首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the work, a label-free electrochemiluminescence (ECL) aptasensor for the sensitive and selective detection of thrombin was constructed based on target-induced direct ECL signal change by virtue of a novel assembly strategy of oligonucleotide and luminol functionalized gold nanoparticles (luminol-AuNPs). It is the first label-free ECL biosensor based on luminol and its analogs functionalized AuNPs. Streptavidin AuNPs coated with biotinylated DNA capture probe 1 (AuNPs-probe 1) were firstly assembled onto an gold electrode through 1,3-propanedithiol. Then luminol-AuNPs co-loaded with thiolated DNA capture probe 2 and thiolated thrombin binding aptamer (TBA) (luminol-AuNPs-probe 2/TBA) were assembled onto AuNPs-probe 1 modified electrode through the hybridization between capture probes 1 and 2. The luminol-AuNPs-probe 2/TBA acted as both molecule recognition probe and sensing interface. An Au/AuNPs/ds-DNA/luminol-AuNPs/TBA multilayer architecture was obtained. In the presence of target thrombin, TBA on the luminol-AuNPs could capture the thrombin onto the electrode surface, which produced a barrier for electro-transfer and influenced the electro-oxidation reaction of luminol, leading to a decrease in ECL intensity. The change of ECL intensity indirectly reflected the concentration of thrombin. Thus, the approach showed a high sensitivity and a wider linearity for the detection of thrombin in the range of 0.005-50nM with a detection limit of 1.7pM. This work reveals that luminol-AuNPs are ideal platform for label-free ECL bioassays.  相似文献   

2.
Mercury ions (Hg(2+)) are a highly toxic and ubiquitous pollutants requiring rapid and sensitive on-site detection methods in the environment and foods. Herein, we report an envanescent wave DNA-based biosensor for rapid and very sensitive Hg(2+) detection based on a direct structure-competitive detection mode. In this system, a DNA probe covalently immobilized onto a fiber optic sensor contains a short common oligonucleotide sequences that can hybidize with a fluorescently labeled complementary DNA. The DNA probe also comprises a sequence of T-T mismatch pairs that binds with Hg(2+) to form a T-Hg(2+)-T complex by folding of the DNA segments into a hairpin structure. With a structure-competitive mode, a higher concentration of Hg(2+) leads to less fluorescence-labeled cDNA bound to the sensor surface and thus to lower fluorescence signal. The total analysis time for a single sample, including the measurement and surface regeneration, was under 6 min with a Hg(2+) detection limit of 2.1 nM. The high specificity of the sensor was demonstrated by evaluating its response to a number of potentially interfering metal ions. The sensor's surface can be regenerated with a 0.5% SDS solution (pH 1.9) over 100 times with no significant deterioration of performance. This platform is potentially applicable to detect other heavy metal ions or small-molecule analytes for which DNA/aptamers can be used as specific sensing probes.  相似文献   

3.
In the present study, based on a dual hairpin DNA structure, a novel system of electrically contacted enzyme and its signal amplification for ultrasensitive detection of Hg(2+) was demonstrated. In the presence of Hg(2+), with the interaction of thymine-Hg(2+)-thymine (T-Hg(2+)-T), DNA sequence dully labeled with ferrocene (Fc) at 5' end and horseradish peroxidase (HRP) at 3' end, hybridized to the capture probe and formed the dual hairpin structure on the electrode. Fc unit acts as a relay that electrically contacts HRP with the electrode and activates the bioelectrocatalyzed reduction of H(2)O(2). And based on the bioelectrocatalyzed signal amplification of the presented system, Hg(2+) could be quantitatively detected in the range of 10(-10)-10(-6)M with a low detection limit of 52 pM. And it also demonstrated excellent selectivity against other interferential metal ions.  相似文献   

4.
An electrochemical DNA sensor based on the hybridization recognition of a single-stranded DNA (ssDNA) probe immobilized onto a gold electrode to its complementary ssDNA is presented. The DNA probe is bound on gold surface electrode by using self-assembled monolayer (SAM) technology. An optimized mixed SAM with a blocking molecule preventing the nonspecific adsorption on the electrode surface has been prepared. In this paper, a DNA biosensor is designed by means of the immobilization of a single stranded DNA probe on an electrochemical transducer surface to recognize specifically Escherichia coli (E. coli) 0157:H7 complementary target DNA sequence via cyclic voltammetry experiments. The 21 mer DNA probe including a C6 alkanethiol group at the 5' phosphate end has been synthesized to form the SAM onto the gold surface through the gold sulfur bond. The goal of this paper has been to design, characterise and optimise an electrochemical DNA sensor. In order to investigate the oligonucleotide probe immobilization and the hybridization detection, experiments with different concentration of DNA and mismatch sequences have been performed. This microdevice has demonstrated the suitability of oligonucleotide Self-assembled monolayers (SAMs) on gold as immobilization method. The DNA probes deposited on gold surface have been functional and able to detect changes in bases sequence in a 21-mer oligonucleotide.  相似文献   

5.
Su H  Yuan R  Chai Y  Mao L  Zhuo Y 《Biosensors & bioelectronics》2011,26(11):4601-4604
A multiple amplification immunoassay was proposed to detect alpha-fetoprotein (AFP), which was based on ferrocenemonocarboxylic-HRP conjugated on Pt nanoparticles as labels for rolling circle amplification (RCA). Firstly, the capture antibody (anti-AFP) was immobilized on glass carbon electrode (GCE) deposited nano-sized gold particles. After a typical immuno-sandwich protocol, primary DNA was immobilized by labeling secondary antibody, which acted as a precursor to initiate RCA. The products of RCA provide large amount of sites to link detection DNAs, which were labeled by signal probes (ferrocenemonocarboxylic) and horseradish peroxidase (HRP). Moreover, the enzymatic amplification signals could be produced by the catalysis of HRP and Pt nanoparticles with the addition of H?O?. These lead to multiple amplification signals monitoring by electrochemical instrument and further resulted in high sensitivity of the immunoassay with the detection limit of 1.7 pg/mL.  相似文献   

6.
Here, we report a sensitive amplified electrochemical impedimetric aptasensor for thrombin, a kind of serine protease that plays important role in thrombosis and haemostasis. For improving detection sensitivity, a sandwich sensing platform is fabricated, in which the thiolated aptamers are firstly immobilized on a gold substrate to capture the thrombin molecules, and then the aptamer functionalized Au nanoparticles (AuNPs) are used to amplify the impedimetric signals. Such designed aptamer/thrombin/AuNPs sensing system could not only improve the detection sensitivity compared to the reported impedimetric aptasensors but also provide a promising signal amplified model for aptamer-based protein detection. In this paper, we realize a sensitive detection limit of 0.02 nM, with a linear range of 0.05-18 nM. Meanwhile, the effect of 6-mercaptohexanol (MCH) and 2-mercaptoethanol (MCE) on the modification of the electrode is investigated.  相似文献   

7.
A simple, sensitive and reusable electrochemical sensor was designed for determination of mercury (II) (Hg(2+)) by coupling target-induced conformational switch of DNA hairpins with thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination chemistry. The hairpin probe consisted of a stem of 6 base pairs enclosing a 14 nucleotide (nt) loop and an additional 12 nt sticky end at the 3' end. Each hairpin was labeled with ferrocene (Fc) redox tag in the middle of the loop, which was immobilized on the electrode via self-assembly of the terminal thiol moiety at the 5' end. In the presence of target analyte, Hg(2+)-mediated base pairs induced the conformational change from the sticky end to open the hairpins, resulting in the ferrocene tags close to the electrode for the increasing redox current. The strong coordination reaction of T-Hg(2+)-T resulted in a good repeatability and intermediate precision down to 10%. The dynamic concentration range spanned from 5.0nM to 1.0μM Hg(2+) with a detection limit of 2.5nM at the 3s(blank) level. The strategy afforded exquisite selectivity for Hg(2+) against other environmentally related metal ions. Inspiringly, the developed sensor could be reused by introduction of iodide (I(-)).  相似文献   

8.
A novel electrogenerated chemiluminescence (ECL) biosensor for highly sensitive and selective detection of mercury ion was developed on the basis of mercury-specific oligonucleotide (MSO) served as a molecular recognition element and the ruthenium(II) complex (Ru1) as an ECL emitting species. The biosensor was fabricated on a glassy carbon electrode coated with a thin layer of single wall carbon nanotubes, where the ECL probe, NH(2)-(CH(2))(6)-oligo(ethylene oxide)(6)-MSO?Dend-Ru1, was covalently attached. The Dend-Ru1 pendant was prepared by covalent coupling Ru1 with the 4th generation polyamidoamine dendrimer (Dend), in which each dendrimer contained 35 Ru1 units so that a large amplification of ECL signal was obtained. Upon binding of Hg(2+) to thymine (T) bases of the MSO, the T-Hg-T structure was formed, and the MSO changed from its linear shape to a "hairpin" configuration. Consequently, the Dend-Ru1 approached the electrode surface resulting in the increase of anodic ECL signal in the presence of the ECL coreactant tri-n-propylamine. The reported biosensor showed a high reproducibility and possessed long-term storage stability (92.3% initial ECL recovery over 30 day's storage). An extremely low detection limit of 2.4 pM and a large dynamic range of 7.0 pM to 50 nM Hg(2+) were obtained. An apparent binding constant of 1.6 × 10(9)M(-1) between Hg(2+) and the MSO was estimated using an ECL based extended Langmuir isotherm approach involving multilayer adsorption. Determination of Hg(2+) contents in real water samples was conducted and the data were consistent with the results from cold vapor atomic fluorescence spectroscopy.  相似文献   

9.
张海燕  王捷  陈钰  吴小丽  刘仲明 《生物磁学》2011,(15):2967-2969
目的:设计一种用于检测CYP3A5基因分型的电化学传感器阵列及其不同基因型的判别方法。方法:设计的电化学基体由印刷电路板(PCB)组成,该电路板包含一组金电极。每个金电极表面修饰有包含单链捕获探针的自组装单分子膜。设计中使用二茂铁做为电活性指示剂,基因分型检测是通过两种不同电势的二茂铁衍生物分别标记等位基因特异性信号探针来实现。结果:该设计能构建一种快速准确、操作简便的DNA电化学传感器阵列检测系统。结论:本文设计为使用电化学方法检测基因分型提供了一种新方法和新技术。  相似文献   

10.
We report a sensitive method for visual detection of mercury ions (II) (Hg2?) in aqueous solution by using gold nanoparticles (Au-NPs) and thymine (T)-rich hairpin DNA probes. The thiolated hairpin DNA probe was immobilized on the Au-NP surface through a self-assembling method. Another thymine-rich, digoxin-labeled DNA probe was introduced to form DNA duplexes on the Au-NP surface with thymine-Hg2?-thymine (T-Hg2?-T) coordination in the presence of Hg2?. The Au-NPs associated with the formed duplexes were captured on the test zone of a lateral flow strip biocomponent (LFSB) by immunoreaction events between the digoxin on the duplexes and anti-digoxin antibodies on the LFSB. The accumulation of Au-NPs produced a characteristic red band on the test zone, enabling visual detection of Hg2? without instrumentation. A detection limit of 0.1 nM was obtained under optimal experimental conditions. This method provides a simple, rapid, sensitive approach for the detection of Hg2? and shows great promise for point-of-care and in-field detection of environmentally toxic mercury.  相似文献   

11.
In this work, an electrochemiluminescence (ECL) sensor chip for sensitive detection of thrombin (TB) was prepared using a screen-printed electrode (SPE) as a working electrode and an aptamer as a specific recognition moiety. To produce an ECL sensor chip, a layer of pL-Cys was immobilized on the surface of the SPE using the cyclic voltammetry scanning method. A layer of gold nanoparticles (AuNPs) was assembled through an Au–S bond and hairpin DNA was further immobilized on the electrode surface. Ru(bpy)2(mcpbpy)2+, as a luminescent reagent, was covalently bound to single-stranded DNA (ssDNA) to prepare a luminescence probe ssDNA-Ru. The probe was hybridized with TB aptamer to form a capture probe. In the presence of TB, the TB aptamer in the capture probe bound to TB, causing the release of ssDNA-Ru that could bind to hairpin DNA on the electrode surface. The Ru(II) complex as a luminescent reagent was assembled onto the electrode, and pL-Cys was used as a co-reactant to enhance the ECL efficiency. The ECL signal of the sensor chip generated based on the above principles had a linear relationship with log TB concentration at the range 10 fM to1 nM, and the detection limit was 0.2 fM. Finally, TB detection using this method was verified using real blood samples. This work provides a new method using an aptamer as a foundation and SPE as a material for the detection of biological substances.  相似文献   

12.
Mao X  Jiang J  Xu X  Chu X  Luo Y  Shen G  Yu R 《Biosensors & bioelectronics》2008,23(10):1555-1561
We described a novel electrochemical DNA biosensor based on molecular beacon (MB) probe and enzymatic amplification protocol. The MB modified with a thiol at its 5' end and a biotin at its 3' end was immobilized on the gold electrode through mixed self-assembly process. Hybridization events between MB and target DNA cause the conformational change of the MB, triggering the attached biotin group on the electrode surface. Following the specific interaction between the conformation-triggered biotin and streptavidin-horseradish peroxidase (HRP), subsequent quantification of DNA was realized by electrochemical detection of enzymatic product in the presence of substrate. The detection limit is obtained as low as 0.1nM. The presented DNA biosensor has good selectivity, being able to differentiate between a complementary target DNA sequence and one containing G-G single-base mismatches.  相似文献   

13.
An electronic DNAzyme sensor for highly sensitive detection of Pb(2+) is demonstrated by coupling the significant signal enhancement of the layer-by-layer (LBL) assembled quantum dots (QDs) with Pb(2+) specific DNAzymes. The presence of Pb(2+) cleaves the DNAzymes and releases the biotin-modified fragments, which further hybridize with the complementary strands immobilized on the gold substrate. The streptavidin-coated, QD LBL assembled nanocomposites were captured on the gold substrate through biotin-streptavidin interactions. Subsequent electrochemical signals of the captured QDs upon acid dissolution provide quantitative information on the concentrations of Pb(2+) with a dynamic range from 1 to 1000 nM. Due to the dramatic signal amplification by the numerous QDs, subnanomolar level (0.6 nM) of Pb(2+) can be detected. The proposed sensor also shows good selectivity against other divalent metal ions and thus holds great potential for the construction of general DNAzyme-based sensing platform for the monitoring of other heavy metal ions.  相似文献   

14.
Microarrays based on DNA-DNA hybridization are potentially useful for detecting and subtyping viruses but require fluorescence labeling and imaging equipment. We investigated a label-free electrical detection system using electrochemical impedance spectroscopy that is able to detect hybridization of DNA target sequences derived from avian H5N1 influenza virus to gold surface-attached single-stranded DNA oligonucleotide probes. A 23-nt probe is able to detect a 120-nt base fragment of the influenza A hemagglutinin gene sequence. We describe a novel method of data analysis that is compatible with automatic measurement without operator input, contrary to curve fitting used in conventional electrochemical impedance spectroscopy (EIS) data analysis. A systematic investigation of the detection signal for various spacer molecules between the oligonucleotide probe and the gold surface revealed that the signal/background ratio improves as the length of the spacer increases, with a 12- to 18-atom spacer element being optimal. The optimal spacer molecule allows a detection limit between 30 and 100 fmol DNA with a macroscopic gold disc electrode of 1 mm radius. The dependence of the detection signal on the concentration of a 23-nt target follows a binding curve with an approximate 1:1 stoichiometry and a dissociation constant of KD=13+/-4 nM at 295 K.  相似文献   

15.
A simple and sensitive electrochemical DNA biosensor based on in situ DNA amplification with nanosilver as label and horseradish peroxide (HRP) as enhancer has been designed. The thiolated oligomer single-stranded DNA (ssDNA) was initially directly immobilized on a gold electrode, and quartz crystal microbalance (QCM) gave the specific amount of ssDNA adsorption of 6.3 ± 0.1 ng/cm2. With a competitive format, hybridization reaction was carried out via immersing the DNA biosensor into a stirred hybridization solution containing different concentrations of the complementary ssDNA and constant concentration of nanosilver-labeled ssDNA, and then further binding with HRP. The adsorbed HRP amount on the probe surface decreased with the increment of the target ssDNA in the sample. The hybridization events were monitored by using differential pulse voltammetry (DPV) with the adsorbed HRP toward the reduction of H2O2. The reduction current from the enzyme-generated product was related to the number of target ssDNA molecules in the sample. A detection of 15 pmol/L for target ssDNA was obtained with the electrochemical DNA biosensor. Additionally, the developed approach can effectively discriminate complementary from non-complementary DNA sequence, suggesting that the similar enzyme-labeled DNA assay method hold great promises for sensitive electrochemical biosensor applications.  相似文献   

16.
目的:设计一种用于检测CYP3A5基因分型的电化学传感器阵列及其不同基因型的判别方法。方法:设计的电化学基体由印刷电路板(PCB)组成,该电路板包含一组金电极。每个金电极表面修饰有包含单链捕获探针的自组装单分子膜。设计中使用二茂铁做为电活性指示剂,基因分型检测是通过两种不同电势的二茂铁衍生物分别标记等位基因特异性信号探针来实现。结果:该设计能构建一种快速准确、操作简便的DNA电化学传感器阵列检测系统。结论:本文设计为使用电化学方法检测基因分型提供了一种新方法和新技术。  相似文献   

17.
This work develops a simple, sensitive and signal-on electrochemical sensor for methyltransferase (MTase) activity analysis. The sensor is composed of a methylene blue-modi?ed "signaling DNA probe" and a "capture DNA probe" tethered methylation-responsive hairpin DNA (hairpin-capture DNA probe). The thiol- modified hairpin-capture DNA probe at 5' end was firstly self-assembled on gold electrode via Au-S bonding. Methylation-induced scission of hairpin-capture DNA probe would displace the hairpin section and remain the "capture DNA probe" section on the gold electrode. Subsequently, the remained "capture DNA probe" on the gold electrode can hybridize with the methylene blue-modi?ed "signaling DNA probe", mediating methylene blue onto the gold electrode surface to generate redox current. It was eT on state. The developed facile signal-on electrochemical sensing system showed a linear response to concentration of Dam MTase range from 0.1 to 1.0 U/mL. The detection limit of Dam MTase activity was determined to be 0.07 U/mL and the total detection time is 7h. The sensor also has the ability to provide information about the dynamics of methylation process. Furthermore, we demonstrated that this sensor could be utilized to screen inhibitors or drugs for Dam MTase.  相似文献   

18.
A simple and sensitive colorimetric Hg(2+) detection method is reported, based on the Hg(2+)-mediated structural switch of an unlabeled oligonucleotide strand. In the absence of Hg(2+), the oligonucleotide strand forms a stem-loop. A G-rich sequence in the strand is partially caged in the stem-loop structure and cannot fold into a G-quadruplex. In the presence of Hg(2+), T-Hg(2+)-T coordination chemistry leads to the formation of another stem-loop structure and the release of the G-rich sequence. The released sequence folds into a G-quadruplex, which binds hemin to form catalytically active G-quadruplex DNAzymes. This is detected as an absorbance increase in a H(2)O(2)-2,2'-azinobis(3-ethylbenzothiozoline)-6-sulfonic acid (ABTS) reaction system using UV-vis absorption spectroscopy. This simple colorimetric sensor can detect aqueous Hg(2+) at concentrations as low as 9.2 nM with high selectivity. Based on the strong binding interaction between Hg(2+) and the sulfur-containing amino acid cysteine (Cys), and the competition between Cys and a oligonucleotide for Hg(2+), the proposed Hg(2+)-sensing system can be further exploited as a Cys-sensing method. The method has a detection limit for Cys of 19 nM.  相似文献   

19.
We herein report an electrochemical biosensor for the sequence-specific detection of DNA with high discrimination ability for single-nucleotide polymorphisms (SNPs). This DNA sensor was constructed by a pair of flanking probes that "sandwiched" the target. A 16-electrode electrochemical sensor array was employed, each having one individual DNA capture probe immobilized at gold electrodes via gold-thiol chemistry. By coupling with a biotin-tagged detection probe, we were able to detect multiple DNA targets with a single array. In order to realize SNP detection, a ligase-based approach was employed. In this method, both the capture probe and the detection probe were in tandem upon being hybridized with the target. Importantly, we employed a ligase that specifically could ligate tandem sequences only in the absence of mismatches. As a result, when both probes were complementary to the target, they were ligated in the presence of the ligase, thus being retained at the surface during the subsequent stringent washing steps. In contrast, if there existed 1-base mismatch, which could be efficiently recognized by the ligase, the detection probe was not ligated and subsequently washed away. A conjugate of avidin-horseradish peroxidase was then attached to the biotin label at the end of the detection probe via the biotin-avidin bridge. We then electrochemically interrogated the electrical current for the peroxidase-catalyzed reduction of hydrogen peroxide. We demonstrated that the electrochemical signal for the wild-type DNA was significantly larger than that for the sequence harboring the SNP.  相似文献   

20.
A novel electrochemical sensor surface with enhanced sensitivity for the detection of hydrogen peroxide has been developed based on the layer-by-layer assembly of mercapto propionic acid (MPA), cystine-based polymethylene-bridged cyclic bisureas (CBU)/gold nanoparticle (AuNP) and horseradish peroxidase (HRP) on gold electrode. Possibility of a large number of hydrogen bonds, allowed by the chemical and sterical structure of the CBU ensures the proper immobilization of the enzyme in favorable orientation and retention of enzymatic activity. Efficient electron tunneling property of AuNP together with its electrocatalytic activity leads to higher sensitivity in the detection of H(2)O(2). In cyclic voltammetry measurements a cathodic current due to direct electron transfer of HRP is observed which, indicates excellent electrocatalytic activity of the sensor surface. The biosensor surface modified with gold nanoparticle and CBU showed a lower detection limit of 50 nM for hydrogen peroxide. Chronoamperometry is performed at -0.3 V and Michaelis-Menten constant K(M)(app) value is estimated to be 4.5 μM. The newly developed sensor surface showed very high stability, reproducibility and high sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号