首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Light gradients were measured in leaves that had different types of anatomical development of the mesophyll but similar pigment content. Leaves of the legume, Thermopsis montana, had columnar palisade and spongy mesophyll whereas leaves of the monocot, Smilacina stellata, had spongy mesophyll only. Light gradients were measured at 550 nm in both types of leaves when they were irradiated with collimated or diffuse light. When irradiated with collimated light, light gradients were steeper in leaves with spongy mesophyll in comparison to those that had palisade tissue. On the other hand, light gradients were similar between both leaf types when they were irradiated with diffuse light. Thus, columnar palisade cells facilitated the penetration of collimated light over diffuse light. These results suggest that palisade tissue may help distribute light more uniformly to chloroplasts within the leaf. Moreover, the functional significance of palisade tissue may be related to the amount of collimated light within the natural environment.  相似文献   

2.
Profiles of chlorophyll fluorescence were measured in spinach leaves irradiated with monochromatic light. The characteristics of the profiles within the mesophyll were determined by the optical properties of the leaf tissue and the spectral quality of the actinic light. When leaves were infiltrated with 10?4M DCMU [3‐(3,4‐dichlorophenyl)‐1, 1‐dimethyl‐urea] or water, treatments that minimized light scattering, irradiation with 2000 μmol m?2 s?1 green light produced broad Gaussian‐shaped fluorescence profiles that spanned most of the mesophyll. Profiles for chlorophyll fluorescence in the red (680 ± 16 nm) and far red (λ > 710 nm) were similar except that there was elevated red fluorescence near the adaxial leaf surface relative to far red fluorescence. Fluorescence profiles were narrower in non‐infiltrated leaf samples where light scattering increased the light gradient. The fluorescence profile was broader when the leaf was irradiated on its adaxial versus abaxial surface due to the contrasting optical properties of the palisade and spongy mesophyll. Irradiation with blue, red and green monochromatic light produced profiles that peaked 50, 100 and 150 μm, respectively, beneath the irradiated surface. These results are consistent with previous measurements of the light gradient in spinach and they agree qualitatively with measurements of carbon fixation under monochromatic blue, red and green light. These results suggest that chlorophyll fluorescence profiles may be used to estimate the distribution of quanta that are absorbed within the leaf for photosynthesis.  相似文献   

3.
Chlorophyll fluorescence was used to estimate profiles of absorbed light within chlorophyll solutions and leaves. For chlorophyll solutions, the intensity of the emitted fluorescence declined in a log–linear manner with the distance from the irradiated surface as predicted by Beer's law. The amount of fluorescence was proportional to chlorophyll concentration for chlorophyll solutions given epi‐illumination on a microscope slide. These relationships appeared to hold for more optically complex spinach leaves. The profile of chlorophyll fluorescence emitted by leaf cross sections given epi‐illumination corresponded to chlorophyll content measured in extracts of leaf paradermal sections. Thus epifluorescence was used to estimate relative chlorophyll content through leaf tissues. Fluorescence profiles across leaves depended on wavelength and orientation, reaching a peak at 50–70 µm depth. By infiltrating leaves with water, the pathlengthening due to scattering at the airspace : cell wall interfaces was calculated. Surprisingly, the palisade and spongy mesophyll had similar values for pathlengthening with the value being greatest for green light (550 > 650 > 450 nm). By combining fluorescence profiles with chlorophyll distribution across the leaf, the profile of the apparent extinction coefficient was calculated. The light profiles within spinach leaves could be well approximated by an apparent extinction coefficient and the Beer–Lambert/Bouguer laws. Light was absorbed at greater depths than predicted from fibre optic measurements, with 50% of blue and green light reaching 125 and 240 µm deep, respectively.  相似文献   

4.
Light and chlorophyll gradients within Cucurbita cotyledons   总被引:5,自引:4,他引:1  
Abstract. Measurement of light within 10–14-d-old green and etiolated Cucurbita pepo cotyledons were made with fibre-optic microprobes to assess the influence of chlorophyll distribution and anatomical variations in mesophyll cell type (spongy versus palisade) on internal light pattern. More than 50% of the pigment in green cotyledons occurred in the upper (adaxial) 300 μm and this gradient strongly influenced the internal propagation of 680 nm light. When the upper (adaxial) surface was irradiated with 680 nm light, almost complete absorption occurred within the first 400 μm (palisade) of approximately 1200-μm-thick cotyledons. In contrast, when lower (abaxial) surfaces were irradiated with 680 nm light, penetration extended throughout the spongy mesophyll to about the 700 μm depth. Measurements of collimaled and scattered light gradients at 550, 680 and 750 nm indicated that collimaled light was rapidly scattered by mesophyll cells. In cotyledons irradiated on the upper surface, spongy mesophyll cells received only scattered light. Furthermore, comparisons of scattered light gradients obtained from cotyledons irradiated on upper and lower surfaces suggested that spongy mesophyll cells scatter light more effectively than palisade cells, probably due to the greater proportion of intercellular air spaces in spongy mesophyll tissue. These data also indicate that both the spectral quality and quantity of light incident on palisade versus spongy mesophyll cells differs, perhaps contributing to developmental and physiological differences between these two mesophyll cell types.  相似文献   

5.
We examined the functional relationship between chlorophyll concentrations and light spectral absorption in 16 species of woody, vine and herbaceous plants in northern Japan. Leaves of each species from under forest shade and in more open sites were measured for chlorophyll, specific leaf area (SLA) and spectral absorption. In all species, SLA increased and the Chl a : b ratio declined in shade- vs open-grown leaves indicating an adaptive adjustment to forest shade in these leaf characters. However, the expected increase in the ratio of 680 to 700 nm absorption in shade leaves did not occur in all species. Light absorption at 680 relative to 700 nm was lower in the shade leaves of Acer japonicum. Kalopanax pictus, Panax japonicus and Petasites japonicus even with a reduced Chl a : b , a commonly accepted indicator of shade adaptation. Therefore, spectral measurements in these species failed to support Chl concentrations that were expected to confer an improvement in the absorption of red light (<680nm) deficient relative to far-red light (>700 nm) in the forest shade. Compared with other species, the absorption pattern of these four 'non-conforming' species is associated with a higher ratio of shade:open leaves in reflectance spectra in the 600–750 nm range. This suggests an increased reflectance in shade leaves caused by changes in leaf surface properties which are not immediately apparent. We conclude that adaptive spectral absorption cannot always be inferred from changes in specific leaf area and chlorophyll a and b concentrations.  相似文献   

6.
In situ measurements of 14C-CO2 incorporation into 40-[mu]m paradermal leaf sections of sun- and shade-grown spinach leaves were determined. Chlorophyll, carotenoid, and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) content in similar 40-[mu]m paradermal leaf sections was also measured. The carbon fixation gradient did not follow the leaf internal light gradient, which decreases exponentially across the leaf. Instead, the 14C-CO2 fixation was higher in the middle of the leaf. Contrary to expectations, the distribution of carbon fixation across the leaf showed that the spongy mesophyll contributes significantly to the total carbon reduced. Approximately 60% of the carboxylation occurred in the palisade mesophyll and 40% occurred in the spongy mesophyll. Carbon reduction correlated well with Rubisco content, and no correlation between chlorophyll and carotenoid content and Rubisco was observed in sun plants. The correlation among chlorophyll, carotenoids, Rubisco, and carbon fixation was higher in shade leaves than in sun leaves. The results are discussed in relation to leaf photosynthetic and biochemical measurements that generally consider the leaf as a single homogeneous unit.  相似文献   

7.
Morphology, anatomy and physiology of sun and shade leaves of Abies alba were investigated and major differences were identified, such as sun leaves being larger, containing a hypodermis and palisade parenchyma as well as possessing more stomata, while shade leaves exhibit a distinct leaf dimorphism. The large size of sun leaves and their arrangement crowded on the upper side of a plagiotropic shoot leads to self‐shading which is explainable as protection from high solar radiation and to reduce the transpiration via the lamina. Sun leaves furthermore contain a higher xanthophyll cycle pigment amount and Non‐Photochemical Quenching (NPQ) capacity, a lower amount of chlorophyll b and a total lower chlorophyll amount per leaf, as well as an increased electron transport rate and an increased photosynthesis light saturation intensity. However, sun leaves switch on their NPQ capacity at rather low light intensities, as exemplified by several parameters newly measured for conifers. Our holistic approach extends previous findings about sun and shade leaves in conifers and demonstrates that both leaf types of A. alba show structural and physiological remarkable similarities to their respective counterparts in angiosperms, but also possess unique characteristics allowing them to cope efficiently with their environmental constraints.  相似文献   

8.
Light gradients within tree canopies play a major role in the distribution of plant resources that define the photosynthetic capacity of sun and shade leaves. However, the biochemical and diffusional constraints on gas exchange in sun and shade leaves in response to light remain poorly quantified, but critical for predicting canopy carbon and water exchange. To investigate the CO2 diffusion pathway of sun and shade leaves, leaf gas exchange was coupled with concurrent measurements of carbon isotope discrimination to measure net leaf photosynthesis (An), stomatal conductance (gs) and mesophyll conductance (gm) in Eucalyptus tereticornis trees grown in climate controlled whole‐tree chambers. Compared to sun leaves, shade leaves had lower An, gm, leaf nitrogen and photosynthetic capacity (Amax) but gs was similar. When light intensity was temporarily increased for shade leaves to match that of sun leaves, both gs and gm increased, and An increased to values greater than sun leaves. We show that dynamic physiological responses of shade leaves to altered light environments have implications for up‐scaling leaf level measurements and predicting whole canopy carbon gain. Despite exhibiting reduced photosynthetic capacity, the rapid up‐regulation of gm with increased light enables shade leaves to respond quickly to sunflecks.  相似文献   

9.
High-light effects on CO2 fixation gradients across leaves   总被引:2,自引:1,他引:1  
Chlorophyll fluorescence and internal patterns of 14CO2 fixation were measured in sun and shade leaves of spinach after treatment with various light intensities. When sun leaves were irradiated with 2000μmol m?2 s?1 for 2h, FV/FM decreased by about 15%, but 14CO2 fixation was unaffected, whereas shade leaves exhibited a 21% decrease in Fv/FM and a 25% decrease in 14CO2 fixation. Irradiation of sun and shade leaves with 4000μmol m?1 for 4 h decreased FV/FM by 30% in sun leaves and 40% in shade leaves, while total 14CO2 fixation decreased by 41% in sun leaves and 55% in shade leaves. After light treatment, gradients of CO2 fixation across leaves were determined by measuring 14CO2 fixed in paradermal leaf sections after a 10s pulse of 14CO2. Gradients of 14CO2 fixation in control sun and shade leaves were identified when expressed on a relative basis and normalized for leaf depth. Treatment of leaves with 2000 μmol PAR m?2 s?1 for 2h did not after patterns of carbon fixation across sun leaves, but slightly altered the pattern in shade leaves. In contrast, treatment of sun and shade leaves with 4000μmol m?2 s?1 for 4h decreased carbon fixation more in the palisade mesophyll cells than in the spongy mesophyll cells of sun and shade leaves, and fixation in medial tissue of shade leaves was dramatically decreased compared to the adaxial and abaxial tissue. The interaction between leaf anatomy and biochemical parameters involved in tolerance to photoinhibition in spinach is discussed.  相似文献   

10.
We evaluated a new, two-dimensional (2-D) nuclear magnetic resonance (NMR) imaging technique as a method for measuring the distribution of chloroplasts in leaves. NMR images that showed the distribution of chloroplast water and of total water as a function of depth into Acer platanoides sun and shade leaves were compared with the distribution of chlorophyll in the same leaf types (as measured by fluorescence microscopy), with the cellular structure (by scanning electron microscopy), and with published information. Results showed that the volume fraction of chloroplast water was much larger in shade than in sun leaves, and that it averaged about one-third larger in the palisade than in the spongy parenchyma region of both leaf types. Chlorophyll fluorescence was more intense in shade than in sun leaves. In sun leaves, fluorescence was maximal in the palisade region near the junction with the spongy parenchyma, while in shade leaves, fluorescence was maximal in the upper part of the spongy layer. We concluded that 2-D NMR imaging reliably indicates the location of chloroplast water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号