首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Escherichia coli K-12 mutants with serC genotype required pyridoxine and serine for normal growth, as do E. coli B mutants of this type. Mutants of the K-12 strain, however, reverted easily to pyridoxine independence without regaining activity in the 3-phosphoserine oxoglutarate transaminase coded for by the serC gene. Both these revertants and the parental type synthesized pyridoxine in normal amounts when 3-hydroxypyruvate was used as a supplement, although neither of these mutants could use this compound to satisfy their serine requirement. Since serine alone was inadequate to provide the nutritional requirement of serC mutants, these mutants must have been unable to synthesize 3-hydroxypyruvate from serine. We suggest that 3-phosphoserine oxoglutarate transaminase in normal E. coli serves as a catalyst for transaminating small amounts of serine to 3-hydroxypyruvate, which is then used in pyridoxine biosynthesis. In serC mutants, this activity is blocked, and these mutants then show a double requirement for serine and pyridoxine.  相似文献   

2.
J W Harper  J C Powers 《Biochemistry》1985,24(25):7200-7213
The time-dependent inactivation of several serine proteases including human leukocyte elastase, cathepsin G, rat mast cell proteases I and II, and human skin chymase by a number of 3-alkoxy-4-chloroisocoumarins, 3-alkoxy-4-chloro-7-nitroisocoumarins, and 3-alkoxy-7-amino-4-chloroisocoumarins at pH 7.5 and the inactivation of several trypsin-like enzymes including human thrombin and factor XIIa by 7-amino-4-chloro-3-ethoxyisocoumarin and 4-chloro-3-ethoxyisocoumarin are reported. The 3-alkoxy substituent of the isocoumarin is likely interacting with the S1 subsite of the enzyme since the most reactive inhibitor for a particular enzyme had a 3-substituent complementary to the enzyme's primary substrate specificity site (S1). Inactivation of several enzymes including human leukocyte elastase by the 3-alkoxy-7-amino-4-chlorisocoumarins is irreversible, and less than 3% activity is regained upon extensive dialysis of the inactivated enzyme. Addition of hydroxylamine to enzymes inactivated by the 3-alkoxy-7-amino-4-chloroisocoumarins results in a slow (t1/2 greater than 6.7 h) and incomplete (32-57%) regain in enzymatic activity at pH 7.5. Inactivation by the 3-alkoxy-4-chloroisocoumarins and 3-alkoxy-4-chloro-7-nitroisocoumarins on the other hand is transient, and full enzyme activity is regained rapidly either upon standing, after dialysis, or upon the addition of buffered hydroxylamine. The rate of inactivation by the substituted isocoumarins is decreased when substrates or reversible inhibitors are present in the incubation mixture, which indicates active site involvement. The inactivation rates are dependent upon the pH of the reaction mixture, the isocoumarin ring system is opened concurrently with inactivation, and the reaction of 3-alkoxy-7-amino-4-chloroisocoumarins with porcine pancreatic elastase is shown to be stoichiometric. The results are consistent with a scheme where 3-alkoxy-7-amino-4-chloroisocoumarins react with the active site serine of a serine protease to give an acyl enzyme in which a reactive quinone imine methide can be released. Irreversible inactivation could then occur upon alkylation of an active site nucleophile (probably histidine-57) by the acyl quinone imine methide. The finding that hydroxylamine slowly catalyzes partial reactivation indicates that several inactivated enzyme species may exist. The 3-alkoxy-substituted 4-chloroisocoumarins and 4-chloro-7-nitroisocoumarins are simple acylating agents and do not give stable inactivated enzyme structures.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Pyruvate carboxylase (PC) is a biotin-dependent enzyme that catalyzes the MgATP- and bicarbonate-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in central metabolism. The carboxyltransferase (CT) domain of PC catalyzes the transfer of a carboxyl group from carboxybiotin to the accepting substrate, pyruvate. It has been hypothesized that the reactive enolpyruvate intermediate is stabilized through a bidentate interaction with the metal ion in the CT domain active site. Whereas bidentate ligands are commonly observed in enzymes catalyzing reactions proceeding through an enolpyruvate intermediate, no bidentate interaction has yet been observed in the CT domain of PC. Here, we report three X-ray crystal structures of the Rhizobium etli PC CT domain with the bound inhibitors oxalate, 3-hydroxypyruvate, and 3-bromopyruvate. Oxalate, a stereoelectronic mimic of the enolpyruvate intermediate, does not interact directly with the metal ion. Instead, oxalate is buried in a pocket formed by several positively charged amino acid residues and the metal ion. Furthermore, both 3-hydroxypyruvate and 3-bromopyruvate, analogs of the reaction product oxaloacetate, bind in an identical manner to oxalate suggesting that the substrate maintains its orientation in the active site throughout catalysis. Together, these structures indicate that the substrates, products and intermediates in the PC-catalyzed reaction are not oriented in the active site as previously assumed. The absence of a bidentate interaction with the active site metal appears to be a unique mechanistic feature among the small group of biotin-dependent enzymes that act on α-keto acid substrates.  相似文献   

4.
Kinetic evidence is presented that introduces a new possibility for a mechanism of metal removal from a protein by a chelator. Astacus protease is a 22,614 dalton zinc-metalloendopeptidase from the digestive tract of the freshwater crayfish. Recent studies have shown that it contains a single zinc atom and that removal of this metal yields inactive apo-enzyme, which can be reactivated upon readdition of zinc, cobalt, or copper. The enzyme is inactivated by metal chelators in a time and concentration dependent manner. The inactivation of Zn-Astacus protease by 1,10-phenanthroline (OP) can be monitored continuously in the presence of substrate. The concentration of substrate was found to have no effect on the inactivation rate, indicating that the chelator binding during inactivation is of the noncompetitive type. First-order rate constants for the inactivation process are seen to depend on the concentration of chelator in a sigmoidal manner. Based on mathematics analogous to that for cooperativity in enzyme-substrate kinetics, the deduction is made that there are two OP binding sites on the protein and that the rate of inactivation is related to the saturation of both sites with ligand. If one uses this model, the limiting rate constant of inactivation upon saturation of both sites with ligand is 6.76 x 10(-3) sec-1, and the half maximal rate occurs at an OP concentration of 6.52 mM. A mechanism is proposed wherein both protein bound chelators can cooperate during metal removal either by direct chelation of the metal or by allosteric means. The proposed model and the noncompetitive binding of chelator and substrate are discussed in relation to a recently proposed metal binding site.  相似文献   

5.
The mechanism-based inhibition of dopamine beta-hydroxylase (DBH; EC 1.14.17.1) by p-cresol (4-methylphenol) and other simple structural analogues of dopamine, which lack a basic side-chain nitrogen, is reported. p-Cresol binds DBH by a mechanism that is kinetically indistinguishable from normal dopamine substrate binding [DeWolf, W. E., Jr., & Kruse, L. I. (1985) Biochemistry 24, 3379]. Under conditions (pH 6.6) of random oxygen and phenethylamine substrate addition [Ahn, N., & Klinman, J. P. (1983) Biochemistry 22, 3096] p-cresol adds randomly, whereas at pH 4.5 or in the presence of fumarate "activator" addition of p-cresol precedes oxygen binding as is observed with phenethylamine substrate. p-Cresol is shown to be a rapid (kinact = 2.0 min-1, pH 5.0) mechanism-based inactivator of DBH. This inactivation exhibits pseudo-first-order kinetics, is irreversible, is prevented by tyramine substrate or competitive inhibitor, and is dependent upon oxygen and ascorbic acid cosubstrates. Inhibition occurs with partial covalent incorporation of p-cresol into DBH. A plot of -log kinact vs. pH shows maximal inactivation occurs at pH 5.0 with dependence upon enzymatic groups with apparent pK values of 4.51 +/- 0.06 and 5.12 +/- 0.06. p-Cresol and related alkylphenols, unlike other mechanism-based inhibitors of DBH, lack a latent electrophile. These inhibitors are postulated to covalently modify DBH by a direct insertion of an aberrant substrate-derived benzylic radical into an active site residue.  相似文献   

6.
Xanthine dehydrogenase (XDH) from the unicellular green alga Chlamydomonas reinhardtii has been purified to electrophoretic homogeneity by a procedure which includes several conventional steps (gel filtration, anion exchange chromatography and preparative gel electrophoresis). The purified protein exhibited a specific activity of 5.7 units/mg protein (turnover number = 1.9 .10(3) min-1) and a remarkable instability at room temperature. Spectral properties were identical to those reported for other xanthine-oxidizing enzymes with absorption maxima in the 420-450 nm region and a shoulder at 556 nm characteristic of molybdoflavoproteins containing iron-sulfur centers. Chlamydomonas XDH was irreversibly inactivated upon incubation of enzyme with its physiological electron donors xanthine and hypoxanthine, in the absence of NAD+, its physiological electron acceptor. As deduced from spectral changes in the 400-500 nm region, xanthine addition provoked enzyme reduction which was followed by inactivation. This irreversible inactivation also took place either under anaerobic conditions or whenever oxygen or any of its derivatives were excluded. Adenine, 8-azaxanthine and acetaldehyde which could act as reducing substrates of XDH were also able to inactivate it upon incubation. The same inactivating effect was observed with NADH and NADPH, electron donors for the diaphorase activity associated with xanthine dehydrogenase. In addition, partial activities of XDH were differently affected by xanthine incubation. We conclude that xanthine dehydrogenase inactivation by substrate is due to an irreversible process affecting mainly molybdenum center and that sequential and uninterrupted electron flow from xanthine to NAD+ is essential to maintain the enzyme in its active form.  相似文献   

7.
The H+-translocating adenosine-5'-triphosphatase (ATPase) purified from the yeast Schizosaccharomyces pombe is inactivated upon incubation with the arginine modifier 2,3-butanedione. The inactivation of the enzyme is maximal at pH values above 8.5. The modified enzyme is reactivated when incubated in the absence of borate after removal of 2,3-butanedione. The extent of inactivation is half maximal at 10 mM 2,3-butanedione for an incubation of 30 min at 30 degrees C at pH 7.0. Under the same conditions, the time-dependence of inactivation is biphasic in a semi-logarithmic plot with half-lives of 10.9 min and 65.9 min. Incubation with 2,3-butanedione lowering markedly the maximal rate of ATPase activity does not modify the Km for MgATP. These data suggest that two classes of arginyl residues play essential role in the plasma membrane ATPase activity. Magnesium adenosine 5'-triphosphate (MgATP) and magnesium adenosine 5'-diphosphate (MgADP), the specific substrate and product, protect partially against enzyme inactivation by 2,3-butanedione. Free ATP or MgGTP which are not enzyme substrates do not protect. Free magnesium, another effector of enzyme activity, exhibits partial protection at magnesium concentrations up to 0.5 mM, while increased inactivation is observed at higher Mg2+ concentrations. These protections indicate either the existence of at least one reactive arginyl in the substrate binding site or a general change of enzyme conformation induced by MgATP, MgADP or free magnesium.  相似文献   

8.
Rat liver glycine methyltransferase is inactivated by 5'-p-fluorosulfonylbenzoyladenosine (FSBA) in a pseudo-first order fashion at pH 7.5. The addition of dithiothreitol (20 mM) to the reaction mixture results in partial restoration of enzyme activity. A semilog plot of residual activity after dithiothreitol reactivation versus time is also linear, indicating that at least two essential residues are present on the enzyme and the modification of either of which causes total loss of activity. The inactivation is accompanied by incorporation of the radiolabel from adenine-labeled FSBA, but the amount of radioactivity fixed is not altered upon treatment with dithiothreitol. From this fact and the stoichiometry between the loss of dithiothreitol-sensitive activity and the number of sulfhydryl groups disappeared, it is suggested that the dithiothreitol-sensitive inactivation is the consequence of the FSBA-mediated formation of a disulfide between two sulfhydryl groups in close proximity. Although 4 mol of reagent are covalently bound per enzyme subunit, the kinetics of modification and inactivation show that the reaction at 1 residue, which is identified as tyrosine, is responsible for the dithiothreitol-insensitive inactivation. The substrate S-adenosylmethionine provides complete protection against both types of inactivation, but the dithiothreitol-insensitive inactivation is protected much more effectively with a Kd value comparable to the Km value. This suggests that the tyrosine is located at or near the active site of the methyltransferase.  相似文献   

9.
Periodate-oxidized ATP (oATP) inactivates the partial reaction of aminoacyl-tRNA synthetases in which amino acid is transferred to tRNA without altering the other partial reaction in which ATP is a substrate or a product. The inactivation has been shown to be nonspecific with regard to substituents on the dialdehyde and with regard to the enzymes susceptible to inactivation; oxidized GTP and oxidized uridine react as well as oATP with aminoacyl-tRNA synthetases and all three dialdehydes also inactivate rabbit muscle aldolase.  相似文献   

10.
"Suicide" inactivation of leukotriene (LT) A4 hydrolase/aminopeptidase occurs via an irreversible mechanism-based process which is saturable, of pseudo firstorder, and dependent upon catalysis. Data obtained with either recombinant enzyme or enzyme purified from human leukocytes were similar. Apparent binding constants and inactivation rate constants are equivalent, compatible with a single type of substrate-enzyme complex which partitions between two fates, turnover and inactivation. Both catalytic functions are inactivated, consistent with an overlapping active site for this bifunctional enzyme. The partition ratio (turnover/inactivation) for the LTA4-enzyme complex is 129 +/- 16 for LTA4 hydrolase activity and 124 +/- 10 for aminopeptidase activity. The pH dependence for turnover and inactivation are indistinguishable with a maximum at pH 8. L-Proline p-nitroanilide, a weak substrate with a high Km for the aminopeptidase affords only partial protection against inactivation by LTA4. However, two potent competitive inhibitors, bestatin and captopril, protect both catalytic processes from inactivation, consistent with an active-site specificity for the suicide event. Electrospray ionization mass spectrometry indicates that the molecular weight of pure recombinant enzyme is 69,399 +/- 4 and that covalent modification accompanies catalysis, producing an LTA4:enzyme adduct with a molecular weight 69,717 +/- 4 and a 1:1 stoichiometry. In agreement with kinetic data, electrospray ionization mass spectrometry shows that bestatin inhibits the covalent modification of enzyme by LTA4 and that the extent of modification is proportional to the loss of enzymatic activity.  相似文献   

11.
Penicillinase from Bacillus cereus 569/H was purified to homogeneity. Its active site was probed by use of an affinity label generated in situ by the diazotization of 6-aminopenicillanic acid, a catalytically poor substrate for this enzyme. The loss of activity arising during the inactivation is dependent upon pH and the penicillin:sodium nitrite ratio used. Optimal inactivation was obtained at pH 4.7 and reactivation could be prevented if subsequent purification and manipulations were performed at low pH. Inactivation by diazotized 6-aminopenicillanic acid was characterized further by tryptic and chymotryptic digestion of the inactivated enzyme and peptide mapping of the resulting digests. Amino acid analysis of the chymotryptic labeled peptide yielded a composition which corresponds to residues 41-46 (Ala-Phe-Ala-Ser-Thr-Tyr) in the published partial sequence of the enzyme (Thatcher, D. (1975) Biochem. J. 147, 313-326). Further digestion of this chymotryptic peptide with carboxypeptidase A reveals that serine-44 is modified in this affinity labeling procedure. Mass spectral analysis of the modified serine residue and alkali-released label, and comparison with spectra of model compounds indicates that the inactivation occurs with rearrangement of the beta-lactamthiazolidine structure to a dihydrothiazine.  相似文献   

12.
Staphylococcal penicillinase (EC 3.5.2.6) is shown to undergo partial, fully reversible inactivation of benzylpenicillinase activity on incubation with the substrate quinacillin, the hydrolysis of which follows a corresponding biphasic time-course. The kinetics fit a scheme involving slow isomerization of the enzyme between conformational states that differ in Km and Vmax for quinacillin. The possibility that inactivation is related to formation of a previously observed covalent enzyme-quinacillin conjugate is ruled out because the kinetics of its formation differ from those of inactivation. This implies that the conjugate arises from a state of the enzyme substrate complex present during the normal catalytic cycle. The multiplicity of binding sites found suggests that a reactive catalytic intermediate substitutes several amino-acid side chains during denaturation of the enzyme-quinacillin mixture, thus providing an explanation of earlier results.  相似文献   

13.
When an enzyme is incubated with its substrate, the rate of catalysis will decline with time due to the combined effects of substrate utilization and product accumulation. These effects will be superimposed upon a progressive loss of catalytic activity if the enzyme is unstable, either spontaneously or as a result of an added reagent. In this report, the effect of enzyme inactivation on the progress curve for an enzyme-catalyzed reaction is considered. It is shown that under most circumstances catalysis will stop before the substrate is totally exhausted and that the amount of substrate remaining is related to the inactivation rate constants for various intermediates on the catalytic pathway. A graphical method for estimating these inactivation rate constants is suggested for several situations, including one which encompasses the effect of a suicide substrate. Expressions for the half time of the reaction are also given for some special cases.  相似文献   

14.
The NADP-linked glutamate dehydrogenase (NADP-gluDH) purified from epimastigotes of the Tulahuén strain, Tul 2 stock, of Trypanosoma cruzi, was inhibited by Cibacron Blue FG3A, and inactivated by preincubation with phenylglyoxal or Woodward's Reagent K. The inhibition by Cibracron Blue FG3A, competitive towards NADPH with an apparent Ki of 20 microM, suggests that the enzyme presents the "dinucleotide fold" characteristic of most dehydrogenases and kinases. The inactivation of the NADP-gluDH by preincubation with phenylglyoxal, with a reaction order of 1, and the partial protection afforded by alpha-oxoglutarate, suggest the presence of one arginine residue in the active site of the enzyme, which might participate in the binding of alpha-oxoglutarate through interaction with one of the carboxyl groups of the substrate. The inactivation of the NADP-gluDH by preincubation with Woodward's Reagent K suggests the presence of a carboxyl group, from an aspartic or glutamic acid residue, at the active site, which might participate in the binding of the cationic substrate NH+4. The presence of NADPH during preincubation with the reagent increased the inactivation rate, which suggests that binding of the coenzyme increases the exposure of the reactive carboxyl group.  相似文献   

15.
Inactivation of native soybean lipoxygenase-1 was observed upon preincubation with (NEt4)[PtCl3(P(Bun)3)]. Removal of the platinum complex(es) from the inactivated enzyme by treatment with sodium diethyldithiocarbamate (Naddtc) which reverses methionine but not cysteine binding, restores most of the activity. Linoleic acid, an enzyme substrate, protects it from inactivation. The quenching of the fluorescence of the putative active site tryptophans which accompanies inactivation disappears after Naddtc reactivation. The (NEt4)[PtCl3(P(Bun)3)]-inactivated enzyme iron(II) cannot be oxidized at variance with that of the native or Naddtc reactivated enzyme, as checked by EPR spectroscopy. These results show that at least one methionine is close to the iron binding site in soybean lipoxygenase-1.  相似文献   

16.
3-Chloropropionyl coenzyme A (CoA) irreversibly inhibits rat mammary gland fatty acid synthase. Enzyme inactivation proceeds with first-order kinetics. NADPH (150 microM) as well as acetyl-CoA (500 microM) affords protection against inactivation, suggesting that the inhibitor is active site directed. In contrast, malonyl-CoA (500 microM) offers little protection. With chloro [1-14C]propionyl-CoA, stoichiometries of modification that approach one per enzyme protomer (240 kilodaltons) have been measured. When chloropropionyl-[3'-32P]CoA is used for inactivation, modification stoichiometries are less than 10% of the value observed in the 14C labeling experiments, suggesting that acylation of the enzyme occurs. Radioactivity remains associated with the 14C-labeled protein after performic acid oxidation, indicating that another linkage, in addition to the thio ester adduct, is formed during inactivation. Recovery of [( 14C]carboxyethyl)cysteine from digests of the inactivated enzyme indicates that alkylation of an active site cysteine occurs. The cysteamine sulfhydryl of the acyl carrier peptide is clearly not the site of modification. Loss of overall enzyme activity is tightly linked to decreases in the ketoacyl synthase partial reaction. This observation, coupled with the differential protection measured with acetyl-CoA and malonyl-CoA, suggests that the reagent modifies a residue at the active site involved in condensation. While inactivated enzyme shows good ketoacyl reductase activity when S-(acetoacetyl)-N-acetylcysteamine is used as a substrate, only poor activity for this partial reaction is measured when acetoacetyl-CoA is the substrate. This implies that the function of the acyl carrier peptide (ACP) is impaired during the inactivation process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The porphobilinogen (PBG) synthase catalyzed reaction requires both Zn(II) and reducing equivalents for the production of PBG from two molecules of 5-aminolevulinic acid (ALA). An early step in the reaction is the production of a Schiff's base between PBG synthase and one ALA molecule. Because both substrate molecules are chemically identical, there had been no evidence of enzyme-catalyzed partial reactions of ALA under conditions where PBG is not formed. In this study, NaBH4 was used to trap the Schiff's base formed between substrate ALA and active holo-PBG synthase, inactive apo-PBG synthase, and inactive methylmethanethiosulfonate-modified apo-PBG synthase. ALA-dependent NaBH4 inactivation of these enzyme forms was quantified at 50-62, 94-97, and 93-96% inactivation, respectively. [4-14C]ALA was used to determine the stoichiometry of Schiff's base trapping which was 2.3, 3.5-4.0, and 3.4 per octamer for holoenzyme, apoenzyme, and methylmethanethiosulfonate-modified apoenzyme, respectively. These results are consistent with four active sites per octamer or half-of-the-sites reactivity. We conclude that the production of the Schiff's base formed between one ALA molecule and the enzyme requires neither Zn(II) nor reduced enzyme sulfhydryl groups. Furthermore, the possible number of kinetic schemes for formation of the quaternary complex of enzyme, Zn(II), and two ALA moieties, one as the Schiff's base, has been reduced from 12 to 3. This is the first demonstration of a partial reaction catalyzed by PBG synthase with the natural substrate ALA under conditions which do not support PBG formation. Thus, we have opened the way toward investigating the partial reactions which may precede Zn(II) participation in the PBG synthase reaction.  相似文献   

18.
The inhibition of lysolecithin:lysolecithin acyltransferase by several specific reagents was studied. Diisopropyl fluorophosphate (DFP) completely inhibited both activities at a concentration of 4 mM. Activity was not protected by substrate and the enzyme showed a change in circular dichroism spectrum upon treatment with inhibitor. Phenylmethanesulfonyl fluoride, another serine-specific reagent, did not inhibit either hydrolysis or transacylation. Therefore, we suggest that DFP does not modify an active serine in the catalytic site. p-Hydroxymercury benzoate and N-ethylmaleimide (NEM) abolished both activities of the enzyme. The presence of substrate partially protected against inactivation. Far-uv CD spectrum of NEM-modified enzyme revealed no changes in protein structure. The existence of two classes of essential cysteine residues was deduced from kinetics of NEM inactivation. Both classes differ in NEM reactivity and also in their participation in the catalytic mechanism. A tyrosine-specific reagent, tetranitromethane, also inhibited hydrolysis and transacylation, following first-order kinetics. The partial protection by substrate suggested the possible existence of essential tyrosines near the active site. At pH 5.0 N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline inactivated hydrolysis but not transacylation. However, both of them remained unchanged at pH 6.5. The substrate prevented the loss of hydrolytic ability. Therefore, a carboxyl residue participating just in the catalytic mechanism of hydrolysis is proposed.  相似文献   

19.
Lactate dehydrogenase in Phycomyces blakesleeanus.   总被引:1,自引:1,他引:0       下载免费PDF全文
1. An NAD-specific L(+)-lactate dehydrogenase (EC 1.1.1.27) from the mycelium of Phycomyces blakesleeanus N.R.R.L. 1555 (-) was purified approximately 700-fold. The enzyme has a molecular weight of 135,000-140,000. The purified enzyme gave a single, catalytically active, protein band after polyacrylamide-gel electrophoresis. It shows optimum activity between pH 6.7 and 7.5. 2. The Phycomyces blakesleeanus lactate dehydrogenase exhibits homotropic interactions with its substrate, pyruvate, and its coenzyme, NADH, at pH 7.5, indicating the existence of multiple binding sites in the enzyme for these ligands. 3. At pH 6.0, the enzyme shows high substrate inhibition by pyruvate. 3-hydroxypyruvate and 2-oxovalerate exhibit an analogous effect, whereas glyoxylate does not, when tested as substrates at the same pH. 4. At pH 7.5, ATP, which inhibits the enzyme, acts competitively with NADH and pyruvate, whereas at pH 6.0 and low concentrations of ATP it behaves in a allosteric manner as inhibitor with respect to NADH, GTP, however, has no effect under the same experimental conditions. 5. Partially purified enzyme from sporangiophores behaves in entirely similar kinetic manner as the one exhibited by the enzyme from mycelium.  相似文献   

20.
Reaction of rat liver glutathione S-transferase, isozyme 1-1, with 4-(fluorosulfonyl)benzoic acid (4-FSB), a xenobiotic substrate analogue, results in a time-dependent inactivation of the enzyme to a final value of 35% of its original activity when assayed at pH 6.5 with 1-chloro-2,4-dinitrobenzene (CDNB) as substrate. The rate of inactivation exhibits a nonlinear dependence on the concentration of 4-FSB from 0.25 mM to 9 mM, characterized by a KI of 0.78 mM and kmax of 0.011 min-1. S-Hexylglutathione or the xenobiotic substrate analogue, 2,4-dinitrophenol, protects against inactivation of the enzyme by 4-FSB, whereas S-methylglutathione has little effect on the reaction. These experiments indicate that reaction occurs within the active site of the enzyme, probably in the binding site of the xenobiotic substrate, close to the glutathione binding site. Incorporation of [3,5-3H]-4-FSB into the enzyme in the absence and presence of S-hexylglutathione suggests that modification of one residue is responsible for the partial loss of enzyme activity. Tyr 8 and Cys 17 are shown to be the reaction targets of 4-FSB, but only Tyr 8 is protected against 4-FSB by S-hexylglutathione. DTT regenerates cysteine from the reaction product of cysteine and 4-FSB, but does not reactivate the enzyme. These results show that modification of Tyr 8 by 4-FSB causes the partial inactivation of the enzyme. The Michaelis constants for various substrates are not changed by the modification of the enzyme. The pH dependence of the enzyme-catalyzed reaction of glutathione with CDNB for the modified enzyme, as compared with the native enzyme, reveals an increase of about 0.9 in the apparent pKa, which has been interpreted as representing the ionization of enzyme-bound glutathione; however, this pKa of about 7.4 for modified enzyme remains far below the pK of 9.1 for the -SH of free glutathione. Previously, it was considered that Tyr 8 was essential for GST catalysis. In contrast, we conclude that Tyr 8 facilitates the ionization of the thiol group of glutathione bound to glutathione S-transferase, but is not required for enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号