首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pigeonpea (Cajanus cajan L. Millsp.) is often intercropped with maize (Zea mays L.) in eastern and southern Africa. The studies aimed at determining how different genotypes of pigeonpea responded in terms of grain element composition under farmers’ cropping conditions. Approx. 78 farmers participated. They came from four study sites in Tanzania (Babati and Gairo) and Malawi (Nyambi and Ntonda) that differed in terms of tradition for using pigeonpea as well as in environmental conditions. The individual grain weight of the pigeonpea crops from Malawi were 21% (P < 0.05) higher than those from Tanzania. However, only B, Cu, Mo, N, Ni, P and S were affected by grain weight (P < 0.05). Weak (r 2 < 0.10) negative correlations existed between grain yield and the grains’ proportion of Ca, Mg, P, and Zn. The proportion of every element, with the exception of Cr, in the grain differed between sites (P < 0.05) but not between varieties (P > 0.05). The amounts of K, Mg, S and Fe accumulated per grain were slightly lower (P < 0.11) in ICEAP00040 compared to the more traditional varieties. Variations in DTPA-exchangeable Zn and Fe in the soil were not reflected in grain concentrations but grain P had a curvi-linear relation (r 2 = 0.44) to the soil NaHCO3-exchangeable P indicating P deficiency for several soils. The P and Zn content were correlated (r 2 > 0.41) as the only two grain elements. Unique fingerprinting by multivariate statistics was possible for each site when using the element proportion of the grain dry matter with or without soil characteristics. In all cases, different elements contributed with varying weight to the discrimination between the sites. However, it was not possible to distinguish between the varieties when considering all four environments. Reducing the models to include Fe, K, Mg, P, S and Zn only, did however allow some distinction between the two genotypes, which indicates that genotypic variability is expressed in a fairly limited number of elements. In the cases of Gairo and Nyambi, it was possible to distinguish between varieties. In the case of Gairo, the models distinguished between ICEAP00068 and the others, i.e. ICEAP00040 and Babati White where ICEAP00068 was associated with a higher proportion of Fe, P, S, and Zn in the grain. In the case of Nyambi, the models distinguished between ICEAP00040 and ICP9145 where ICEAP00040 was associated with a lower proportion of Ca, Cu, Fe, Mn, Ni, P, S, and Zn and a higher proportion of Cr and Na in the grain. It is thus possible in some cases to separate varieties based on multi-element grain content across a relatively narrow environmental gradient but not generally across all environments. These findings should be included in breeding programmes focusing on the improvement of the nutritional value of our food crops.  相似文献   

2.
Pseudomonas aeruginosa PNA1, an isolate from chickpea rhizosphere in India, protected pigeonpea and chickpea plants from fusarium wilt disease, which is caused by Fusarium oxysporum f.sp. ciceris and Fusarium udum. Inoculation with strain PNA1 significantly reduced the incidence of fusarium wilt in pigeonpea and chickpea on both susceptible and moderately tolerant genotypes. However, strain PNA1 protected the plants from fusarium wilt until maturity only in moderately tolerant genotypes of pigeonpea and chickpea. Root colonization of pigeonpea and chickpea, which was measured using a lacZ-marked strain of PNA1, showed tenfold lower root colonization of susceptible genotypes than that of moderately tolerant genotypes, indicating that this plant-bacteria interaction could be important for disease suppression in this plant. Strain PNA1 produced two phenazine antibiotics, phenazine-1-carboxylic acid and oxychlororaphin, in vitro. Its Tn5 mutants (FM29 and FM13), which were deficient in phenazine production, caused a reduction or loss of wilt disease suppression in vivo. Hence, phenazine production by PNA1 also contributed to the biocontrol of fusarium wilt diseases in pigeonpea and chickpea.  相似文献   

3.
Pigeonpea production is severely constrained by wilt disease caused by Fusarium udum. In the current study, we discover the putative genomic regions that control resistance response to variant 2 of fusarium wilt using association mapping approach. The association panel comprised of 89 diverse pigeonpea genotypes including seven varieties, three landraces and 79 germplasm lines. The panel was screened rigorously for 3 consecutive years (2013–14, 2014–15 and 2015–2016) against variant 2 in a wilt-sick field. A total of 65 pigeonpea specific hypervariable SSR markers (HASSRs) were screened representing seven linkage groups and 29 scaffolds of the pigeonpea genome. A total of 181 alleles were detected, with average values of gene diversity and polymorphism information content (PIC) of 0.55 and 0.47, respectively. Further analysis using model based (STRUCTURE) and distance based (clustering) approaches separated the entire pigeonpea collection into two distinct subgroups (K = 2). The marker trait associations (MTAs) were established based on three-year wilt incidence data and SSR dataset using a unified mixed linear model. Consequently, six SSR markers were identified, which were significantly associated with wilt resistance and explained up to 6% phenotypic variance (PV) across the years. Among these SSRs, HASSR18 was found to be the most stable and significant, accounting for 5–6% PV across the years. To the best of our knowledge, this is the first report of identification of favourable alleles for resistance to variant 2 of Fusarium udum in pigeonpea using association mapping. The SSR markers identified here will greatly facilitate marker assisted resistance breeding against fusarium wilt in pigeonpea.  相似文献   

4.
Alcaligenes xylosoxydans protected pigeonpea from Fusarium wilt in a pot experiment and field trials. When seeds of pigeonpea (C. cajan) were treated with A. xylosoxydans and sown in soil infested with Fusarium, the incidence of wilt was reduced by 43.5% and resulted in 58% higher grain yield. The antifungal activity of A. xylosoxydans was based on chitinase production and was comparable in efficacy to commercial antifungal agents such as benlate, monitor WP, thiram and bavistin.  相似文献   

5.
Fusarium wilt (Fusarium oxysporum Schlecht. f. sp. melongenae) is a vascular disease of eggplant (Solanum melongena L.). The objectives of this work were (1) to confirm the monogenic inheritance of fusarium wilt resistance in eggplant, (2) to identify molecular markers linked to this resistance, and (3) to develop SCAR markers from most informative markers. We report the tagging of the gene for resistance to fusarium wilt (FOM) in eggplant using SRAP, RGA, SRAP-RGA and RAPD markers. Analysis of segregation data confirmed the monogenic inheritance of resistance. DNA from F2 and BC1 populations of eggplant segregating for fusarium wilt resistance was screened with 2,316 primer combinations to detect polymorphism. Three markers were linked within 2.6 cM of the gene. The codominant SRAP marker Me8/Em5 and dominant SRAP-RGA marker Em12/GLPL2 were tightly linked to each other and mapped 1.2 cM from the resistance gene, whereas RAPD marker H12 mapped 2.6 cM from the gene and on the same side as the other two markers. The SRAP marker was converted into two dominant SCAR markers that were confirmed to be linked to the resistance gene in the F2, BC1 and F2 of BC3 generations of the same cross. These markers provide a starting point for mapping the eggplant FOM resistance gene in eggplant and for exploring the synteny between solanaceous crops for fusarium wilt resistance genes. The SCAR markers will be useful for identifying fusarium wilt-resistant genotypes in marker-assisted selection breeding programs using segregating progenies of the resistant eggplant progenitor used in this study.  相似文献   

6.
A composite linkage map was constructed based on two interspecific recombinant inbred line populations derived from crosses between Cicer arietinum (ILC72 and ICCL81001) and Cicer reticulatum (Cr5-10 or Cr5-9). These mapping populations segregate for resistance to ascochyta blight (caused by Ascochyta rabiei), fusarium wilt (caused by Fusarium oxysporum f. sp. ciceris) and rust (caused by Uromyces ciceris-arietini). The presence of single nucleotide polymorphisms in ten resistance gene analogs (RGAs) previously isolated and characterized was exploited. Six out of the ten RGAs were novel sequences. In addition, classes RGA05, RGA06, RGA07, RGA08, RGA09 and RGA10 were considerate putatively functional since they matched with several legume expressed sequences tags (ESTs) obtained under infection conditions. Seven RGA PCR-based markers (5 CAPS and 2 dCAPS) were developed and successfully genotyped in the two progenies. Six of them have been mapped in different linkage groups where major quantitative trait loci conferring resistance to ascochyta blight and fusarium wilt have been reported. Genomic locations of RGAs were compared with those of known Cicer R-genes and previously mapped RGAs. Association was detected between RGA05 and genes controlling resistance to fusarium wilt caused by races 0 and 5.  相似文献   

7.
Fusarium oxysporum f. sp. vasinfectum (Fov) has the potential to become the most economically significant pathogen of cotton in Australia. Although the levels of resistance present in the new commercial cultivars have improved significantly, they are still not immune and cotton breeders continue to look for additional sources of resistance. The native Australian Gossypium species represent an alternative source of resistance because they could have co-evolved with the indigenous Fov pathogens. Forty-six BC3 G. hirsutum × G. sturtianum multiple alien-chromosome-addition-line (MACAL) families were challenged with a field-derived Fov isolate (VCG-01111). The G. hirsutum parent of the hexaploid MACAL is highly susceptible to fusarium wilt; the G. sturtianum parent is strongly resistant. Twenty-two of the BC3 families showed enhanced fusarium wilt resistance relative to the susceptible G. hirsutum parent. Logistic regression identified four G. sturtianum linkage groups with a significant effect on fusarium wilt resistance: two linkage groups were associated with improved fusarium wilt resistance, while two linkage groups were associated with increased fusarium wilt susceptibility.  相似文献   

8.
The influence of the nutrient solution pH on suppression of fusarium wilt by Pseudomonas flurescens WCS417r in carnation grown in rockwool was investigated. Experiments were conducted with carnation cultivars Lena and Pallas, susceptible and moderately resistant to fusarium wilt, respectively. WCS417r significantly reduced fusarium wilt in the susceptible cv. Lena, that was root-inoculated with Fusarium oxysporum f.sp. dianthi (Fod), at pH 7.5, but not at pH 6.5 and 5.5 This corresponded with a higher in vitro siderophore production and antagonism of Fod by WCS417r at pH 7.5 than at pH 6.5 and 5.5. Fusarium wilt in the moderately resistant cv. Pallas, however, was also significantly reduced by treatment with WCS417r at pH 5.5 This corresponded with the low influence of pH on induced resistance by WCS417r in plants of cv. Pallas that were stem-inoculated with Fod. The results indicate that the influence of pH on control of fusarium wilt of carnation by Pseudomonas fluorescens WCS417r differs between carnation cultivars that differ in their level of resistance against fusarium wilt. In susceptible cv. Lena, fusarium wilt is suppressed by antagonism by WCS417r, that is most effective at pH 7.5. In the moderately resistant cv. Pallas, fusarium wilt is suppressed by both antagonism and induced resistance by WCS417r. The latter is also effective at lower pH.  相似文献   

9.
尖孢镰孢菌古巴专化型(Fusarium oxysporum f.sp.cubense)是香蕉枯萎病的病原菌,该菌是一种土壤习居菌,了解香蕉根区土壤中真菌多样性及镰孢菌属(Fusarium)真菌所占比例,对如何减少土壤中的病原菌、预防香蕉枯萎病的发生有重要的指导意义。该文通过采集不同宿根年限的香蕉健康植株和枯萎病植株的根区土壤,利用高通量测序技术测定土壤样品中的真菌种群。结果表明:(1)同一宿根年限的香蕉植株中,健康植株根区土壤中所获的reads及OTUs数量均高于枯萎病植株,说明健康植株根区土壤的真菌多样性丰富于枯萎病植株。(2)除了一年生香蕉枯萎病植株以担子菌门(Basidiomycota)为主外,其他土壤样品中均以子囊菌门(Ascomycota)为主,其中的丛赤壳科最高相对丰度来自三年生健康植株的根区土壤(26.02%),其次是五年生的枯萎病植株根区土壤(15.56%)。(3)在丛赤壳科中,镰孢菌属在三年生健康植株土壤中的相对丰度最高(2.54%),在其他样品中的相对丰度在0.1%~0.65%之间;在镰孢菌属中,腐皮镰孢菌(Fusarium solani)的相对丰度(0~1.59%之间)高于尖孢镰孢菌(F.oxysporum),尖孢镰孢菌仅占很小的比例(相对丰度0~0.08%之间)。可见,在不同香蕉植株的根区土壤中,健康植株的根区土壤真菌多样性高于枯萎病植株,无论是健康植株还是枯萎病植株的根区土壤中,作为香蕉枯萎病病原菌的镰孢菌属或尖孢镰孢菌的群体均不占主导地位。  相似文献   

10.
间作缓解蚕豆连作障碍的根际微生态效应   总被引:7,自引:0,他引:7  
胡国彬  董坤  董艳  郑毅  汤利  李欣然  刘一鸣 《生态学报》2016,36(4):1010-1020
通过田间小区试验,研究了3个品种蚕豆(92-24、云豆324、凤豆6号)与小麦间作对蚕豆产量、枯萎病病情指数、根际镰刀菌数量、根际真菌代谢功能多样性和土壤酶活性的影响。结果表明:与单作蚕豆相比,云豆324与小麦间作(YD324/W)和凤豆6号与小麦间作(FD6/W)处理均显著提高了蚕豆地上部干重、籽粒产量和百粒重。YD324/W和FD6/W处理使蚕豆枯萎病发病初期病情指数分别降低57.14%和41.67%,镰刀菌数量分别降低32.06%和29.88%,而92-24与小麦间作(92-24/W)处理蚕豆产量、枯萎病病情指数和镰刀菌数量与单作蚕豆均无显著差异。YD324/W和FD6/W处理显著提高了蚕豆根际真菌的多样性指数和丰富度指数,并使蚕豆根际真菌的AWCD值分别比单作蚕豆提高了61.75%和46.49%;YD324/W和FD6/W处理明显改变了蚕豆根际真菌的群落结构。而92-24/W处理对蚕豆根际真菌的多样性指数、丰富度指数和AWCD值均无显著影响,也未明显改变真菌的群落结构。不同发病时期,YD324/W和FD6/W处理均显著提高了蚕豆根际土壤的蔗糖酶、脲酶和过氧化氢酶活性;而92-24/W处理蚕豆根际蔗糖酶、脲酶和过氧化氢酶活性与单作蚕豆均无显著差异。总之,小麦与不同品种蚕豆间作改变了蚕豆根际的真菌群落结构,提高了蚕豆根际真菌的活性、多样性和丰富度,提高土壤酶活性并改善蚕豆生长,增加了蚕豆产量。表明小麦与蚕豆间作改善了根际土壤的微生态环境,降低了镰刀菌的数量,缓解了蚕豆连作障碍,但蚕豆品种的差异影响间作控病效果。  相似文献   

11.
The effect on disease development of inhibiting the production of the sesquiterpenoid phytoalexin hemigossypol (HG) in cotton resistant to both verticillium and fusarium wilts was investigated. Inhibition was achieved by treating the plants with the sodium salt of compactin, a competitive inhibitor of hydroxy-methylglutaryl (HMG) CoA reductase. Compactin treatment (150 μg litre-1) reduced HG production by a mean of 48%. The enzyme inhibitor did not mimic symptoms in uninfected plants or significantly reduce the ability of the conidia of either Fusarium oxysporum f.sp. vasinfectum or Verticillium dahliae to germinate. Treatment of infected plants with compactin resulted in a breakdown of resistance to verticillium wilt but not to fusarium wilt. These results support the view that HG production is the primary mechanism of resistance to verticillium wilt, but not to fusarium wilt.  相似文献   

12.
Fusarium wilt caused by Fusarium oxysporum f. sp. conglutinans is one of the most important diseases of Brassica crops, resulting in severe reductions in yield and quality. To characterize the inheritance pattern of fusarium resistance, a cross between a susceptible broccoli and a resistant cabbage was subjected to segregation analysis. Results indicated that resistance was controlled by a single dominant allele. This gene was named Foc-Bo1 and mapped to linkage group seven (O7) by both the segregation test and quantitative trait locus (QTL) analysis. The QTL on O7 was detected with a logarithm of odds score (LOD) of 19.5, which was above the threshold value with genome-wide 1% significance level (2.01). A minor QTL was also detected on O4 with a LOD score of 2.06. Inoculation tests indicated that stable expression of fusarium resistance at high temperatures required Foc-Bo1 homozygosity. The association between Foc-Bo1 and the closest simple sequence repeat marker (KBrS003O1N10) was analyzed in three F3 populations. Based on these studies, KBrS003O1N10 represents an effective marker-assisted selection (MAS) tool for breeding fusarium wilt resistance into Brassica oleracea crops. To our knowledge, this is the first paper to map the fusarium-resistance gene in Brassica species and to validate the effectiveness of MAS in improving fusarium resistance in these important plants.  相似文献   

13.
Tomato is a popular vegetable widely grown in the tropics, which is mainly attacked by fusarium wilt incited by Fusarium oxysporum f. sp. lycopersici (FOL). In the present scenario, an ecofriendly alternative strategy such as use of fungi from rhizosphere is being explored to combat the phytopathogen invasion. This study was carried out to evaluate the efficacy of Trichoderma asperellum MSST to promote the growth and yield parameters of tomato S-22, a susceptible variety. This study was also undertaken to manage fusarium wilt disease under in vitro and in vivo conditions. Significant increase in vegetative parameters like root length, shoot length, plant weight and chlorophyll content 60 days after sowing (DAS) was observed. There was reduction in the incidence of fusarium wilt in tomato up to 85%. Increase in the level of total phenol, peroxidase, polyphenoloxidase and phenylalanine ammonium lyase activity at 10th day of pathogen inoculation showed enhancement of plant defence mechanism by T. asperellum MSST against FOL. Overall study revealed that isolate MSST was proven to be potential biocontrol agent showing induced resistance against FOL.  相似文献   

14.
普通菜豆镰孢菌枯萎病是严重制约菜豆(Phaseolus vulgaris)产量的主要病害之一。采用下胚轴双孔注射法对601份普通菜豆种质资源进行枯萎病抗性鉴定, 共筛选出4份高抗材料。在此基础上, 基于分布在全基因组上的3 765 456个单核苷酸多态性(SNP)标记, 进行全基因组关联分析, 以P<1×10-5为阈值。结果检测到57个显著关联的SNP位点, 分布于1、2、6、8和11号染色体上; 共获得8个显著关联区域, 其中位于1号染色体上的区域1包含SNP最多(48个), 最显著SNP P值为2.18E-07。在8个显著关联区域中, 共检测到186个基因, 其中157个基因有注释信息, 编码过氧化物酶、抗病蛋白、转录因子和蛋白激酶等。结合KEGG富集分析和序列同源性比对, 鉴定出9个候选基因可能与抗性相关。  相似文献   

15.
Pot experiments were carried out in the green house at Amhara Regional Agriculture Research Institute (ARARI) Bahirdar, Ethiopia to evaluate the potential of Brassica carinata cultivars namely; Holleta-l, S-67 and Yellow Dodola in 2007 and 2008. The treatment effects of B. carinata (L.) cultivars Holleta–1, S-67 and Yellow Dodola seed meals on chickpea fusarium wilt (Fusarium oxysporum f.sp. ciceris) were studied. Six rates of seed (0, 5, 10, 15, 20 and 25 g/kg of infested soil) were used. Infested soil without B.carinata cultivars amendments as a control and susceptible check variety JG-62 also without amendments were used in all the experiments. For each seed meal experiment, the treatments were arranged in factorial randomised complete block design in three replications. Data on seedling emergence, wilt incidence, fresh weight, dry weight, pod per plant, seed per pod, hundred seed weight and yield per hectare were collected. The amendments of infested soil with B.carinata cultivars seed meal reduced the incidence of chickpea fusarium wilt and increased yield per hectare. The interaction of the seed meal Holleta-1, S-67 and Yellow Dodola at 10–25 g/kg infested soil were effective in reducing wilt incidences on chickpea. However, the interaction of Yellow Dodola with 20 and 25 g seed meal per kg infested soil were the best combination in reducing significantly wilt incidence. The three cultivars incorporated at different level of doses significantly affected the influence of Fusarium wilt on the fresh weight, dry weight, pod per plant, seed per pod, hundred seed weight and yield per hectare. The highest yield kg/ha was recorded in combination of Yellow Dodola seed meal at 20 and 25 g followed by S-67 and Holleta-1 at 25 g /kg infested soil, respectively. The interaction of Holleta-1 at 5–25 infested soil significantly reduced disease incidence up to 16.7–43.3% and increased yield per hectare with mean by (30%) over the control. Seed meal amendment S-67 significantly reduce disease incidence 26.7–46.7% and increased yield kg/ha with mean by (36.7%) from the unamended control. Yellow dodola reduces disease incidence with 26.7–63.3% and increased yield kg/ha with mean by (45%) from the unamended control. The result indicates the potential of using Brassica crop seed meal amendment as useful component of integrated chickpea wilt management.  相似文献   

16.
Head blight caused by Fusarium culmorum may lead to yield reduction and the contamination of cereal grain with the mycotoxins deoxynivalenol (DON), 3-acetyl deoxynivalenol (3-ADON), nivalenol (NIV), fusarenone-X (FUS), and others. In this study, the covariation between DON and NIV accumulation of 12 rye and eight wheat genotypes that differed in resistance were analysed by inoculating them with a DON-and a NIV-producing isolate, respectively, in three locations. The resistance traits head blight rating and plot yield relative to the uninoculated plots of the same genotype were assessed and the contents of DON, 3-ADON, NIV, and FUS in the grain were analysed by gas chromatography with mass spectrometry. The NIV-producing isolate was significantly (P=0.05) less aggressive and led to a considerably lower mean NIV content in the grain compared with the aggressiveness and mean DON content of the DON-producing isolate (19.5 mg NIV/kg grain versus 48.4 mg DON/kg). Wheat and rye genotypes significantly differed in their DON and NIV accumulation. All genotypes reacted in a similar manner to both chemotypes of F. culmorum for the resistance traits and the respective mycotoxin contents with the exception of one wheat variety, that caused a change in rank order for mycotoxin content. In conclusion, resistance to head blight and tolerance to mycotoxin accumulation seems to be most likely the same for DON- and NIV-producing isolates of F. culmorum .  相似文献   

17.

Background  

Pigeonpea (Cajanus cajan (L.) Millsp) is one of the major grain legume crops of the tropics and subtropics, but biotic stresses [Fusarium wilt (FW), sterility mosaic disease (SMD), etc.] are serious challenges for sustainable crop production. Modern genomic tools such as molecular markers and candidate genes associated with resistance to these stresses offer the possibility of facilitating pigeonpea breeding for improving biotic stress resistance. Availability of limited genomic resources, however, is a serious bottleneck to undertake molecular breeding in pigeonpea to develop superior genotypes with enhanced resistance to above mentioned biotic stresses. With an objective of enhancing genomic resources in pigeonpea, this study reports generation and analysis of comprehensive resource of FW- and SMD- responsive expressed sequence tags (ESTs).  相似文献   

18.
An integrated molecular marker map of the chickpea genome was established using 130 recombinant inbred lines from a wide cross between a cultivar resistant to fusarium wilt caused by Fusarium oxysporum Schlecht. emend. Snyd. &. Hans f. sp. ciceri (Padwick) Snyd & Hans, and an accession of Cicer reticulatum (PI 489777), the wild progenitor of chickpea. A total of 354 markers were mapped on the RILs including 118 STMSs, 96 DAFs, 70 AFLPs, 37 ISSRs, 17 RAPDs, eight isozymes, three cDNAs, two SCARs and three loci that confer resistance against different races of fusarium wilt. At a LOD-score of 4.0, 303 markers cover 2077.9 cM in eight large and eight small linkage groups at an average distance of 6.8 cM between markers. Fifty one markers (14.4%) were unlinked. A clustering of markers in central regions of linkage groups was observed. Markers of the same class, except for ISSR and RAPD markers, tended to generate subclusters. Also, genes for resistance to races 4 and 5 of fusarium wilt map to the same linkage group that includes an STMS and a SCAR marker previously shown to be linked to fusarium wilt race 1, indicating a clustering of several fusarium-wilt resistance genes around this locus. Significant deviation from the expected 1 : 1 segregation ratio was observed for 136 markers (38.4%, P<0.05). Segregation was biased towards the wild progenitor in 68% of the cases. Segregation distortion was similar for all marker types except for ISSRs that showed only 28.5% aberrant segregation. The map is the most extended genetic map of chickpea currently available. It may serve as a basis for marker-assisted selection and map-based cloning of fusarium wilt resistance genes and other agronomically important genes in future. Received: 17 November 1999 / Accepted: 4 June 2000  相似文献   

19.
为了克服保护地栽培作物的连作障碍,针对筛选的拮抗引起土传病害的枯萎病菌和疫霉病菌的微生物菌种进行了混合生防菌剂的制备,测定了制备菌剂中的菌体数量和抑菌活性;在人工接种的条件下研究了制备菌剂的生防效果;在保护地中试验了混合菌剂对枯萎病和疫霉病的防效。结果表明:制备的单菌剂中含有的活菌体数量能达到108 cfu/g以上,混合菌剂中每个菌种的活菌体数量能达到105 cfu/g,并且菌剂的粗提物中存在明显的抑制枯萎病菌和疫霉病菌的抑菌物质。在人工接种盆栽试验中单菌剂和混合菌剂对枯萎病和疫霉病均有一定的防效,其中混合菌剂对两种病害的防效均达到80%以上。混合菌剂田间实验对枯萎病和疫霉病防效能达到70%以上。  相似文献   

20.
刘增亮  汪茜  宋娟  周双云  车江旅  陈廷速 《菌物学报》2019,38(11):1958-1964
为筛选得到优良植物病害生防菌,对广西生姜Zingiber officinale种植区健康生姜根系和叶片中的共生真菌进行了组织分离,以生姜茎腐病菌群结腐霉Pythium myriotylum和香蕉枯萎病菌尖孢镰刀菌古巴专化型4号生理小种Fusarium oxysporum f. sp. cubense race 4为指示菌,通过平板对峙培养法和发酵液菌落直径法试验进行筛选评价,并结合形态学观察及ITS序列分析对筛选出的生防效果最好的共生真菌进行了鉴定。结果表明,从生姜植株共分离得到34株共生真菌,其中根系分离22株,叶片分离12株;对峙培养发现有6株共生真菌对生姜茎腐病菌和香蕉枯萎病菌均有抑制作用;其中菌株SBM-11拮抗作用最强,对生姜茎腐病菌抑制率达到93%,对香蕉枯萎病菌抑制率达到82%;SBM-11的发酵液对生姜茎腐病菌和香蕉枯萎病菌抑制率分别为82%、73%,与其他菌株发酵液抑制效果相比差异明显;结合形态和分子鉴定结果表明SBM-11菌株为绿色木霉Trichoderma viride,极具生防潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号