively. Thermal sensitivity of SMR is 2.11 ± 0.23 with a substantial coefficient of variation of 26.7%. In males, residuals of CO2 release are significantly repeatable (rp = 0.61) between measurements realized 5 months apart, which reflects the consistency of this trait over time. As typical soil inhabitants, the harvestman P. paessleri present a lower metabolic rate in comparison with arthropods of similar body mass (e.g. arachnids). Although the coefficient of thermal sensitivity is within of the range reported for arthropods inhabiting Mediterranean zones, it is lower than expected for an organism with such a low SMR. This appears to be the first report of repeatability of metabolic rate in a harvestman species.  相似文献   

5.
6.
1. The species composition and spatial distribution of small insects (Hemiptera, Coleoptera, Lepidoptera) and arachnids (Araneae, Opiliones, and Pseudoscorpiones) were investigated in three indigenous, upland grasslands identified as the National Vegetation Classification Festuca–Agrostis–Galium typical subcommunity (code U4a), Festuca–Agrostis–Galium, Vaccinium–Deschampsia subcommunity (code U4e), and Nardus stricta species-poor sub-community (code U5a), on which grazing management was manipulated experimentally. 2. Two hypotheses were tested that predicted arthropod diversity in upland grasslands. The habitat heterogeneity hypothesis predicts that the species number and abundance of arthropods will have an asymptotic relationship with increasing numbers of plant species and greater structural heterogeneity in the vegetation. The symbiosis between patches hypothesis states that the species number and abundance of arthropods will express a unimodal relationship with the grain size of sward patches created by grazing. The sward patches must be large enough to be apparent to, and support populations of, arthropods, but small enough that interspersed tussocks provide shelter from weather and a deterrent to disturbance by grazers. 3. The hypotheses were tested by sampling arthropods from the geometrical patterns represented by the individual tussocks and intermediate sward components of three indigenous grasslands produced by different grazing treatments. Paired samples of arthropods were taken by motorized suction sampler, the first of the pair from the grazed sward and the second, the accumulated samples from the surrounding triad of tussocks (U4a and U5a grasslands) or hummocks (U4e grassland). The paired samples were taken from six randomly-selected locations across both replicates of each of the grazing treatments. 4. Arthropod species composition and abundance were compared between the paired sward and tussock samples and in turn with measures of the vertical and horizontal components of vegetation structure, i.e. the variance in vegetation height per unit area and the area covered by tussock compared with sward. 5. There were consistently more species and a greater abundance of arthropods associated with tussocks than with swards and the average species number and abundance for the combined pair of samples declined with increased grazing pressure. The relationship between vertical and horizontal components of vegetation structure and the species number and abundance of selected arthropods was asymptotic as opposed to unimodal, supporting the habitat heterogeneity hypothesis, rather than the symbiosis between patches hypothesis. 6. Small and relatively sedentary insects and arachnids are more sensitive to grazing intensity and species of grazer in these upland, indigenous grasslands than are larger Coleoptera and Araneae, which respond less directly to varied grazing management. The overall linear reduction of small herbivorous and predatory arthropods with increased grazing intensity was buffered in grasslands with substantial tussock patches.  相似文献   

7.
 Mandibles are feeding appendages functioning as ”jaws” in the arthropod groups in which they occur. Which part of this appendage is involved in food manipulation (limb tip versus limb base), has been used to suggest phylogenetic relationships among some of the major taxa of arthropods (myriapods, crustaceans, and insects). As a way to independently verify the conclusions drawn from previous morphological analyses, we have studied the expression pattern of the gene Distal-less (Dll), which specifies the distal part of appendages. Our results show, in contrast to the traditional view, that both insect and crustacean adult mandibles are gnathobasic, handling food with the basal portion of the appendage. Furthermore, as is evident by the reduction in the number of Dll-expressing cells in the later developmental stages, adult diplopod jaws are also gnathobasic. Thus, jaws of all mandibulates (myriapods, crustaceans, and insects) seem to have a similar gnathobasic structure. We have also found that Dll is expressed in the labra of all arthropod taxa examined, suggesting that this structure is of appendicular derivation. Additionally, the spinnerets and book lungs of spiders, long considered on other grounds to be modified appendages, express Dll, confirming this interpretation. This study shows that, in addition to their use in phylogenetic and population genetic studies, molecular markers can be very useful for inferring the origins of a particular morphological feature. Received: 12 January 1998 / Accepted: 23 March 1998  相似文献   

8.
The skeletal system of animals provides the support for a variety of activities and functions. For animals such as mammals, which have endoskeletons, research has shown that skeletal investment (mass) scales with body mass to the 1.1 power. In this study, we ask how exoskeletal investment in insects scales with body mass. We measured the body mass and mass of exoskeletal chitin of 551 adult terrestrial insects of 245 species, with dry masses ranging from 0.0001 to 2.41 g (0.0002–6.13 g wet mass) to assess the allometry of exoskeletal investment. Our results showed that exoskeletal chitin mass scales isometrically with dry body mass across the Insecta as Mchitin = a M, where b = 1.03 ± 0.04, indicating that both large and small terrestrial insects allocate a similar fraction of their body mass to chitin. This isometric chitin‐scaling relationship was also evident at the taxonomic level of order, for all insect orders except Coleoptera. We additionally found that the relative exoskeletal chitin investment, indexed by the coefficient, a, varies with insect life history and phylogeny. Exoskeletal chitin mass tends to be proportionally less and to increase at a lower rate with mass in flying than in nonflying insects (Mflying insect chitin = ?0.56 × M; Mnonflying insect chitin = ?0.55 × M), and to vary with insect order. Isometric scaling (b = 1) of insect exoskeletal chitin suggests that the exoskeleton in insects scales differently than support structures of most other organisms, which have a positive allometry (b > 1) (e.g., vertebrate endoskeleton, tree secondary tissue). The isometric pattern that we document here additionally suggests that exoskeletal investment may not be the primary limit on insect body size. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
We describe a method that allows prediction of resting metabolic rate (RMR, ml O2 · min−1) in adult male and female king penguins on shore by measuring body mass (M b) and the length of the foot, flipper and beak. This method is accurate, underestimating measured RMR (n=114) by 4% in a data set consisting of 44 birds (33 males and 11 females). Measurement error was unbiased with respect to fasting duration and can therefore estimate RMR during any stage of fasting. This new method provides significant cost and logistical savings when estimating RMR during fieldwork, allowing RMR of a large number of birds to be measured quickly. These findings suggest the possibility that the use of M b and morphometrics will allow development of general and specific equations to estimate RMR in other species.  相似文献   

10.
Quercus crassifolia and Q. crassipes are dominant species in temperate forests of central Mexico and hybridize between each other when they occur in sympatry. Oak canopies contain a considerable portion of arthropod diversity and the hybrid zones can provide new habitats to epiphyte fauna. We tested if the establishment of hybrids in contact zones with their parental hosts increases the species diversity of canopy arthropods assuming that hybrid trees constitute new genotypes of potential new habitats to small organisms. We examined the effect of hybridization on some community structure parameters (diversity, composition, similarity and density of arthropod fauna) of canopy arthropods compared to their parental species in a hybrid zone located in central Mexico. We employed 17 leaf morphological traits and six diagnostic RAPD primers to identify parental and hybrid plants. The RAPDs marker showed unidirectional introgression towards Q. crassifolia, and were detected hybrid (F1), backcrosses and introgression individual trees. In total, 30 oak canopies were fogged during rainy and dry season. We recognized 532 taxa of arthropods belonging to 22 orders associated with tree canopies. The taxonomic status of host‐trees may be an important factor in the arthropod community structure and that seasonality (dry and rainy) is not a factor that could modify their organization. Trees of Q. crassipes registered the highest densities of arthropod fauna followed by hybrid hosts (F1); trees originated by backcrosses towards Q. crassifolia registered a significant less arthropod density than F1 hybrids; and trees of Q. crassifolia had the lowest density. Hybrid plants and Q. crassipes individuals had higher diversity (H′) of arthropods than Q. crassifolia plants. Hybrid plants had also more rare species in both seasons in comparison with parental species. This study suggests that hybrid oaks act as a center of biodiversity by accumulating arthropods of both parental and different species including a considerable number of rare species.  相似文献   

11.
Summary We tested the hypothesis that herbivorous insects on desert shrubs contribute to short-term nitrogen cycling, and increase rates of nitrogen flux from nutrient rich plants. Creosotebush (Larrea tridentata) shrubs were treated with different combinations of fertilizer and water augmentations, resulting in different levels of foliage production and foliar nitrogen contents. Foliage arthropod populations, and nitrogen in canopy dry throughfall, wet throughfall and stemflow were measured to assess nitrogen flux rates relative to arthropod abundances on manipulated and unmanipulated shrubs over a one-month period during peak productivity. Numbers and biomass of foliage arthropods were significantly higher on fertilized shrubs. Sap-sucking phytophagous insects accounted for the greatest numbers of foliage arthropods, but leaf-chewing phytophagous insects represented the greatest biomass of foliage arthropods. Measured amounts of bulk frass (from leaf-chewing insects) were not significantly different among the various treatments. Amounts of nitrogen from dry and wet throughfall and stemflow were significantly greater under fertilized shrubs due to fine frass input from sap-sucking insects. Increased numbers and biomass of phytophagous insects on fertilized shrubs increased canopy to soil nitrogen flux due to increased levels of herbivory and excrement. Nitrogen excreted by foliage arthropods accounted for about 20% of the total one month canopy to soil nitrogen flux, while leaf litter accounted for about 80%.  相似文献   

12.
The genus Saguinus represents a successful radiation of over 20 species of small‐bodied New World monkeys. Studies of the tamarin diet indicate that insects and small vertebrates account for ~16–45% of total feeding and foraging time, and represent an important source of lipids, protein, and metabolizable energy. Although tamarins are reported to commonly consume large‐bodied insects such as grasshoppers and walking sticks (Orthoptera), little is known concerning the degree to which smaller or less easily identifiable arthropod prey comprises an important component of their diet. To better understand tamarin arthropod feeding behavior, fecal samples from 20 wild Bolivian saddleback tamarins (members of five groups) were collected over a 3 week period in June 2012, and analyzed for the presence of arthropod DNA. DNA was extracted using a Qiagen stool extraction kit, and universal insect primers were created and used to amplify a ~280 bp section of the COI mitochondrial gene. Amplicons were sequenced on the Roche 454 sequencing platform using high‐throughput sequencing techniques. An analysis of these samples indicated the presence of 43 taxa of arthropods including 10 orders, 15 families, and 12 identified genera. Many of these taxa had not been previously identified in the tamarin diet. These results highlight molecular analysis of fecal DNA as an important research tool for identifying anthropod feeding patterns in primates, and reveal broad diversity in the taxa, foraging microhabitats, and size of arthropods consumed by tamarin monkeys. Am J Phys Anthropol 156:474–481, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
Peritrophic membranes (PMs) are acellular layered structures secreted around ingested materials by the gut epithelium. Most studies on PMs have focused on those of insects and crustaceans due to their potential ability to block the movement of pathogens from ingested materials into the body, and their possible use as unique targets relevant to pest management. While PMs are known to occur in other taxa, their distribution is spotty and little is known about their role in these other species. The gastropod Megathura crenulata produces a true PM, which has a chitinous matrix that makes up nearly half its wet weight. Unlike arthropod PMs, which are released by delamination from the microvilli of their gut cells, the chitinous matrix of the M. crenulata PM is secreted from epithelial cells lining most regions of its gut. Although its mode of synthesis is unique, it may serve the same functions as proposed for other PMs, including regulating diffusion, binding metabolites, restricting protease activity, blocking pathogens, and providing lubrication. In arthropods, numerous proteins with chitin‐binding specificities have been identified, consistent with the proposed functions. Analysis of PMs in M. crenulata showed several integral proteins associated with the membrane, suggesting that the PM in this mollusc may be involved in complex functions like those seen in the arthropods.  相似文献   

14.
The pycnogonids (or sea spiders) are an enigmatic group of arthropods, classified in recent phylogenies as a sister-group of either euchelicerates (horseshoe crabs and arachnids), or all other extant arthropods. Because of their bizarre morpho-anatomy, homologies with other arthropod taxa have been difficult to assess. We review the main morphology-based hypotheses of correspondence between anterior segments of pycnogonids, arachnids and mandibulates. In an attempt to provide new relevant data to these controversial issues, we performed a PCR survey of Hox genes in two pycnogonid species, Endeis spinosa and Nymphon gracile, from which we could recover nine and six Hox genes, respectively. Phylogenetic analyses allowed to identify their orthology relationships. The Deformed gene from E. spinosa and the abdominal-A gene from N. gracile exhibit unusual sequence divergence in their homeodomains, which, in the latter case, may be correlated with the extreme reduction of the posterior region in pycnogonids. Expression patterns of two Hox genes (labial and Deformed) in the E. spinosa protonymphon larva are discussed. The anterior boundaries of their expression domains favour homology between sea spider chelifores, euchelicerates chelicerae and mandibulate (first) antennae, in contradistinction with previously proposed alternative schemes such as the protocerebral identity of sea spider chelifores or the absence of a deutocerebrum in chelicerates. In addition, while anatomical and embryological evidences suggest the possibility that the ovigers of sea spiders could be a duplicated pair of pedipalps, the Hox data support them as modified anterior walking legs, consistent with the classical views.Supplementary material is available for this article at and is accessible for authorized users.Guest editors Jean Deutsch and Gerhard Scholtz  相似文献   

15.
《Free radical research》2013,47(9):1150-1156
Abstract

Oxidation of tyrosine moieties by radicals involved in lipid peroxidation is of current interest; while a rate constant has been reported for reaction of lipid peroxyl radicals with a tyrosine model, little is known about the reaction between tyrosine and alkoxyl radicals (also intermediates in the lipid peroxidation chain reaction). In this study, the reaction between a model alkoxyl radical, the tert-butoxyl radical and tyrosine was followed using steady-state and pulse radiolysis. Acetone, a product of the β-fragmentation of the tert-butoxyl radical, was measured; the yield was reduced by the presence of tyrosine in a concentration- and pH-dependent manner. From these data, a rate constant for the reaction between tert-butoxyl and tyrosine was estimated as 6?±?1 × 107 M?1 s?1 at pH 10. Tyrosine phenoxyl radicals were also monitored directly by kinetic spectrophotometry following generation of tert-butoxyl radicals by pulse radiolysis of solutions containing tyrosine. From the yield of tyrosyl radicals (measured before they decayed) as a function of tyrosine concentration, a rate constant for the reaction between tert-butoxyl and tyrosine was estimated as 7?±?3 × 107 M?1 s?1 at pH 10 (the reaction was not observable at pH 7). We conclude that reaction involves oxidation of tyrosine phenolate rather than undissociated phenol; since the pKa of phenolic hydroxyl dissociation in tyrosine is ~ 10.3, this infers a much lower rate constant, about 3 × 105 M?1 s?1, for the reaction between this alkoxyl radical and tyrosine at pH 7.4.  相似文献   

16.
We report for the first time the presence of a sex steroid-binding protein in the plasma of green sea turtles Chelonia mydas, which provides an insight into reproductive status. A high affinity, low capacity sex hormone steroid-binding protein was identified in nesting C. mydas and its thermal profile was established. In nesting C. mydas testosterone and oestradiol bind at 4°C with high affinity (K a = 1.49 ± 0.09 × 109 M−1; 0.17 ± 0.02 × 107 M−1) and low binding capacity (B max = 3.24 ± 0.84 × 10−5 M; 0.33 ± 0.06 × 10−4 M). The binding affinity and capacity of testosterone at 23 and 36°C, respectively were similar to those determined at 4°C. However, oestradiol showed no binding activity at 36°C. With competition studies we showed that oestradiol and oestrone do not compete for binding sites. Furthermore, in nesting C. mydas plasma no high-affinity binding was observed for adrenocortical steroids (cortisol and corticosterone) and progesterone. Our results indicate that in nesting C. mydas plasma temperature has a minimal effect on the high-affinity binding of testosterone to sex steroid-binding protein, however, the high affinity binding of oestradiol to sex steroid-binding protein is abolished at a hypothetically high (36°C) sea/ambient/body temperature. This suggests that at high core body temperatures most of the oestradiol becomes biologically available to the tissues rather than remaining bound to a high-affinity carrier.  相似文献   

17.
K L Wun  W Prins 《Biopolymers》1975,14(1):111-117
Quasi-elastic light scattering as measured by intensity fluctuation (self-beat) spectroscopy in the time domain can be profitably used to follow both the translational diffusion D and the dominant internal flexing mode τint of DNA and its complexes with various histones in aqueous salt solutions. Without histones, DNA is found to have D = 1.6 × 10?8 cm2/sec and τint ? 5 × 10?4 sec in 0.8 M NaCl, 2 M urea at 20°C. Total histone as well as fraction F2A induce supercoiling (D = 2.6 × 10?8 cm2/sec, τint ? 2.8 × 10?4 sec) whereas fraction F1 induces uncoiling (D = 1.0 × 10?8 cm2/sec, τint ? 9.4 × 10?4 sec). Upon increasing the salt concentration to 1.5 M the DNA–histone complex dissociates (D = 1.8 × 10?8 cm2/sec). Upon decreasing the salt concentration to far below 0.8 M, the DNA–histone complex eventually precipitates as a chromatin gel.  相似文献   

18.
【目的】转基因作物对非靶标昆虫的影响是转基因作物环境安全评价的重要内容,研究Cry2Ab蛋白对龟纹瓢虫的影响,对转基因作物的环境安全评价具有重要意义。【方法】采用实验动物学、分子生物学等方法,研究Cry2Ab蛋白对龟纹瓢虫发育历期、成虫体重、雌雄比例及体内氨基酸种类和含量的影响。【结果】与蔗糖对照组相比,Cry2Ab蛋白对龟纹瓢虫不同龄期的发育历期、成虫体重和雌雄比例均无明显差异,对体内氨基酸种类和含量也没有显著差异。【结论】Cry2Ab蛋白对龟纹瓢虫的生长发育及代谢无显著影响。  相似文献   

19.
The phylogenetic position of aglaspidids, a problematic group of Lower Palaeozoic arthropods of undetermined affinities, is re‐examined in the context of the major Cambrian and Ordovician lamellipedian arthropod groups. A cladistic analysis of ten genera of aglaspidids sensu stricto, six aglaspidid‐like arthropods and 42 Palaeozoic arthropod taxa indicates that Xenopoda, Cheloniellida, Aglaspidida sensu lato and Trilobitomorpha form a clade (Artiopoda Hou and Bergström, 1997 ) nested within the mandibulate stem‐lineage, thus discarding previous interpretations of these taxa as part 'of the chelicerate stem‐group (Arachnomorpha Heider, 1913 ). The results confirm an aglaspidid identity for several recently described arthropods, including Quasimodaspis brentsae, Tremaglaspis unite, Chlupacaris dubia, Australaglaspis stonyensis and an unnamed Ordovician Chinese arthropod. The problematic Bohemian arthropod Kodymirus vagans was recovered as sister taxon to Beckwithia typa, and both form a small clade that falls outside Aglaspidida sensu stricto, thus discarding eurypterid affinities for the former. The analysis does not support the phylogenetic position of Kwanyinaspis maotianshanensis at the base of Conciliterga as proposed in recent studies, but rather occupies a basal position within Aglaspidida sensu lato. The results indicate a close association of aglaspidid arthropods with xenopods (i.e. Emeraldella and Sidneyia) and cheloniellids (e.g. Cheloniellon, Duslia); the new clade “Vicissicaudata” is proposed to encompass these arthropods, which are characterized by a differentiated posterior region. The phylogenetic position of aglaspidid arthropods makes them good outgroup candidates for analysing the internal relationships within the groups that form Trilobitomorpha. This work provides a much clearer picture of the phylogenetic relationships among Lower Palaeozoic lamellipedians.  相似文献   

20.
Cross-ecosystem movement of nutrients and biomass can have important effects on recipient systems. Emerging aquatic insects are subsidies to terrestrial ecosystems and can influence foodweb interactions in riparian systems. In a 2-year field experiment, we simulated aquatic insect deposition by adding adult midge carcasses (150?g dry mass m?2 year?1) to 1-m2 heathland plots at a site with low natural midge deposition. We established four levels of midge-addition treatments and measured stable isotopes (??13C and ??15N) in plants and arthropods within each treatment. We used a multiple-source isotope Bayesian mixing model to estimate the terrestrial versus aquatic contribution to the diets of arthropods. Aquatic resources were incorporated into plant, detritivore, and predator biomass. Detritivorous Collembola showed the greatest difference in isotope values (+3??? ??15N and +4??? ??13C) between midge-addition and reference treatments. Isotope values of small spiders followed the same trend of enrichment as Collembola while other arthropods (mites and large spiders) were only enriched after 2?years of midge addition. Although predator diets did not change, they became isotopically enriched via their likely prey (Collembola). Plants also had elevated ??15N (+1???) in midge-addition treatments. The time required and amount of midge-derived C and N detected varied and depended on trophic position. Midge-derived nutrients were no longer present in arthropod biomass in the year following midge addition. Aquatic insect carcasses can be rapidly incorporated into terrestrial food webs in nearshore habitats, and repeated inputs can be detected at multiple trophic levels, thus highlighting the importance of the detrital pathway for aquatic to terrestrial cross-ecosystem subsidies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号