首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 843 毫秒
1.
准确评估地上生物量对优化草地资源管理和理解草地碳、水和能量平衡具有重要意义。该文通过近地遥感归一化植被指数(NDVI)构建最优经验模型, 对青藏高原高寒草地地上生物量进行估算。该文利用2018-2019年5-9月野外实测的地上生物量和植物冠层光谱仪(RapidSCAN)测定的NDVIRS数据, 构建了生长季不同时期地上生物量的估算模型; 并结合2018年NetCam物候相机测定的NDVICam时间序列数据, 实现地上生物量季节动态的模拟。主要结果: (1) NDVICamNDVIRS与地上生物量具有相似的单峰型季节变化格局, 但NDVI峰值出现的时间(7月)较地上生物量(8月)更早; (2)基于NDVI的生物量估算最优经验模型在5、7和9月是幂函数, 在6和8月是二次多项式, 估算精度为0.29-0.77; (3)基于NDVICam时间序列数据, 生长季不同时期建模(R2 = 0.91)较单一时期(9月)建模(R2 = 0.49)对地上生物量季节动态的估算更为准确。这些结果表明, 近地遥感是估算高寒草地植物地上生物量的有效手段, 开展季节性植物生长调查将有助于准确评估草地资源。  相似文献   

2.
该研究基于机载激光雷达(LiDAR)和高光谱数据, 从森林物种叶片的生理化学源头探寻生化特征与光谱特征的内在关联, 探讨生化多样性、光谱多样性与物种多样性之间的响应机制, 选择最优植被指数并结合最优结构参数, 通过聚类方法构建森林物种多样性遥感估算模型, 在古田山自然保护区开展森林乔木物种多样性监测。研究结果表明: (1)从16种叶片生化组分中, 筛选出叶绿素a、叶绿素b、类胡萝卜素、叶片含水量、比叶面积、纤维素、木质素、氮、磷和碳可通过偏最小二乘法用叶片光谱有效模拟(R2 = 0.60-0.79, p < 0.01), 并选择有效的植被指数: 转换型吸收反射指数/优化型土壤调整指数(TCARI/OSAVI)、类胡萝卜素反射指数(CRI)、水波段指数(WBI)、比值植被指数(RVI)、生理反射指数(PRI)和冠层叶绿素浓度指数(CCCI)表征相应的最优生化组分; (2)基于机载LiDAR数据利用结合形态学冠层控制的分水岭算法获得高精度单木分离结果(R 2 = 0.77, RMSE = 16.48), 同时采用逐步回归方法从常用的森林结构参数中选取树高和偏度作为最优结构参数(R 2 = 0.32, p < 0.01); (3)基于6个最优植被指数和2个最优结构参数, 以20 m × 20 m为窗口通过自适应模糊C均值方法进行聚类, 实现了研究区森林乔木物种丰富度(Richness, R 2= 0.56, RMSE = 1.81)和多样性指数Shannon-Wiener (R 2 = 0.83, RMSE = 0.22)与Simpson (R 2 = 0.85, RMSE = 0.09)的成图。该研究在冠层尺度上获取了与物种多样性相关的生化、光谱和结构参数, 将单木个体作为最小单元, 利用聚类算法直接估算物种类别差异, 无需判定具体的树种属性, 是利用遥感数据进行区域尺度森林物种多样性监测与成图的实践, 可为亚热带地区常绿阔叶林的物种多样性监测提供借鉴。  相似文献   

3.
《植物生态学报》1958,44(6):598
该研究基于机载激光雷达(LiDAR)和高光谱数据, 从森林物种叶片的生理化学源头探寻生化特征与光谱特征的内在关联, 探讨生化多样性、光谱多样性与物种多样性之间的响应机制, 选择最优植被指数并结合最优结构参数, 通过聚类方法构建森林物种多样性遥感估算模型, 在古田山自然保护区开展森林乔木物种多样性监测。研究结果表明: (1)从16种叶片生化组分中, 筛选出叶绿素a、叶绿素b、类胡萝卜素、叶片含水量、比叶面积、纤维素、木质素、氮、磷和碳可通过偏最小二乘法用叶片光谱有效模拟(R2 = 0.60-0.79, p < 0.01), 并选择有效的植被指数: 转换型吸收反射指数/优化型土壤调整指数(TCARI/OSAVI)、类胡萝卜素反射指数(CRI)、水波段指数(WBI)、比值植被指数(RVI)、生理反射指数(PRI)和冠层叶绿素浓度指数(CCCI)表征相应的最优生化组分; (2)基于机载LiDAR数据利用结合形态学冠层控制的分水岭算法获得高精度单木分离结果(R 2 = 0.77, RMSE = 16.48), 同时采用逐步回归方法从常用的森林结构参数中选取树高和偏度作为最优结构参数(R 2 = 0.32, p < 0.01); (3)基于6个最优植被指数和2个最优结构参数, 以20 m × 20 m为窗口通过自适应模糊C均值方法进行聚类, 实现了研究区森林乔木物种丰富度(Richness, R 2= 0.56, RMSE = 1.81)和多样性指数Shannon-Wiener (R 2 = 0.83, RMSE = 0.22)与Simpson (R 2 = 0.85, RMSE = 0.09)的成图。该研究在冠层尺度上获取了与物种多样性相关的生化、光谱和结构参数, 将单木个体作为最小单元, 利用聚类算法直接估算物种类别差异, 无需判定具体的树种属性, 是利用遥感数据进行区域尺度森林物种多样性监测与成图的实践, 可为亚热带地区常绿阔叶林的物种多样性监测提供借鉴。  相似文献   

4.
基于无人机的冬小麦拔节期表层土壤有机质含量遥感反演   总被引:2,自引:0,他引:2  
快速监测大面积分布的盐渍化麦田土壤有机质含量,可为推进盐渍土改良和促进碳循环研究提供数据支撑。通过野外采样与获取无人机遥感影像,分别基于裸土和植被情况,采用多元线性回归(MLR)、偏最小二乘回归(PLSR)和支持向量机回归(SVR)3种方法,建立区域有机质含量遥感模型,并进行检验和对比,确定最优的土壤有机质含量反演模型;最后基于最优模型进行研究区表层土壤有机质的反演,并与插值结果进行比较。结果表明: 经5×5的中值滤波处理后的光谱与土壤表层有机质对应最优;3种模型中,SVR模型的预测精度最高,PLSR次之,MLR效果最差。对比两种变量的建模效果,基于植被的SVR建模效果最好,其建模决定系数(R2)、均方根误差(RMSE)分别为0.89、0.20,验证R2、RMSE分别为0.82、0.24;基于裸土的建模效果不理想,最优的也是SVR模型,其建模R2、RMSE分别为0.63、0.26,验证R2、RMSE分别为0.61、0.25。根据最优模型反演得到该区域有机质含量为17.51~22.53 g·kg-1,平均值为19.51 g·kg-1,与实地调查结果较为一致;插值结果与反演结果相比,精度受到限制。综上,基于无人机多光谱可以对盐渍土冬小麦拔节期土壤有机质含量进行快速、大范围精准估测。  相似文献   

5.
《植物生态学报》2021,44(11):1113
全球变化背景下的干旱区植被变化受气候变化和人类活动双重影响。定量评价植被变化特征及其驱动机制, 对监测干旱区区域生态环境变化, 促进区域可持续发展有重要意义。由于复杂多样的人类活动难以量化, 有关这方面的研究多局限于植被对气候变化的响应, 而对人类活动影响考虑不足, 导致关于这方面的认识存在较大的偏差和不确定性。该文首先提出与土地利用相关的人类活动量化表征方法; 然后运用多元线性回归模型和随机森林模型中的较优模型, 分析气候变化和具体的人类活动对北天山北坡中段归一化植被指数(NDVI)的影响。主要结果: (1) 2000-2015年期间北天山北坡中段年NDVI总体呈增加趋势; 基于随机森林构建的NDVI与气候因子和人类活动的模型拟合精度明显优于多元线性回归模型, 其决定系数(R2)至少提高了24%; (2)研究期内与耕地有关的人类活动对北天山北坡中段NDVI分布及时空变化的影响呈增加的特征, 在2000-2015年期间人类活动对NDVI变化的贡献率为0.59, 超过了气候因子。该项研究为气候变化和人类活动对植被的影响研究提供了新思路, 也为干旱区生态环境保护和恢复提供了科学依据。  相似文献   

6.
参考温度的参数化过程一直是三温模型反演蒸散发及其蒸发、蒸腾组分的关键和难点。该研究基于典型城市草坪的波文比与热红外观测数据, 对三温模型植被蒸腾子模型中涉及的输入变量进行敏感性分析和误差分析, 确定对三温模型反演植被蒸腾精度最为关键的变量, 而后量化和对比输入变量参数化方法对三温模型计算草坪蒸腾的影响, 由此确定最佳的参考温度取值。结果表明: 1)参考叶片温度选择为整个纸片温度的最大值时反演效果最好(R2 = 0.91, 均方根误差(RMSE) = 0.078 mm·h-1); 2)采用植被冠层温度的最大值为参考温度时, 直接假定了植被最高温度冠层蒸腾为0 (实际存在一定的蒸腾速率), 所以容易低估实际蒸腾量, 造成三温模型反演精度略低于取值参考叶片温度最大值的方法, 但反演效果仍然较好(R2 = 0.87, RMSE = 0.080 mm·h-1)。因此, 考虑到参考叶片设置的局限性, 如果在实际应用中无法或者没有实际测量参考叶片温度时, 使用植被最大温度为参考温度也可达到较好的反演效果。  相似文献   

7.
内蒙古植被降水利用效率的时空格局及其驱动因素   总被引:4,自引:0,他引:4       下载免费PDF全文
植被降水利用效率(precipitation-use efficiency, PUE)是评价干旱、半干旱地区植被生产力对降水量时空动态响应特征的重要指标。该研究利用光能利用率CASA (Carnegie-Ames-Stanford Approach)模型估算了2001-2010年内蒙古地区植被净初级生产力(net primary productivity, NPP), 结合降水量的空间插值数据, 分析了近10年内蒙古地区植被PUE的空间分布、主要植被类型的PUE,及其时空格局的驱动因素。结果表明: 2001-2010年内蒙古地区所有植被的平均PUE为0.94 g C·m-2·mm-1, 且在105-120° E地带性规律明显,PUE上升速率为每10° 0.55 g C·m-2·mm-1。各植被类型间PUE差别较大, 其中灌丛PUE最高, 荒漠PUE最低。在不同的降水量区域, 植被PUE的空间分布与气候因子的关系有较大差别, 0-75 mm降水量区间内, PUE随降水量、气温的升高显著下降(R2 = 0.226, p < 0.05); 175-300 mm降水量区间内, 植被 PUE的空间变化与降水量和气温呈极显著相关关系(R2 = 0.878, p < 0.001), 且随降水量的增加显著上升( R2 = 0.94, p < 0.001), 变化速率约为每100 mm降水0.57 g C·m -2·mm-1; 在降水量大于475 mm的区域, 植被PUE的空间分布与降水量、气温的相关性显著(R2 = 0.19, p < 0.05), 且随着气温的上升、降水量的下降而增加, 其中气温的贡献是降水量的8.61倍。在不同的降水量区域, 植被 PUE的年际波动与气候因子的关系也有较大差别, 对于年降水量0-220 mm的地区, PUE的年际波动与降水量呈正相关性、与气温呈负相关性; 在年降水量为220-310 mm的地区, PUE的年际波动主要受降水量的控制, 受气温影响较小; 在年降水量>310 mm的地区,PUE的年际波动与降水量、气温均呈正相关关系, 但在降水量越高的地区, PUE的年际波动与降水量的相关性越弱, 与气温的相关性越强。植被覆盖度与PUE的空间分布极显著相关(R2 = 0.73, p < 0.001), 且与 PUE的年际波动也存在线性相关关系(R2 = 0.11, p < 0.001); 叶面积指数( LAI)与PUE的年际波动呈线性相关关系(R2 = 0.42, p < 0.001), 而当 LAI < 3.15时, PUE的空间分布随LAI增加而呈线性增加。  相似文献   

8.
土壤盐渍化是导致土壤质量下降、耕地减产的重要因素之一。为准确快速评价银川平原土壤含盐量,本研究对野外高光谱数据和室内高光谱数据进行一阶微分(FDR)变换,逐步回归(SR)筛选特征波段,利用偏最小二乘回归(PLSR)与支持向量机(SVM)进行建模,明确适用于本地区土壤含盐量准确反演的光谱类型,并对较差光谱类型进行分段校正与全局校正,尝试提高土壤含盐量反演精度。结果表明: 基于野外光谱的土壤含盐量反演模型精度比室内光谱平均高58.9%;对室内光谱进行分段校正、全局校正后反演精度均有提高,其中,PLSR以分段校正精度更高,建模决定系数(Rc2)、验证决定系数(Rp2)和相对分析误差(RPD)分别为0.790、0.633和1.64,而SVM以全局校正精度更高,Rc2Rp2和RPD分别为0.927、0.947和3.87;SVM模型的反演精度高于PLSR,其中,野外光谱建模效果最佳,室内全局校正光谱与室内分段校正光谱次之,室内光谱最差。因此,野外高光谱可实现对银川平原土壤表层含盐量的定量反演,经校正的室内光谱对土壤含盐量反演精度显著提升,均可为粮食安全与生态环境高质量发展提供保障。  相似文献   

9.
生物多样性与生态系统功能的关系是当前生态学研究的焦点和难点。植物功能多样性是影响生态系统功能的重要指标, 开展植物功能多样性的研究对了解生物多样性与生态系统功能之间的关系有着重要意义。传统的草地植物功能多样性研究多以实地调查为主, 不仅费时费力, 而且由于受到时空的限制, 很难拓展到大尺度的研究中。遥感技术的发展为评估草地功能多样性提供了一种经济、有效的手段。该研究选取内蒙古自治区锡林郭勒盟乌拉盖管理区草甸草原为研究区, 利用Sentinel-2卫星影像和野外实测数据, 选取了波段及植被指数等46个特征变量, 探讨了逐步回归、偏最小二乘法(PLSR)和随机森林(RFR)等3种不同方法对草地植物功能丰富度(FRic)、功能均匀度(FEve)和功能离散度(FDiv)的反演精度, 并基于PLSR反演草地地上生物量, 进一步分析了研究区功能多样性与生产力的关系。研究结果表明: (1)波段B11、优化型土壤调节植被指数(OSAVI)、水波段指数(WBI)对FRic解释度最高; 波段B6、B10、B12、类胡萝卜素反射指数1 (CRI1)、双峰光学指数(D)、归一化差值指数45 (NDI45)等6个特征变量对FEve解释度最高; 波段B5、B9、B10、B11、加权差分植被指数(WDVI)、凸包面积等对FDiv解释度最高; (2)基于十折重复交叉验证, 利用逐步回归估算的FRic和FEve反演精度远高于其他两种回归方法, R2分别为0.52和0.44; 而利用PLSR方法估算的FDiv反演精度最高(R2 = 0.61); (3)群落地上生物量反演精度为R2 = 0.61; FRic与地上生产力的关系最好(R2 = 0.40), 其次为FDiv (R2 = 0.28)和FEve (R2 = 0.27)。研究发现, 基于Sentinel-2卫星影像能较好地反演草地功能多样性和生产力, 为下一步能在大尺度上进行草地功能多样性估算及其与生产力关系研究提供了参考和依据。  相似文献   

10.
为了验证作物生长监测诊断仪(CGMD)监测双季稻氮素营养指标的准确性和适用性,构建基于CGMD的双季稻叶片氮含量(LNC)和氮积累量(LNA)的监测模型。选用8个不同早、晚稻品种,设置4个不同施氮水平,利用CGMD采集冠层差值植被指数(DVI)、归一化植被指数(NDVI)和比值植被指数(RVI),同步利用ASD FH2高光谱仪采集冠层光谱反射率,并计算DVI、NDVI和RVI;通过比较CGMD和ASD FH2采集的冠层植被指数变化特征,验证CGMD的测量精度,构建基于CGMD的LNC和LNA监测模型,并利用独立试验数据对模型进行检验。结果表明: 早、晚稻LNC、LNA、DVI、NDVI和RVI随施氮水平的增加而增大,随生育进程的推进呈先升后降的趋势;CGMD与ASD FH2采集的DVI、NDVI和RVI间拟合的决定系数(R2)分别为0.9350、0.9436和0.9433,表明CGMD的测量精度较高,可替代ASD FH2采集冠层植被指数。基于CGMD的3个冠层植被指数相比,NDVICGMD与LNC的相关性最高,RVICGMD与LNA的相关性最高;基于NDVICGMD的指数模型可较准确地预测LNC,模型R2为0.8581~0.9318,模型检验的均方根误差(RMSE)、相对均方根误差(RRMSE)和相关系数(r)分别为0.1%~0.2%、4.0%~8.5%和0.9041~0.9854;基于RVICGMD的幂函数模型可较准确地预测LNA,模型R2为0.8684~0.9577,模型检验的RMSE、RRMSE和r分别为0.37~0.89 g·m-2、6.7%~20.4%和0.9191~0.9851。与化学分析方法相比,利用CGMD可便捷准确地获取早、晚稻的LNC和LNA,在双季稻丰产高效栽培和氮肥精确管理中具有应用价值。  相似文献   

11.
邱赛  邢艳秋  徐卫华  丁建华  田静 《生态学报》2016,36(22):7401-7411
以吉林省汪清林业局经营区为研究区,利用HJ-1A/HSI高光谱数据和ICESat-GLAS波形数据,估测区域森林地上生物量。从平滑后的GLAS波形数据中提取波形长度W和地形坡度参数TS,建立GLAS森林最大树高估测模型;从GLAS波形数据中提取能量参数I(植被回波能量Ev和回波总能量E之比),建立GLAS森林郁闭度估测模型;利用GLAS估测的森林最大树高和森林郁闭度联合建立森林地上生物量模型。由于GLAS呈离散条带状分布,无法实现区域估测,因此研究将GLAS波形数据与HJ-1A/HSI高光谱数据联合,基于支持向量回归机算法实现森林地上生物量区域估测,得到研究区森林地上生物量分布图。研究结果显示,基于W和TS建立的GLAS森林最大树高估测模型的adj.R~2=0.78,RMSE=2.51m,模型验证的adj.R~2=0.85,RMSE=1.67m。地形坡度参数TS能够有效的降低地形坡度的影响;当林下植被高度为2m时,得到的基于参数I建立的GLAS森林郁闭度估测模型效果最好,模型的adj.R~2=0.64,RMSE=0.13,模型验证的adj.R~2=0.65,RMSE=0.12。利用森林最大树高和森林郁闭度建立的森林地上生物量模型的adj.R~2=0.62,RMSE=10.88 t/hm~2,模型验证的adj.R~2=0.60,RMSE=11.52 t/hm~2。基于支持向量回归机算法,利用HJ-1A/HSI和GLAS数据建立的森林地上生物量SVR模型,生成了森林地上生物量分布图,利用野外数据对得到的分布图进行验证,验证结果显示森林地上生物量估测值与实测值存在很强的线性关系(adj.R~2=0.62,RMSE=11.11 t/hm~2),能够满足林业应用的需要。因此联合ICESat-GLAS波形数据与HJ-1A高光谱数据,能够提高区域森林地上生物量的估测精度。  相似文献   

12.
陈宝  刘志华  房磊 《生态学报》2019,39(22):8630-8638
火干扰是北方针叶林结构、功能及动态的主要调节因子之一。研究火后植被恢复对理解火干扰和生态系统的交互作用具有重要意义。火烧迹地通常由植被与基质混合组成,在中低分辨率( > 10 m)遥感影像中表现为混合像元,因此研究亚像元尺度上植被的恢复是精确量化植被恢复的关键。本研究以2000年大兴安岭呼中自然保护区中8700 hm2火烧迹地为研究区,以两期(2014年6月1日和2010年6月22日)中分辨率Landsat ETM+影像(30 m)为基础数据,比较多端元光谱混合分析(Multiple Endmember Spectral Mixture Analysis,MESMA)和归一化植被指数(Normalized Difference Vegetation Index,NDVI)获得的植被盖度,以高分辨率(2 m)WorldView-2影像(2014年7月1日)为验证数据,对两种方法计算的植被盖度精度进行比较。结果表明,MESMA方法获得的植被盖度(R2=0.691)与传统的NDVI获得的植被盖度(R2=0.700)精度无统计差异,中烈度下获得的植被覆盖精度高于低、高火烧烈度。为验证同一端元能否运用到不同时相的Landsat影像中,本研究将从2014年影像中获取的最佳端元运用到2010年影像中获得植被盖度图,结果表明2014年与2010年得到的RMSE(均方根误差)均值分别为0.0015和0.0065,说明最佳端元可用于不同时相的影像分解。本研究表明MESMA方法可有效监测北方针叶林中火后植被盖度恢复,并可运用于时间序列遥感影像监测植被恢复动态。  相似文献   

13.
基于HJ1B和ALOS/PALSAR数据的森林地上生物量遥感估算   总被引:1,自引:0,他引:1  
王新云  郭艺歌  何杰 《生态学报》2016,36(13):4109-4121
森林地上生物量的精确估算能够减小碳储量估算的不确定性。为了探寻一种有效地提高森林生物量估算精度的方法,探讨了基于遥感物理模型和经验统计模型估算山地森林地上生物量的方法。首先,基于Li-Strahler几何光学模型和多元前向模式(MFM)进行模型模拟,结合查找表算法(LUT)从多光谱图像HJ1B估算贺兰山研究区的森林地上生物量。其次,采用统计方法建立了2种回归模型:(1)多光谱图像HJ1B进行混合像元分解(SMA),并与雷达图像ALOS/PALSAR进行图像融合建立生物量回归模型;(2)雷达图像ALOS/PALSAR后向散射系数和实测生物量建立了生物量回归模型。用实测数据对3种算法估算结果进行精度验证。研究结果表明:采用几何光学模型和MFM算法估算的森林地上生物量精度最好(决定系数R2=0.61,均方根误差RMSE=8.33 t/hm2,P0.001),其估算地上生物量与实测值一致性较好,估算生物量精度略优于SMA估算的精度(R2=0.60,RMSE=9.417 t/hm2);ALOS/PALSAR多元回归估算的精度最差(R2=0.39,RMSE=14.89 t/hm2)。由此可见,采用几何光学模型和混合像元分解SMA适合估算森林地上生物量,利用这2种方法进行森林地上生物量遥感监测研究具有一定的应用潜力。  相似文献   

14.
Assessment and monitoring of soil organic matter (SOM) quality are important for understanding SOM dynamics and developing management practices that will enhance and maintain the productivity of agricultural soils. Visible and near-infrared (Vis–NIR) diffuse reflectance spectroscopy (350–2500 nm) has received increasing attention over the recent decades as a promising technique for SOM analysis. While heterogeneity of sample sets is one critical factor that complicates the prediction of soil properties from Vis–NIR spectra, a spectral library representing the local soil diversity needs to be constructed. The study area, covering a surface of 927 km2 and located in Yujiang County of Jiangsu Province, is characterized by a hilly area with different soil parent materials (e.g., red sandstone, shale, Quaternary red clay, and river alluvium). In total, 232 topsoil (0–20 cm) samples were collected for SOM analysis and scanned with a Vis–NIR spectrometer in the laboratory. Reflectance data were related to surface SOM content by means of a partial least square regression (PLSR) method and several data pre-processing techniques, such as first and second derivatives with a smoothing filter. The performance of the PLSR model was tested under different combinations of calibration/validation sets (global and local calibrations stratified according to parent materials). The results showed that the models based on the global calibrations can only make approximate predictions for SOM content (RMSE (root mean squared error) = 4.23–4.69 g kg−1; R2 (coefficient of determination) = 0.80–0.84; RPD (ratio of standard deviation to RMSE) = 2.19–2.44; RPIQ (ratio of performance to inter-quartile distance) = 2.88–3.08). Under the local calibrations, the individual PLSR models for each parent material improved SOM predictions (RMSE = 2.55–3.49 g kg−1; R2 = 0.87–0.93; RPD = 2.67–3.12; RPIQ = 3.15–4.02). Among the four different parent materials, the largest R2 and the smallest RMSE were observed for the shale soils, which had the lowest coefficient of variation (CV) values for clay (18.95%), free iron oxides (15.93%), and pH (1.04%). This demonstrates the importance of a practical subsetting strategy for the continued improvement of SOM prediction with Vis–NIR spectroscopy.  相似文献   

15.
We estimated leaf area index (LAI) and canopy openness of broad-leaved forest using discrete return and small-footprint airborne laser scanner (ALS) data. We tested four ALS variables, including two newly proposed ones, using three echo types (first, last, and only) and three classes (ground, vegetation, and upper vegetation), and compared the accuracy by means of correlation and regression analysis with seven conventional vegetation indices derived from simultaneously acquired high-resolution near-infrared digital photographs. Among the ALS variables, the ratio of the “only-and-ground” pulse to “only” pulse (OGF) was the best estimator of both LAI (adjusted R 2 = 0.797) and canopy openness (adjusted R 2 = 0.832), followed by the ratio of the pulses that reached the ground to projected lasers (GF). Among the vegetation indices, the normalized differential vegetation index (NDVI) was the best estimator of both LAI (adjusted R 2 = 0.791) and canopy openness (adjusted R 2 = 0.764). Resampling analysis on ALS data to examine whether the estimation of LAI and canopy openness was possible with lower point densities revealed that GF maintained a high adjusted R 2 until a fairly low density of about 0.226 points/m2, while OGF performed marginally when the point density was reduced to about 1 point/m2, the standard density of high-density products on the market as of February 2008. Consequently, the ALS variables proposed in the present study, GF and OGF, seemed to have great potential to estimate LAI and canopy openness of broad-leaved forest, with accuracy comparable to NDVI, from high-resolution near-infrared imagery.  相似文献   

16.
The estuary tides affect groundwater dynamics; these areas are susceptible to waterlogging and salinity issues. A study was conducted on two fields with a total area of 60 hectares under a center pivot irrigation system that works with solar energy and belong to a commercial farm located in Northern Sudan. To monitor soil salinity and calcium carbonate in the area and stop future degradation of soil resources, easy, non-intrusive, and practical procedures are required. The objective of this study was to use remote sensing-determined Sentinel-2 satellite imagery using various soil indices to develop prediction models for the estimation of soil electrical conductivity (EC) and soil calcium carbonate (CaCO3). Geo-referenced soil samples were collected from 72 locations and analyzed in the laboratory for soil EC and CaCO3. The electrical conductivity of the soil saturation paste extract was represented by average values in soil dataset samples from two fields collected from the topsoil layer (0 to 15 cm) characteristic of the local salinity gradient. The various soil indices, used in this study, were calculated from the Sentinel-2 satellite imagery. The prediction was determined using the root mean square error (RMSE) and cross validation was done using coefficient of determination. The results of regression analysis showed linear relationships with significant correlation between the EC analyzed in laboratory and the salinity index-2 “SI2” (Model-1: R2 = 0.59, p = 0.00019 and root mean square error (RMSE = 1.32%) and the bare soil index “BSI” (Model-2: R2 = 0.63, p = 0.00012 and RMSE = 6.42%). Model-1 demonstrated the best model for predicting soil EC, and validation R2 and RMSE values of 0.48% and 1.32%, respectively. The regression analysis results for soil CaCO3 determination showed linear relationships with data obtained in laboratory and the bare soil index “BSI” (Model- 3: R2 = 0. 45, p = 0.00021 and RMSE = 1.29%) and the bare soil index “BSI” & Normalized difference salinity index “NDSI” (Model-4: R2 = 0.53, p = 0.00015 and RMSE = 1.55%). The validation confirmed the Model-3 results for prediction of soil CaCO3 with R2 and RMSE values of 0.478% and 1.29%, respectively. Future soil monitoring programs might consider the use of remote sensing data for assessing soil salinity and CaCO3 using soil indices results generated from satellite image (i.e., Sentinel-2).  相似文献   

17.
为构建树种叶面积指数的估算模型,以NDVI、RVI、FREP、CIGreen、CIRed-edge、MSAVI2为高光谱特征变量,通过统计分析,确定反演树种叶面积指数的最佳光谱特征变量,构建华南农业大学校园内50种亚热带树木的叶片反射率和叶面积指数(LAI)模型。结果表明,6种高光谱特征变量与树种叶面积指数间都具有极显著相关性,其中红边位置反射率(FREP)和比值植被指数(RVI)与LAI的拟合方程的R2都大于0.8,决定系数分别为0.820和0.811。经过精度验证,FREP估算的均方根误差(RMSE)只有0.13,该回归模型为估测亚热带典型树种的叶片LAI最佳模型。从高光谱遥感的角度结合亚热带植被的群落结构特点来看,建立的红边位置光谱反射率与叶面积指数的回归模型普遍具有较高的拟合度,所以利用高光谱特征变量反演亚热带树木叶片的叶面积指数等植被参数的应用前景较好。  相似文献   

18.
A regression model was used to determine the relationship between aerial herbaceous biomass and vegetation coverage estimated by digital images. Four samplings (n=36 each date) of vegetation cover and herbaceous biomass were performed during the growing season in 2011 in a grassland dominated by Bouteloua gracilis in La Cieneguilla, Municipality of Villa Hidalgo, Durango. Average production of dry biomass was 37.36 ± 9.66 g/m2, and mean vegetation cover 30.02%. Dry biomass data were tested for normality using the test of Kolmogorov Smirnov, finding a lack of fit. The data were subjected to a logarithmic transformation and the model Ln(y) = 1.637926 + 0.08501X - 0.000586X2 with an adjusted R2 = 0.89 was found. In order to validate this model, another five samplings were carried out in 2013 at the same site during summer and autumn, using the same sampling size for each date as in 2011. Data collected in 2013 were analyzed with the model Ln (y) = β0 + β1X + β2X2. A comparison of regression coefficients was carried out between the 2011 and 2013 models with t (180+144-9-11-2=302, p<0.05) = 1.967. The results indicated that it is possible to use the 2011 regression model to estimate herbaceous aerial biomass from vegetation cover measurements with aerial photographs in La Cieneguilla site during summer and fall.  相似文献   

19.
基于中高分辨率遥感的植被覆盖度时相变换方法   总被引:10,自引:0,他引:10  
张喜旺  吴炳方 《生态学报》2015,35(4):1155-1164
植被覆盖度是衡量地表植被状况、指示生态环境变化的一个重要指标,也是许多学科的重要参数。传统的测量方法难以获取时间连续的面状数据,且耗时、耗力,很难大范围推广。遥感估算方法虽然可以弥补传统方法的不足,但由于云覆盖等天气条件的影响,获得同一时相覆盖整个研究区的遥感影像非常困难,时相的差异必然导致研究结果产生误差。针对植被覆盖度这一重要生态参数,结合低分辨率遥感数据的时间优势和中高分辨率遥感数据的空间优势,提出一种时相变换方法,将源于中高分辨率影像的植被覆盖度变换到研究需要的时相上。首先,利用像元二分模型计算MODIS尺度的时间序列植被覆盖度,并利用已经获得的SPOT影像计算其获取时相上的植被覆盖度;其次,利用土地利用图划分植被覆盖类型,并利用MODIS数据和土地利用数据之间的空间对应关系制作MODIS像元内各类植被覆盖的面积百分比数据;再次,利用面积百分比数据提取各类植被覆盖的纯像元,结合MODIS植被覆盖度时间序列,从而提取各类植被覆盖纯像元的植被覆盖度时间序列曲线;最后利用像元分解的方法提取MODIS像元内各类植被覆盖组分的植被覆盖度的变化规律,将其应用到该组分对应位置上SPOT像元的植被覆盖度上,从而将其变换到所需要的时相上。在密云水库上游进行试验,将覆盖研究区的10景SPOT5多光谱影像计算的植被覆盖度统一变换到7月上旬,结果显示:视觉效果上明显好转,且空间上连续一致;变换前后植被覆盖度的统计量对比结果也符合植被生长规律;利用外业样点数据与对应位置的植被覆盖度变换结果进行回归分析,结果发现各植被覆盖类型的R2均在0.8左右,表明变换结果与实测值非常接近,时相变换的效果较好,从而可以很好地促进相关研究精度的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号