首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antimicrobial activity of samples of Northern Argentine propolis (Tucumán, Santiago del Estero and Chaco) against phytopathogenic bacteria was assessed and the most active samples were identified. Minimal inhibitory concentration (MIC) values were determined by agar macrodilution and broth microdilution assays. Strong antibacterial activity was detected against Erwinia carotovora spp carotovora CECT 225, Pseudomonas syringae pvar tomato CECT 126, Pseudomonas corrugata CECT 124 and Xanthomonas campestris pvar vesicatoria CECT 792. The most active propolis extract (Tucumán, T1) was selected to bioguide isolation and identified for antimicrobial compound (2',4'-dihydroxychalcone). The antibacterial chalcone was more active than the propolis ethanolic extract (MIC values of 0.5-1 μg ml(-1) and 9.5-15 μg ml(-1), respectively). Phytotoxicity assays were realized and the propolis extracts did not retard germination of lettuce seeds or the growth of onion roots. Propolis solutions applied as sprays on tomato fruits infected with P. syringae reduced the severity of disease. Application of the Argentine propolis extracts diluted with water may be promising for the management of post harvest diseases of fruits.  相似文献   

2.
The antimicrobial activity of the diethyl ether, acetone, chloroform, petroleum ether, and ethanol extracts of the lichen Xanthoparmelia pokornyi and its gyrophoric acid and stenosporic acid constituents has been screened against some foodborne bacteria and fungi. Both the extracts and the acids showed antimicrobial activity against Aeromonas hydrophila, Bacillus cereus, Bacillus subtilis, Listeria monocytogenes, Proteus vulgaris, Staphylococcus aureus, Streptococcus faecalis, Yersinia enterocolitica, Candida albicans and Candida glabrata. The extracts were inactive against the tested filamentous fungi. The MIC values of the extracts and the acids for the bacteria have also been determined.  相似文献   

3.
Kim YH  Chung HJ 《New biotechnology》2011,28(6):713-718
This study was performed to evaluate the effects of Korean propolis against foodborne pathogens and spores of Bacillus cereus and to investigate the antimicrobial activity against B. cereus structure by transmission electron microscopy (TEM). The antimicrobial effects of the Korean propolis were tested against foodborne pathogens including Gram-positive (B. cereus, Listeria monocytogenes and Staphylococcus aureus) and Gram-negative (Salmonella typhimurium, Escherichia coli and Pseudomonas fluorescence) bacteria by agar diffusion assay. Gram-positive bacteria were more sensitive than were Gram-negative bacteria. The vegetative cells of B. cereus were the most sensitive among the pathogens tested with minimum inhibitory concentration (MIC) of 0.036 mg/μl of propolis on agar medium. Based on MIC, sensitivity of vegetative cells of B. cereus and its spores was tested in a nutrient broth with different concentrations of propolis at 37°C. In liquid broth, treatment with 1.8 mg/ml propolis showed bactericidal effect against B. cereus. B. cereus vegetative cells exposed to 7.2mg/ml of propolis lost their viability within 20 min. Against spores of B. cereus, propolis inhibited germination of spores up to 30 hours, compared to control at higher concentration than vegetative cells yet acted sporostatically. The bactericidal and sporostatic action of propolis were dependent on the concentration of propolis used and treatment time. Electron microscopic investigation of propolis-treated B. cereus revealed substantial structural damage at the cellular level and irreversible cell membrane rupture at a number of locations with the apparent leakage of intracellular contents. The antimicrobial effect of propolis in this study suggests potential use of propolis in foods.  相似文献   

4.
The antimicrobial effects of aqueous garlic extracts are well established but those of garlic oil (GO) are little known. Methodologies for estimating the antimicrobial activity of GO were assessed and GO, GO sulfide constituents, and garlic powder (GP) were compared in tests against human enteric bacteria. Test methodologies were identified as capable of producing underestimates of GO activity. Antimicrobial activity was greater in media lacking tryptone or cysteine, suggesting that, as for allicin, GO effects may involve sulfhydryl reactivity. All bacteria tested, which included both gram-negative and -positive bacteria and pathogenic forms, were susceptible to garlic materials. On a weight-of-product basis, 24 h MICs for GO (0.02 to 5.5 mg/ml, 62 enteric isolates) and dimethyl trisulfide (0.02 to 0.31 mg/ml, 6 enteric isolates) were lower than those for a mixture of diallyl sulfides (0.63 to 25 mg/ml, 6 enteric isolates) and for GP, which also exhibited a smaller MIC range (6.25 to 12.5 mg/ml, 29 enteric isolates). Viability time studies of GO and GP against Enterobacter aerogenes showed time- and dose-dependent effects. Based upon its thiosulfinate content, GP was more active than GO against most bacteria, although some properties of GO are identified as offering greater therapeutic potential. Further exploration of the potential of GP and GO in enteric disease control appears warranted.  相似文献   

5.
Garlic, onion and leek have beneficial effects in treatment of numerous health disorders. The aim of the present study was to investigate underlying molecular mechanisms. To test the potency of the aqueous garlic, onion and leek extracts to release NO from GSNO we have measured NO oxidation product, NO(2)-, by the Griess reagent method. Further, we studied the ability of garlic extract to relax noradrenaline-precontracted rat aortic rings in the presence of GSNO and effects of garlic extract on electrical properties of rat heart intracellular chloride channels. We have observed that: i) garlic, onion and leek extracts released NO from GSNO in the order: garlic > onion > leek; ii) the ability of garlic extract to release NO was pH-dependent (8.0 > 7.4 > 6.0) and potentiated by thiols (Cys > GSH = N-acetyl-cysteine > oxidized glutathione) at concentration 100 μmol/l; iii) the garlic extract (0.045 mg/ml) prolonged relaxation time of aortic rings induced by GSNO (50 nmol/l) and inhibited intracellular chloride channels. We suggest that NO-releasing properties of the garlic, onion and leek extracts and their interaction with Cys and GSH are involved in NO-signalling pathway which contributes to some of its numerous beneficial biological effects.  相似文献   

6.
From the dichloromethane extract of the leaves and stems of Gunnera perpensa two new, simple 1,4-benzoquinones and a known benzopyran-6-ol were isolated. From the methanol extract phytol was obtained. The two benzoquinones, 2-methyl-6-(-3-methyl-2-butenyl)benzo-1,4-quinone (1) and 3-hydroxy-2-methyl-5-(3-methyl-2-butenyl)benzo-1,4-quinone (2) and the benzopyran, 6-hydroxy-8-methyl-2,2-dimethyl-2H-benzopyran (3) were examined for antimicrobial properties together with the crude stem, leaf and root extracts. Minimum inhibitory concentration (MIC) assays were used to quantify antimicrobial activity and the MIC values for the crude extracts of stems, roots and leaves ranged between 100 microg and >16 mg/ml against the eight microorganisms investigated. Compound 1 showed significant antimicrobial activity with the most sensitive organism being Staphylococcus epidermidis with an MIC of 9.8 microg/ml. For compound 2, no activity was noted. Compound 3 exhibited good activity against the yeasts Cryptococcus neoformans (75 microg/ml) and Candida albicans (37.5 microg/ml).  相似文献   

7.
The antimicrobial effects of aqueous garlic extracts are well established but those of garlic oil (GO) are little known. Methodologies for estimating the antimicrobial activity of GO were assessed and GO, GO sulfide constituents, and garlic powder (GP) were compared in tests against human enteric bacteria. Test methodologies were identified as capable of producing underestimates of GO activity. Antimicrobial activity was greater in media lacking tryptone or cysteine, suggesting that, as for allicin, GO effects may involve sulfhydryl reactivity. All bacteria tested, which included both gram-negative and -positive bacteria and pathogenic forms, were susceptible to garlic materials. On a weight-of-product basis, 24 h MICs for GO (0.02 to 5.5 mg/ml, 62 enteric isolates) and dimethyl trisulfide (0.02 to 0.31 mg/ml, 6 enteric isolates) were lower than those for a mixture of diallyl sulfides (0.63 to 25 mg/ml, 6 enteric isolates) and for GP, which also exhibited a smaller MIC range (6.25 to 12.5 mg/ml, 29 enteric isolates). Viability time studies of GO and GP against Enterobacter aerogenes showed time- and dose-dependent effects. Based upon its thiosulfinate content, GP was more active than GO against most bacteria, although some properties of GO are identified as offering greater therapeutic potential. Further exploration of the potential of GP and GO in enteric disease control appears warranted.  相似文献   

8.
AIMS: The traditional uses of the aerial parts of fresh Plectranthus cylindraceus by the Dhofaris in Oman were investigated on the basis of antimicrobial properties and composition of its herb oil. METHODS AND RESULTS: The minimal inhibitory concentration (MIC) values of the herb oil of P. cylindraceus against human pathogenic bacteria and yeast were assessed using the broth microdilution method, and the percentage growth inhibition of fungi was determined according to the poisoned food technique. The oil exhibited good activity against Klebsiella pneumoniae, Staphylococcus aureus, Bacillus subtilis and Candida albicans with MIC values in the range of 7.8-62.5 microg ml(-1) and also inhibited the growth of Microsporum canis, Microsporum gypseum, Trichophyton rubrum, Alternaria alternata, Bipolaris sp., Curvularia lunata, Fusarium oxysporum and Stemphylium solani for about a week at 250 microg ml(-1). The two most abundant components of the oil were identified as carvacrol (46.8%) and alpha-terpinolene (18.2%) based on gas chromatography-mass spectra (GC-MS) and 13C nuclear magnetic resonance (NMR) analyses. CONCLUSIONS: The oil has a pleasant odour and showed broad spectrum antimicrobial activity. Such bioactivity could be attributed in part to carvacrol. SIGNIFICANCE AND IMPACT OF THE STUDY: This study has demonstrated the broad spectrum antimicrobial activity of the herb oil of P. cylindraceus as well as the organic composition of this plant extract. This study provides scientific insight into the ancient practice of utilizing P. cylindraceus as a fragrant disinfectant.  相似文献   

9.
An organosulfur compound was isolated from oil-macerated garlic extract by silica gel column chromatography and preparative TLC. From the results of NMR, IR, and MS analyses, its structure was determined as E-4,5,9-trithiadeca-1,7-diene-9-oxide (iso-E-10-devinylajoene, iso-E-10-DA). This compound was different from E-4,5,9-trithiadeca-1,6-diene-9-oxide (E-10-devinylajoene, E-10-DA) only in the position of a double bond. Iso-E-10-DA had antimicrobial activity against Gram-positive bacteria, such as Bacillus cereus, B. subtilis, and Staphylococcus aureus, and yeasts at the concentration lower than 100 micrograms/ml, but Gram-negative bacteria were not inhibited at the same concentration. The antimicrobial activity of iso-E-10-DA was inferior to those of similar oil-macerated garlic extract compounds such as E-ajoene, Z-ajoene, and Z-10-DA. From these results, it was suggested that trans structure and/or the position of double bond of iso-E-10-DA reduce the antimicrobial activity.  相似文献   

10.
The evaluation of the activity of the aqueous and ethyl acetate extracts of the leaves of Piper regnellii was tested against gram-positive and gram-negative bacteria. The aqueous extract displayed a weak activity against Staphylococcus aureus and Bacillus subtilis with minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of 1000 micrograms/ml. The ethyl acetate extract presented a good activity against S. aureus and B. subtilis with MIC and MBC at 15.62 micrograms/ml. In contrast to the relative low MICs for gram-positive bacteria, gram-negative bacteria were not inhibited by the extracts at concentrations < or = 1000 mg/ml. The ethyl acetate extract was fractionated on silica gel into nine fractions. The hexane and chloroform fractions were active against S. aureus (MIC at 3.9 micrograms/ml) and B. subtilis (MIC at 3.9 and 7.8 micrograms/ml, respectively). Using bioactivity-directed fractionation, the hexane fraction was rechromatographed to yield the antimicrobial compounds 1, 2, 5, and 6 identified as eupomatenoid-6, eupomatenoid-5, eupomatenoid-3, and conocarpan, respectively. The pure compounds 1 and 2 showed a good activity against S. aureus with MIC of 1.56 micrograms/ml and 3.12 micrograms/ml, respectively. Both compounds presented MIC of 3.12 micrograms/ml against B. subtilis. The pure compound 6 named as conocarpan was quite active against S. aureus and B. subtilis with MIC of 6.25 micrograms/ml. The antibacterial properties of P. regnellii justify its use in traditional medicine for the treatment of wounds, contaminated through bacteria infections.  相似文献   

11.
The effects of aqueous extracts of raw and boiled garlic and onions were studied in vitro on the collagen-induced platelet aggregation using rabbit and human platelet-rich plasma. A dose dependant inhibition of rabbit platelet aggregation was observed with garlic. Onion also showed dose-dependent inhibitory effects on the collagen-induced platelet aggregation but this inhibition was of a lesser magnitude compared to garlic when related to dose. The concentration required for 50% inhibition of the platelet aggregation for garlic was calculated to be approximately 6.6 mg ml(-1) plasma, whereas the concentration for onion was 90 mg ml(-1) plasma. Boiled garlic and onion extracts showed a reduced inhibitory effect on platelet aggregation. Garlic but not onion significantly inhibits human platelet aggregation in a dose-dependent fashion. The potency of garlic in inhibiting the collagen-induced platelet aggregation is approximately similar to that of rabbit platelets (8.8 mg ml(-1) produced 50% inhibition of platelet aggregation). The results of this study show that garlic is about 13 times more potent than onion in inhibiting platelet aggregation and suggest that garlic and onion could be more potent inhibitors of blood platelet aggregation if consumed in raw than in cooked or boiled form.  相似文献   

12.
Tropical forests are species-rich reserves for the discovery and development of antimicrobial drugs. The aim of this work is to investigate the in vitro antimicrobial potential of Amazon plants found within the National Institute on Amazon Research's Adolpho Ducke forest reserve, located in Manaus, state of Amazonas, Brazil. 75 methanol, chloroform and water extracts representing 12 plant species were tested for antimicrobial activity towards strains of Mycobacterium smegmatis, Escherichia coli, Streptococcus sanguis, Streptococcus oralis, Staphylococcus aureus and Candida albicans using the gel-diffusion method. Active extracts were further evaluated to establish minimum inhibitory concentrations (MIC) and antimicrobial profiles using bioautography on normal-phase thin-layer chromatography plates. Diclinanona calycina presented extracts with good antimicrobial activity and S. oralis and M. smegmatis were the most sensitive bacteria. D. calycina and Lacmellea gracilis presented extracts with the lowest MIC (48.8 microg/ml). D. calycina methanol and chloroform leaf extracts presented the best overall antimicrobial activity. All test organisms were sensitive to D. calycina branch chloroform extract in the bioautography assay. This is the first evaluation of the biological activity of these plant species and significant in vitro antimicrobial activity was detected in extracts and components from two species, D. calycina and L. gracilis.  相似文献   

13.
Rosmarinus officinalis extracts were investigated by a combination of bioassays and biochemical analysis to identify bioactive compounds. The 2,2-diphenyl-2-picrylhydracyl hydrate (DPPH) radical scavenging method, Folin–Ciocaulteau method and HPLC chromatography were used to study the distribution and levels of antioxidants (AOXs). Antimicrobial activity analysis was carried out using the disk diffusion and broth dilution techniques. A good correlation between the AOX activities and total phenol content in the extracts was found. Although all rosemary extracts showed a high radical scavenging activity, a different efficacy as antimicrobial agent was observed. Methanol extract containing 30% of carnosic acid, 16% of carnosol and 5% of rosmarinic acid was the most effective antimicrobial against Gram positive bacteria (minimal inhibition concentration, MIC, between 2 and 15 μg/ml), Gram negative bacteria (MIC between 2 and 60 μg/ml) and yeast (MIC of 4 μg/ml). By contrast, water extract containing only 15% of rosmarinic acid showed a narrow activity. MIC value of the methanol and water extracts is in a good correlation with the values obtained with pure carnosic acid and rosmarinic acid, respectively. Therefore, our results suggested that the antimicrobial rosemary extracts efficacy was associated with their specific phenolic composition. Carnosic acid and rosmarinic acid may be the main bioactive antimicrobial compounds present in rosemary extracts. From a practical point of view, rosemary extract may be a good candidate for functional foods as well as for pharmaceutical plant-based products.  相似文献   

14.
Rosmarinus officinalis extracts were investigated by a combination of bioassays and biochemical analysis to identify bioactive compounds. The 2,2-diphenyl-2-picrylhydracyl hydrate (DPPH) radical scavenging method, Folin-Ciocaulteau method and HPLC chromatography were used to study the distribution and levels of antioxidants (AOXs). Antimicrobial activity analysis was carried out using the disk diffusion and broth dilution techniques. A good correlation between the AOX activities and total phenol content in the extracts was found. Although all rosemary extracts showed a high radical scavenging activity, a different efficacy as antimicrobial agent was observed. Methanol extract containing 30% of carnosic acid, 16% of carnosol and 5% of rosmarinic acid was the most effective antimicrobial against Gram positive bacteria (minimal inhibition concentration, MIC, between 2 and 15 μg/ml), Gram negative bacteria (MIC between 2 and 60 μg/ml) and yeast (MIC of 4 μg/ml). By contrast, water extract containing only 15% of rosmarinic acid showed a narrow activity. MIC value of the methanol and water extracts is in a good correlation with the values obtained with pure carnosic acid and rosmarinic acid, respectively. Therefore, our results suggested that the antimicrobial rosemary extracts efficacy was associated with their specific phenolic composition. Carnosic acid and rosmarinic acid may be the main bioactive antimicrobial compounds present in rosemary extracts. From a practical point of view, rosemary extract may be a good candidate for functional foods as well as for pharmaceutical plant-based products.  相似文献   

15.
The antimicrobial activity of 19 propolis extracts prepared in different solvents (ethanol and propylene glycol) (EEP/PEP), was evaluated against some bacterial and fungal isolates using the agar-well diffusion method. It was verified that all the samples tested showed antimicrobial activity, although results varied considerably between samples. Results revealed that both types of propolis extracts showed highly sensitive antimicrobial action against Gram-positive bacteria and fungi at a concentration of 20% (Staphylococcus aureus, Streptococcus mutans, Candida albicans and Saccharomyces cerevisae) with a minimal inhibitory concentration (MIC) ranging from 0.5 to 1.5 mg/ml, with a moderate effect against Streptococcus pyogenes (MIC from 17 to 26 mg/ml). To our knowledge, this is the first study showing elevated antimicrobial activity against Gram-negative bacteria [Salmonella enterica (MIC from 0.6 to 1.4 mg/ml)] and lesser activity against Helicobacter pylori (MIC from 6 to 14 mg/ml), while Escherichia coli was resistant. This concluded that the Basque propolis had a strong and dose-dependent activity against most of the microbial strains tested, while database comparison revealed that phenolic substances were responsible for this inhibition, regardless of their geographical origin and the solvent employed for extraction. Statistical analysis showed no significant differences (P ≤ 0.05) between EEP and PEP extracts.  相似文献   

16.
The widespread occurrence of extended spectrum β-lactamases (ESβLs) producing enteric bacteria and their co-resistance with flouroquinolones has impaired the current antimicrobial therapy. This has prompted the search for new alternatives through synergistic approaches with herbal extracts. In this study Carum copticum (seeds) was extracted first in methanol and then subsequently extracted in different organic solvents. MIC of plant extracts, ciprofloxacin and thymol was determined by broth micro-dilution method using TTC. Synergism between plant extracts and ciprofloxacin was assayed by the checkerboard method. Chemical constituents of active extracts were analyzed by GC-MS. Methanolic, hexane and ether extract of Carum copticum exhibited significant antibacterial activity with MIC values ranged from 0.25 mg/ml to 2.0 mg/ml. Synergy analysis between Carum copticum extracts and ciprofloxacin combinations revealed FIC index in the range of 0.093–0.25. About 81% ciprofloxacin resistant ESβL producing enteric bacteria were re-sensitized in the presence of 15.6–250 μg/ml of methanolic extract of Carum copticum. Moreover, ciprofloxacin showed 8 to 64 folds reduction in MIC in presence of 250 and 500 μg/ml of hexane extract. Whereas, 4–32 folds reduction in MIC of ciprofloxacin was achieved in the presence of 31.25 and 62.5 μg/ml of ether extract, indicating synergistic enhancement of drug activity. The chemical analysis of hexane and ether extracts by GC-MS revealed the common occurrence of one or more phenolic hydroxyl at different locations on benzene ring. This study demonstrated the potential use of herbal extract of Carum copticum in combination therapy against ESβL producing bacteria.  相似文献   

17.
We have shown previously that fresh garlic extract is effective in reducing thromboxane formation by platelets both in vivo and in vitro animal models of thrombosis. In the present study, the effect of different concentrations of a single dose of aqueous extracts of garlic and onion were evaluated on serum thromboxane-B(2)synthesis in rabbits. Different concentrations of garlic and onion were administered as single doses in the ear vein of rabbits. Rabbits were bled before and at different intervals after the infusion of garlic or onion extracts. Venous blood was collected and allowed to clot at 37 degrees C for 1 h. Thromboxane-B(2)level was measured in the serum by radioimmunoassay. It was observed that garlic inhibits the thrombin-induced platelet synthesis of TXB(2)in a dose-and time-dependent manner. Maximum inhibition of TXB(2)occurred between 0.5 h and 6 h at 25 and 100 mg kg(-1)garlic. At 24 h post-garlic infusion TXB(2)inhibition was reduced to 15% of the control and TXB(2)levels were comparable to that of the control values at 72 h pots-garlic infusion. Infusion of 100 mg kg(-1)onion extract did not elicit any inhibitory effect on TXB(2)synthesis in the serum of rabbit during the treatment period. The rapid recovery of platelet cyclooxygenase activity after infusion of a single dose of garlic suggests that garlic should be taken more frequently in order to achieve beneficial effects in the prevention of thrombosis.  相似文献   

18.
The antimicrobial properties of acetone, methanol, and aqueous extracts of the lichens Lasallia pustulata, Parmelia sulcata, Umbilicaria crustulosa, and Umbilicaria cylindrica were studied comparatively in vitro. Antimicrobial activities of the extracts of different lichens were estimated by the disk diffusion test for Gram-positive bacteria, Gram-negative bacteria, and fungal organisms, as well as by determining the MIC (minimal inhibitory concentration). The obtained results showed that the acetone and methanol extracts of Lasallia pustulata, Parmelia sulcata, and Umbilicaria crustulosa manifest antibacterial activity against the majority of species of bacteria tested, in addition to selective antifungal activity. The MIC of lichen extracts was lowest (0.78 mg/ml) for the acetone extract of Lasallia pustulata against Bacillus mycoides. Aqueous extracts of all of the tested lichens were inactive. Extracts of the lichen Umbilicaria cylindrica manifested the weakest activity, inhibiting only three of the tested organisms.  相似文献   

19.
The antimicrobial activity of the acetone, chloroform, diethyl ether, methanol, and petroleum ether extracts of the lichen Parmelia sulcata and its salazinic acid constituent have been screened against twenty eight food-borne bacteria and fungi. All of the extracts with the exception of the petroleum ether extract showed antimicrobial activity against Aeromonas hydrophila, Bacillus cereus, Bacillus subtilis, Listeria monocytogenes, Proteus vulgaris, Yersinia enterocolitica, Staphylococcus aureus, Streptococcus faecalis, Candida albicans, Candida glabrata, Aspergillus niger, Aspergillus fumigatus, and Penicillium notatum. Salazinic acid did not show antimicrobial activity against L. monocytogenes, P. vulgaris, Y. enterocolitica, and S. faecalis but showed activity against Pseudomonas aeruginosa and Salmonella typhimurium as well. The MIC values of the extracts and the acid for the bacteria and fungi have also been determined.  相似文献   

20.
Algae are bioactive natural resources, and due to the medical importance of superficial mycoses, we focused the action of macroalgae extracts against dermatophytes and Candida species. Seaweed obtained from the Riacho Doce beach, Alagoas (Brazil), were screened for the antifungal activity, through crude extracts using dichloromethane, chloroform, methanol, ethanol, water and chloroform and hexane fractions of green, brown and red algae in assays with standard strains of the dermatophytes Trichophyton rubrum, T. tonsurans, T. mentagrophytes, Microsporum canis, M. gypseum and yeasts Candida albicans, C. krusei, C. guilliermondi and C. parapsilosis. The M44-A and M27-A2/M38A manuals by CLSI were followed, and the minimum inhibitory concentration (MIC) ranged from 0.03 to 16.00 μg ml(-1), and an inhibition halo of 10.00-25.00 mm was observed for dermatophytes, while for yeast, it was from 8.00 to 16.00 μg ml(-1) and 10.00-15.00 mm. M. canis showed MIC of 0.03 μg ml(-1) and the largest inhibition halo in T. rubrum (25.00 mm) through the use of the methanol extract. For C. albicans, dichloromethane, methanol and ethanol extracts formed the largest inhibition halo. The ethanol extract was shown to be the best inhibiting fungi growth, and chloroform and hexane fractions of H. musciformis inhibited the growth of all dermatophytes and C. albicans, yielding the conclusion that apolar extracts obtained from algae presented the best activity against important pathogenic fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号