首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
FISH技术是80年代开始发展起来的一种新的定位技术.在人类基因组研究中得到了广泛的应用.通过中期染色体的FISH可以进行SCP,Cosmid和YAC的染色体定位,嵌合克隆的鉴别;通过间期核的FISH可以在50kb的分辨率下进行基因作图;最新的研究进展已可以进行伸展的染色质丝(chromatin fibre)的FISH,直接测量基因的长度,从而达到高精度基因作图的目的.总之,随着FISH技术本身的发展,它将在人类基因组研究中发挥更大的作用.  相似文献   

2.
BAC-FISH在植物基因组研究中的应用   总被引:18,自引:0,他引:18  
细菌人工染色体与荧光原位杂交合成技术(BAC-FISH)是90年代开始发展起来的一种新的定位技术.由于该技术较常规荧光原位杂交(FISH)技术的信号检出率高得多,近年来在植物基因组研究中得到了越来越多的应用.运用该技术已将一些重要的功能基因定位到相应植物染色体上.  相似文献   

3.
以薄片牡蛎(Dendostrea folium)成体鳃组织为材料制备有丝分裂中期染色体标本,对其染色体核型进行了分析,并运用荧光原位杂交技术(FISH)将18S-28S核糖体RNA基因定位于中期染色体上。FISH探针是通过PCR扩增介于18S-28S rRNA基因之间的ITS和5.8S rRNA基因序列,并在PCR扩增过程中掺入了Biotin-11-dUTP进行生物素标记。结果显示,薄片牡蛎的单倍染色体数目为n=10,全部为中部着丝粒染色体。与大多数已知巨蛎属牡蛎的染色体核型相似。ITS探针在薄片牡蛎中期分裂体相上产生两簇FISH信号,分别杂交于2号染色体短臂的近端粒区域。本研究首次报道了薄片牡蛎的中期染色体核型以及18S-28S核糖体RNA基因在染色体上的定位。  相似文献   

4.
荧光原位杂交(FISH)是在染色体、间期核和DNA纤维上定位特定DNA序列的一种有效而精确的分子细胞遗传学方法。20年来,植物荧光原位杂交技术发展迅速:以增加检测的靶位数为目的,发展了双色FISH、多色FISH和多探针FISH鸡尾酒技术;为增加很小染色体目标的检测灵敏度,发展了BAC-FISH和酪胺信号放大FISH(TSA-FISH)等技术;以提高相邻杂交信号的空间分辨力为主要目的,发展了高分辨的粗线期染色体FISH、间期核FISH、DNA纤维FISH和超伸展的流式分拣植物染色体FISH技术。在植物基因组分析中,FISH技术发挥了不可替代的重要作用,它可用于:物理定位DNA序列,并为染色体的识别提供有效的标记;对相同DNA序列进行比较物理定位,探讨植物基因组的进化;构建植物基因组的物理图谱;揭示特定染色体区域的DNA分子组织;分析间期核中染色质的组织和细胞周期中染色体的动态变化;鉴定植物转基因。  相似文献   

5.
荧光原位杂交技术及其应用   总被引:6,自引:1,他引:5  
荧光原位杂交技术(FISH)始于70年代后期,曾多用于染色体异常的研究,近年来随着FISH所应用的探针种类的不断增多,特别是全Cosmid探针及染色体原位抑制杂交技术的出现,使FISH技术不仅在细胞遗传学方面,而且还广泛应用于肿瘤学研究,如基因诊断、基因定位等。本文对FISH探针标记、信号处理等有关技术特点以及在细胞遗传学研究、基因图谱绘制、基因扩增检测等方面的应用做了具体的 综述。  相似文献   

6.
侧翼序列获取技术研究进展   总被引:1,自引:0,他引:1  
侧翼序列是指染色体中特定位点两侧的DNA序列,包含着候选基因、转录调控、染色体结构、生物安全等信息,在基因组学研究中具有重要的作用。侧翼序列获取技术主要应用于启动子和增强子等调控序列的克隆、鉴定T-DNA或转座子插入位点、染色体步移、全基因组空隙填补等,是结构基因组研究以及功能基因组研究的重要手段,在转基因动植物鉴定及安全管理等方面具有重要应用。随着分子生物学的发展,目前已经建立了许多侧翼序列的获取方法,依据技术原理可以分为质粒拯救法、反向PCR法、外源接头介导PCR法、半随机引物PCR法和基因组重测序法等5大类。本文系统总结了近年来侧翼序列获取技术的研究进展,并对这些技术的原理以及应用情况进行了较为系统的综述,为侧翼序列信息的获取提供参考。  相似文献   

7.
夏薇  刘德培等 《遗传》2001,23(5):397-400
为将荧光原位杂交技术应用于基因定位研究中,探讨一种能有效地检测转基因动物染色体上外源基因整合状态的实验方法,对小鼠腹腔注射秋水仙素后,取转基因小鼠骨髓制备中期染色体,将传统的FISH方法加以改进,检测外源基因在转基因小鼠染色体上的整合状态。检测结果表明,外源人β^E珠蛋白基因已稳定地整合于小鼠染色体上,FISH能直观地反映外源基因在转基因动物染色体上的整合状态,该方法可对转基因动物及基因转移研究中的外源基因整合反进行染色体定位检测。  相似文献   

8.
本文概述了小麦远缘杂交技术的发展以及这些技术的应用对以染色体易位方式转移有益基因到普通小麦中的影响。通过对小麦远缘杂交技术的总结得出,普通小麦由于本身的多倍性,对导入的外源基因具有较强的调节能力,是适宜外源有益基因导入的良好受体。而以染色体易位方式转移有益基因是创造小麦新种质的有效方法之一,许多研究也表明以染色体易位导入的外源有益基因更利于表达。近几年,随着细胞遗传学以及其它生物技术的发展,对小麦族进化途径和染色体间的亲缘关系进一步明确,从而更便于进行易位导入的技术选择,也使得染色体易位鉴定方法更趋完善。现在已有更良好的外源导入的工具和方法,使多基因控制的外源优良性状导入成为可能。在小麦远缘杂交中染色体易位所具有的上述优势,在育种实践中逐步显示出来,为开拓小麦种质资源开创了一条新的途径。  相似文献   

9.
本概述了小麦远缘杂交技术的发展以及这些技术的应用对以染色体易位方式转移有益基因到普通小麦中的影响。通过对小麦远缘杂交技术的总结得出,普通小麦由于本身的多倍性,对导入的外源基因具有较强的调节能力,是适宜外源有益基因导入的良好受体。而以染色体易位方式转移有益基因是创造小麦新种质的有效方法之一,许多研究也表明以染色体易位导入的外源有益基因利于表达。近几年,随着细胞遗传学以及其它生物技术的发展,对小麦族进化途径和染色体间的亲缘关系进一步明确,从而更便于进行易位导入的技术选择,也使得染色体易位鉴定方法更趋完善。现在已有更良好的外源导入的工具和方法,使多基因控制的外源优良性状导入成为可能。在小麦远缘杂交中染色体易位所具有的上述优势,在育种实践中逐步显示出来,为开拓小麦种质资源开创了一条新的途径。  相似文献   

10.
目的:为了研究无精症患标记染色体的来源,对无精症患进行明确的遗传学诊断。方法:应用双色FISH技术和PCR技术对2例无精症患进行分子细胞遗传学和分子遗传学检测。结果:确定了两例特发性无精症患的标记染色体均来源于Y染色体,其核型为46,X,ishdel(Y)(q11)(DYZ3 ,DXZ1-)。结论:FISH技术结合PCR技术,是鉴定标记染色体来源的又一非常重要方法,对于无精症患在进行胞质内单精子注射(ICSI)或其它治疗之前,完成遗传咨询和明确的遗传学诊断也是特别必须的。  相似文献   

11.
The marine ecosystems of Todos os Santos Bay (TSB, The State of Bahia, Brazil) have been impacted by the presence on its coast of a large metropolitan area as well as of chemical and petrochemical activities. Despite its ecological importance, there is a lack of scientific information concerning metal contamination in TSB marine biota. Thus, we analyzed concentrations of metals in four species of marine benthic organisms (two seaweeds, Padina gymnospora and Sargassum sp. one seagrass, Halodule wrightii and one oyster, Crassostrea rhizophorae) in three sites from the TSB region that have been most affected by industrial activities. The concentrations of Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn were determined by Atomic Absorption Spectrophometry. The obtained data indicates that cadmium and copper in seaweeds, oysters and seagrass, as well as Ni concentrations in oysters, were in range of contaminated coastal areas. Cadmium and copper are available to organisms through suspended particles, dissolved fraction of water column and bottom sediment interstitial water. As oysters and other mollusks are used as food sources by the local population, the metal levels found in oysters in TSB may constitute a health risk for this population. Our results suggest implanting a heavy metals biomonitoring program in the TSB marine ecosystems.  相似文献   

12.
Chromosome identification is an essential step in genomic research, which so far has not been possible in oysters. We tested bacteriophage P1 clones for chromosomal identification in the eastern oyster Crassostrea virginica, using fluorescence in situ hybridization (FISH). P1 clones were labeled with digoxigenin-11-dUTP using nick translation. Hybridization was detected with fluorescein-isothiocyanate-labeled anti-digoxigenin antibodies and amplified with 2 layers of antibodies. Nine of the 21 P1 clones tested produced clear and consistent FISH signals when Cot-1 DNA was used as a blocking agent against repetitive sequences. Karyotypic analysis and cohybridization positively assigned the 9 P1 clones to 7 chromosomes. The remaining 3 chromosomes can be separated by size and arm ratio. Five of the 9 P1 clones were sequenced at both ends, providing sequence-tagged sites that can be used to integrate linkage and cytogenetic maps. One sequence is part of the bone morphogenetic protein type 1b receptor, a member of the transforming growth factor superfamily, and mapped to the telomeric region of the long arm of chromosome 2. This study shows that large-insert clones such as P1 are useful as chromosome-specific FISH probes and for gene mapping in oysters.  相似文献   

13.
Chromosome identification is essential in oyster genomic research. Fluorescence in situ hybridization (FISH) offers new opportunities for the identification of oyster chromosomes. It has been used to locate satellite DNAs, telomeres or ribosomal DNA sequences. However, regarding chromosome identification, no study has been conducted with simple sequence repeats (SSRs). FISH was used to probe the physical organization of three particular SSRs, (GGAT)(4), (GT)(7) and (TA)(10) onto metaphase chromosomes of the Pacific oyster, Crassostrea gigas. Hybridization signals were observed in all the SSR probes, but the distribution and intensity of signals varied according to the oligonucleotide repeat. The intercalary, centromeric and telomeric bands were observed along the chromosomes, and for each particular repeat every chromosome pair presented a similar pattern, allowing karyotypic analysis with all the SSRs tested. Our study is the first in mollusks to show the application of SSR in situ hybridization for chromosome identification and karyotyping. This technique can be a useful tool for oyster comparative studies and to understand genome organization in different oyster taxa.  相似文献   

14.
Attempts to introduce infectious or foreign material into oysters and other bivalve mollusks usually involve force or trauma because of immediate, prolonged adduction of the tightly closing valves. The soft-shell clam, Mya arenaria, is unable to seal its valves completely and relaxes readily, exposing soft tissue and a large siphon. This species is free from fouling organisms and is readily available at all seasons in the New England and mid-Atlantic areas. Suspensions of five strains of Vibrio sp. that cause bacillary necrosis in larval and juvenile bivalve mollusks were injected into the heart, siphon tissue, and the incurrent and excurrent siphon lumina of soft-shell clams. All vibrio strains caused significant mortality, usually within 2 days. Heaviest losses resulted from heart and excurrent siphon injections. No mortality occurred in control clams injected with seawater, broth, Serratia sp., and Escherichia coli. The soft-shell clam appears to be a useful animal for testing the pathogenicity of marine microorganisms for bivalve mollusks.  相似文献   

15.
16.
The field of genetic diagnostics incorporates a variety of methods that complement each other. Therefore, the development of new methods calls for a review of the advantages and limitations of established and new technologies. Fluorescence in situ hybridization (FISH) is routinely applied in genetics. Custom-designed and commercially available probes allow for nearly unlimited and targeted visualization of genomic DNA using either metaphase spreads, interphase nuclei, tissue sections, or living cells. FISH applications are particularly important for the detection of structural rearrangements such as microdeletions, translocations, inversions, and insertions, as well as for identification of marker chromosomes, characterization of chromosome breakpoints, and prenatal aneuploidy testing. Furthermore, the analysis of genetic heterogeneity, including mosaicism, is accomplished by evaluating single cells. FISH may also be combined with fluorescent antibodies against cell surface markers and correlated to specific morphologic features of cells and tissues.  相似文献   

17.
In the marine environment, bivalve mollusks constitute habitats for bacteria of the Vibrionaceae family. Vibrios belong to the microbiota of healthy oysters and mussels, which have the ability to concentrate bacteria in their tissues and body fluids, including the hemolymph. Remarkably, these important aquaculture species respond differently to infectious diseases. While oysters are the subject of recurrent mass mortalities at different life stages, mussels appear rather resistant to infections. Thus, Vibrio species are associated with the main diseases affecting the worldwide oyster production. Here, we review the current knowledge on Vibrio–bivalve interaction in oysters (Crassostrea sp.) and mussels (Mytilus sp.). We discuss the transient versus stable associations of vibrios with their bivalve hosts as well as technical issues limiting the monitoring of these bacteria in bivalve health and disease. Based on the current knowledge of oyster/mussel immunity and their interactions with Vibrio species pathogenic for oyster, we discuss how differences in immune effectors could contribute to the higher resistance of mussels to infections. Finally, we review the multiple strategies evolved by pathogenic vibrios to circumvent the potent immune defences of bivalves and how key virulence mechanisms could have been positively or negatively selected in the marine environment through interactions with predators.  相似文献   

18.
19.
Abstract

The use of antifouling paints in shipbuilding has led to a significant concentration of organotin compounds in the marine environment. Antifouling paints have become the main source of tributyltin and triphenyltin derivatives loaded into the sea. The toxicity of organotin compounds has been of great concern. High concentrations of organotin compounds are associated with growth abnormalities in mussels and oysters and have also resulted to the decline in their abundance. High concentration of organotin compounds have also been found in the tissues of marine mammals and its presence has been linked to mass mortalities of marine mammals. It causes imposex and calcification anomalities in mollusks. Seafood is thought to be a possible source of organotin compounds in human. Therefore, to evaluate the environmental distribution and fate of these compounds and to determine the effectives of legal provisions adopted by a number of countries, a variety of analytical methods have been developed for the speciation of organotin compounds in the environment. A detailed review of the toxicity and chemical speciation of organotin compounds is given.  相似文献   

20.
The mechanisms of aging are not well understood in animals with continuous growth such as fish, reptiles, amphibians and numerous invertebrates, including mollusks. We studied the effects of age on oxidative stress, cellular defense mechanisms (including two major antioxidant enzymes, superoxide dismutase (SOD) and catalase), and molecular chaperones in two mollusks--eastern oysters Crassostrea virginica and hard clams Mercenaria mercenaria. In order to detect the age-related changes in these parameters, correction for the effects of size was performed where appropriate to account for growth-related dilution. Fluorescent age pigments accumulated with age in both species. Protein carbonyls did not change with age or size indicating that they are not a good marker of aging in mollusks possibly due to the fast turnover and degradation of oxidized proteins in growing tissues. SOD did not show a compensatory increase with aging in either species, while catalase significantly decreased with age. Mitochondrial heat shock protein (HSP60) decreased with age in mollusks suggesting an age-related decline in mitochondrial chaperone protection. In contrast, changes in cytosolic chaperones were species-specific. HSP70 increased and HSP90 declined with age in clams, whereas in oysters HSP70 expression did not change, and HSP90 increased with aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号