首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 285 毫秒
1.
河流向大气释放大量温室气体,是陆地生态系统物质循环和能量流动的重要环节。山地河流是温室气体排放的热点区域,但迄今山地河流CH_4和N_2O释放方面的研究较少。为探究高原中大型河流CH_4和N_2O浓度的时空分布特征及其影响因素,对雅鲁藏布江(雅江)干流和主要支流河水中CH_4和N_2O气体进行了季节性采样分析。结果表明,雅江河水中CH_4含量为2.3~864.9 nmol·L-1,N_2O含量为8.2~23.7 nmol·L-1,枯水期CH_4含量和丰水期无显著差异(P=0.112),但枯水期N_2O含量显著高于丰水期(P=0.017),流量和水温可能分别是影响CH_4和N_2O变化的主要因子。雅江河水CH_4和N_2O的释放速率分别为4.3~11.1 mg C·m-2·d-1和0.16~0.37 mg N·m-2·d-1,排放量分别为1.88~4.59Gg C·a-1和0.07~0.16 Gg N·a-1,分别约占全球河流CH_4和N_2O释放量的1.25‰~3.06‰和2.17‰~4.96‰。山地河流CH_4和N_2O的排放需要引起重视,全球河流温室气体释放可能需要进行重新评估。  相似文献   

2.
贾朋  高常军  李吉跃  周平  王丹  许小林 《生态学报》2018,38(19):6903-6911
为探索华南地区尾巨桉人工林和马占相思人工林地表温室气体的季节排放规律、排放通量和主控因子,采用静态箱-气相色谱法,对两种林型地表3种温室气体(CO_2、CH_4、N_2O)通量进行为期1年的逐月测定。结果表明:(1)尾巨桉人工林和马占相思人工林均为CO_2和N_2O的排放源,CH_4的吸收汇。马占相思林地表N_2O通量显著(P0.01)高于尾巨桉林,CO_2通量和CH_4通量无明显差异。(2)两种林型3种温室气体通量有着相似季节变化规律,地表CO_2通量均呈现雨季高旱季低的单峰规律;地表CH_4吸收通量表现为旱季高雨季低的单峰趋势;地表N_2O通量呈现雨季高旱季低且雨季内有两个峰值的排放规律。(3)地表CO_2、N_2O通量和土壤5 cm温度呈极显著(P0.01)正相关,3种温室气体地表通量同土壤含水量呈极显著(P0.01)或显著相关(P0.05)。(4)尾巨桉林和马占相思林温室气体年温室气体排放总量为31.014 t/hm~2和28.782 t/hm~2,均以CO_2排放占绝对优势(98.46%—99.15%),CH_4和N_2O处于次要地位。  相似文献   

3.
目前,国内尚无亚热带森林地区生物土壤结皮-土壤系统温室气体通量特征的研究,给区域尺度上温室气体通量的估算带来很大的不确定性。本研究选择中亚热带杉木人工林中地面广布的苔藓覆盖形成的结皮层及其下覆土壤为研究对象,采用对气体排放速率影响较小的等压取样法,探究去除苔藓土壤(BG)和苔藓覆盖土壤(BSCs)在光照和暗处理下其温室气体通量的变化特征,来模拟自然环境下白昼和黑夜时段苔藓覆盖的影响,同时采用随机森林模型来衡量光照与苔藓覆盖对温室气体通量的重要度。结果表明:苔藓覆盖、光照处理及其互作对CO_2通量有极显著的影响(P0.001),苔藓覆盖和光照处理对CH_4的吸收通量有极显著的影响(P0.001),光照及光照与苔藓覆盖交互作用对N_2O通量有极显著的影响(P0.001);暗处理下,与BG土壤相比,苔藓覆盖具有抑制土壤CO_2排放的趋势,苔藓覆盖略微增加N_2O的排放通量,但显著增加CH_4的吸收通量(P0.01);光照处理下BSCs的CO_2、CH_4和N_2O三种温室气体均出现负通量,苔藓覆盖显著降低CO_2、CH_4和N_2O的排放通量(P0.01),表明光照条件下苔藓-土壤系统是这三种温室气体重要的汇;由光照导致的BSCs的CO_2和N_2O的吸收通量显著高于BG土壤温室气体的吸收量(P0.01),但光照对CH_4吸收通量的影响无显著差异;随机森林分析表明,光照对于CO_2和N_2O通量的影响的重要性大于苔藓覆盖,而苔藓覆盖对CH_4通量的影响的重要性大于光照,表明CO_2和N_2O的通量与苔藓中的光能自养生物的代谢活性关联更大,CH_4通量与苔藓中的化能自养生物代谢活性有关联。  相似文献   

4.
荒漠土壤温室气体排放是陆地碳氮循环的重要组成部分,目前人工建植促进植被恢复对非生长季荒漠土壤CH_4、N_2O通量的影响尚不明确。本研究采用静态暗箱-气相色谱和时空替代法,分析非生长季库布齐沙漠东部不同植被恢复阶段土壤CH_4、N_2O通量特征及其与环境因子之间的关系,探讨植被恢复对非生长季荒漠土壤温室气体排放的影响。结果表明:非生长季荒漠土壤是CH_4的吸收汇,也是N_2O的排放源。不同植被恢复阶段CH_4平均吸收量和N_2O排放量均表现为:苔藓结皮固定沙地(47.6μg CH_4 m~(-2) h~(-1), 13.5μg N_2O m~(-2) h~(-1))地衣结皮固定沙地(32.2μg CH_4 m~(-2) h~(-1), 9.1μg N_2O m~(-2) h~(-1))藻结皮固定沙地(23.7μg CH_4 m~(-2) h~(-1), 8.7μg N_2O m~(-2) h~(-1))半固定沙地(22.4μg CH_4 m~(-2) h~(-1), 5.0μg N_2O m~(-2) h~(-1))流动沙地(18.7μg CH_4 m~(-2) h~(-1), 3.9μg N_2O m~(-2) h~(-1))。荒漠土壤在不同冻结时期温室气体排放存在较大差异,融冻期CH_4吸收贡献率最大,在结冻期N_2O排放贡献率最大。非生长季荒漠土壤存在明显的水热同期现象,土壤水热因子对N_2O通量的影响较小,仅半固定沙地土壤温度与N_2O通量呈显著正相关;而在藻类、地衣和苔藓结皮固定沙地中,土壤温度和含水量均与CH_4通量呈显著负相关。植被恢复过程中,生物量的积累和土壤理化性质的改善,能够显著影响荒漠土壤CH_4、N_2O通量的变化。因此,人工建植促进植被恢复实现沙漠化逆转可改变荒漠生态系统的温室气体排放格局。  相似文献   

5.
梯级水坝改变了河流水文情势, 对水气界面的温室气体排放产生影响。以2018年春夏两季的西宁湟水一级支流火烧沟为例, 探讨水坝修建后, 河流不同梯段温室气体排放通量的时空变化及其影响因素。采用漂浮静态箱-气相色谱法对筑坝区和未筑坝区水-气界面温室气体CH4、CO2、N2O进行观测研究, 结合水文、水质、气象、植物、底泥等指标分析讨论。结果表明: (1)空间上: 筑坝区温室气体的排放量明显高于未筑坝区; 筑坝区以中上游河段排放的温室气体最多。(2)时间上: 梯级水坝CH4和N2O的排放通量呈现夏季明显高于春季的趋势; 而CO2存在明显的源汇变化, 春季为CO2排放的“源”, 夏季为CO2排放的“汇”。(3)各类环境因子对温室气体通量有不同程度的影响。Pearson相关分析结果显示: CH4通量与气温、水温、CODmn呈正相关关系, 与气压、pH、ORP呈负相关关系; CO2通量与水体TOC和水体TN呈正相关关系; N2O通量与CODmn、pH呈正相关关系, 与气压、风速呈负相关关系。逐步多元回归分析结果表示: 以上各因子中, 气压和水体TN分别是影响CH4和CO2的主要因素, 而风速和CODmn是影响N2O通量的主要因素。  相似文献   

6.
博斯腾湖人工和天然芦苇湿地土壤CO2、CH4和N2O排放通量   总被引:1,自引:0,他引:1  
为研究干旱区淡水湖泊人工、天然芦苇湿地土壤温室气体源汇强度及其影响因素,采用静态箱-气相色谱法,于2015年1月—12月对博斯腾湖人工和天然芦苇湿地土壤CO_2、CH_4和N_2O通量进行全年观测。结果表明,人工芦苇湿地土壤CO_2、CH_4和N_2O排放通量变化范围分别为:10.1—588.4mg m~(-2)h~(-1)、2.9—82.4μg m~(-2)h~(-1)和1.32—29.7μg m~(-2)h~(-1),天然芦苇湿地土壤CO_2、CH_4和N_2O排放通量变化范围分别为10.3—469.6mg m~(-2)h~(-1)、3.1—64.8μg m~(-2)h~(-1)和1.9—14.3μg m~(-2)h~(-1)。人工和天然芦苇湿地夏季土壤CO_2排放通量均明显高于其他季节,而土壤CH_4和N_2O排放通量较大值多集中在春末夏初。全年观测期间,人工芦苇湿地土壤CO_2、CH_4和N_2O排放通量高于天然芦苇湿地(P0.05);温度是影响人工、天然芦苇湿地土壤CO_2和N_2O排放通量的关键因素,近地面温度和5cm土壤温度与CO_2和N_2O排放通量呈现极显著的正相关关系(P0.01)。土壤CH_4排放通量是温度和水分二者共同影响的,由近地表温度、5cm土壤温度和土壤含水量共同拟合的方程可以分别解释人工、天然芦苇湿地土壤CH_4排放通量的71%、74.5%;土壤有机碳、pH、盐分、NH_4~+-N、NO_3~--N也是人工、天然芦苇湿地土壤CO_2、CH_4和N_2O排放通量的影响因素;人工和天然芦苇湿地土壤均是CO_2、CH_4和N_2O的"源"。基于100年尺度,由3种温室气体计算全球增温潜势得出,人工芦苇湿地全球增温潜势大于天然芦苇湿地(15150.18kg/hm~212484.21kg/hm~2)。  相似文献   

7.
盛宣才  吴明  邵学新  李长明  梁雷  叶小齐 《生态学报》2016,36(15):4792-4800
水位是影响湿地温室气体排放的重要因子。采用静态箱-气相色谱法研究了模拟条件下不同水位(0、5、10 cm和20 cm)对芦苇湿地温室气体(CO_2、CH_4、N_2O)夏季昼夜通量变化的影响。结果表明,1)4种不同水位CO_2通量日变化均表现为昼低夜高,且白天为汇,夜间为源,整体均表现为CO_2的汇;不同水位CH_4通量日变化则均表现为昼高夜低,且整体上均表现为CH_4的源;N_2O通量总体上水淹后均表现为昼高夜低而0cm水位表现为昼低夜高;2)随着水位的增加CH_4和CO_2平均通量呈现先增加后降低的趋势,且10cm水位下CH_4和CO_2平均通量最高,N_2O通量则在5cm水位最高;3)通过相关性和主成分分析表明,气温、水温是土壤CH_4、N_2O通量日变化的主导因子,而土壤温度是CO_2日变化通量的主导因子,同时,土壤p H、Eh及水体p H、Eh是CO_2通量日变化的重要因子之一。  相似文献   

8.
大兴安岭永久冻土区7种沼泽类型土壤温室气体排放特征   总被引:1,自引:0,他引:1  
气候变暖及永久冻土退化将会增加冻土湿地的温室气体排放,但关于大兴安岭永久冻土区沼泽湿地温室气体通量及主控因子尚不明确。采用静态箱-气相色谱法,同步原位观测大兴安岭永久冻土区7种天然沼泽类型(草丛沼泽-C、灌丛沼泽-G、毛赤杨沼泽-M、白桦沼泽-B、落叶松苔草沼泽-LT、落叶松藓类沼泽-LX、落叶松泥炭藓沼泽-LN)土壤CO_2、CH_4和N_2O通量及土壤温度、水位、化冻深度及土壤碳氮含量、碳氮比、pH值及含水量,揭示永久冻土区沼泽土壤温室气体通量及其主控因子。结果表明:1) 7种沼泽类型土壤CO_2年均通量(125.12—163.33 mg m~(-2) h~(-1))相近;2) CH_4年均通量(-0.007—0.400 mg m~(-2) h~(-1))呈草丛显著高于其他沼泽5.6—65.7倍(P0.01);3) N_2O年均通量(1.52—37.90μg m~(-2) h~(-1))呈阔叶林沼泽显著高于其他类型2.0—23.9倍,针叶林沼泽显著高于草丛、灌丛沼泽2.9—6.2倍(P0.05);4) CO_2主控因子为土壤温度和水位;CH_4主控因子为土壤温度和化冻深度;N_2O受到多种环境因子综合调控,共同可以解释N_2O变化的26%—99%;5)土壤增温潜势(11.05—15.37 t CO_2 hm~(-2) a~(-1))相近,且均以CO_2占绝对优势地位,但草丛以CH_4占次要地位,森林沼泽则以N_2O占次要地位。综合对比国内外现有研究结果发现目前大兴安岭永久冻土区沼泽土壤仍处于CO_2、CH_4和N_2O低排放阶段。  相似文献   

9.
基于DNDC模型的稻田温室气体排放通量模拟   总被引:1,自引:0,他引:1  
理解土地利用方式转变过程影响生态系统生物地球化学循环及温室气体排放的机理,并利用模型模拟土地利用方式转变过程对温室气体通量的影响是一项长期、艰巨的科学任务。本研究基于国际上广泛应用的生物地球化学过程模型(DNDC模型),结合气象、土壤和管理措施等数据,模拟了旱田转水田土地利用方式转变后稻田CH_4、CO_2和N_2O三种温室气体的通量和常年种植水稻的稻田温室气体通量,并将模拟值与观测值进行比较。结果表明:DNDC模型能够较好地模拟新、老稻田温室气体通量的季节变化,但对老稻田温室气体的排放通量模拟效果(R~20. 89,n=40,P0. 01)优于新转稻田(R~20.79,n=265,P0.01),且对CH_4和CO_2的模拟效果优于对N_2O的模拟效果;根据田间观测数据,改变模型模拟土地利用方式转换前后土壤SOC浓度和p H值,并不能完全模拟土地利用变化对温室气体的影响,微生物群落在土地利用方式转变过程中可能发生较大变化,需要在模型中进一步体现。通过模型模拟土地利用方式改变对温室气体排放的影响,可为国家温室气体、碳排放清单的编制及管理政策的制定提供参考依据。  相似文献   

10.
大规模筑坝拦截是当前世界河流普遍面临的共同趋势,河流筑坝导致水体温室气体排放的环境效应近年来在全球范围内引起广泛关注,其中河流拦截背景下的水库中氧化亚氮(N_2O)的产生与释放是理解河流-水库体系氮的生物地球化学循环的重要内容,也是评价水库温室气体排放水平的重要依据。然而,当前对水库N_2O产生与排放的研究存在着不足,对其产生机理、释放水平及控制因素的认识依然缺乏系统性。本文归纳总结了国内外有关水库氮循环过程和N_2O排放的研究成果,分析了水库N_2O排放研究趋势及尚未解决的关键问题,以期为准确评估河流筑坝背景下水库N_2O排放提供借鉴。  相似文献   

11.
We studied concentrations of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) in the eutrophic Temmesjoki River and Estuary in the Liminganlahti Bay in 2003–2004 and evaluated the atmospheric fluxes of the gases based on measured concentrations, wind speeds and water current velocities. The Temmesjoki River was a source of CO2, CH4 and N2O to the atmosphere, whereas the Liminganlahti Bay was a minor source of CH4 and a minor source or a sink of CO2 and N2O. The results show that the fluxes of greenhouse gases in river ecosystems are highly related to the land use in its catchment areas. The most upstream river site, surrounded by forests and drained peatlands, released significant amounts of CO2 and CH4, with average fluxes of 5,400 mg CO2–C m−2 d−1 and 66 mg CH4–C m−2 d−1, and concentrations of 210 μM and 345 nM, respectively, but N2O concentrations, at an average of 17 nM, were close to the atmospheric equilibrium concentration. The downstream river sites surrounded by agricultural soils released significant amounts of N2O (with an average emission of 650 μg N2O–N m−2 d−1 and concentration of 22 nM), whereas the CO2 and CH4 concentrations were low compared to the upstream site (55 μM and 350 nM). In boreal regions, rivers are partly ice-covered in wintertime (approximately 5 months). A large part of the gases, i.e. 58% of CO2, 55% of CH4 and 36% of N2O emissions, were found to be released during wintertime from unfrozen parts of the river.  相似文献   

12.
温带针阔混交林土壤碳氮气体通量的主控因子与耦合关系   总被引:3,自引:0,他引:3  
中高纬度森林地区由于气候条件变化剧烈,土壤温室气体排放量的估算存在很大的不确定性,并且不同碳氮气体通量的主控因子与耦合关系尚不明确。以长白山温带针阔混交林为研究对象,采用静态箱-气相色谱法连续4a(2005—2009年)测定土壤二氧化碳(CO2)、甲烷(CH4)和氧化亚氮(N2O)净交换通量以及温度、水分等相关环境因子。研究结果表明:温带针阔混交林土壤整体上表现为CO2和N2O的排放源和CH4的吸收汇。土壤CH4、CO2和N2O通量的年均值分别为-1.3 kg CH4hm-2a-1、15102.2 kg CO2hm-2a-1和6.13 kg N2O hm-2a-1。土壤CO2通量呈现明显的季节性规律,主要受土壤温度的影响,水分次之;土壤CH4通量的季节变化不明显,与土壤水分显著正相关;土壤N2O通量季节变化与土壤CO2通量相似,与土壤水分、温度显著正相关。土壤CO2通量和CH4通量不存在任何类型的耦合关系,与N2O通量也不存在耦合关系;土壤CH4和N2O通量之间表现为消长型耦合关系。这项研究显示温带针阔混交林土壤碳氮气体通量主要受环境因子驱动,不同气体通量产生与消耗之间存在复杂的耦合关系,下一步研究需要深入探讨环境变化对其耦合关系的影响以及内在的生物驱动机制。  相似文献   

13.
The spatial variation of soil greenhouse gas fluxes (GHG; carbon dioxide—CO2, methane—CH4 and nitrous oxide—N2O) remains poorly understood in highly complex ecosystems such as tropical forests. We used 240 individual flux measurements of these three GHGs from different soil types, at three topographical positions and in two extreme hydric conditions in the tropical forests of the Guiana Shield (French Guiana, South America) to (1) test the effect of topographical positions on GHG fluxes and (2) identify the soil characteristics driving flux variation in these nutrient-poor tropical soils. Surprisingly, none of the three GHG flux rates differed with topographical position. CO2 effluxes covaried with soil pH, soil water content (SWC), available nitrogen and total phosphorus. The CH4 fluxes were best explained by variation in SWC, with soils acting as a sink under drier conditions and as a source under wetter conditions. Unexpectedly, our study areas were generally sinks for N2O and N2O fluxes were partly explained by total phosphorus and available nitrogen concentrations. This first study describing the spatial variation of soil fluxes of the three main GHGs measured simultaneously in forests of the Guiana Shield lays the foundation for specific studies of the processes underlying the observed patterns.  相似文献   

14.
Wetlands contribute considerably to the global greenhouse gas (GHG) balance. In these ecosystems, groundwater level (GWL) and temperature, two factors likely to be altered by climate change, exert important control over CO2, CH4 and N2O fluxes. However, little is known about the temperature sensitivity (Q10) of the combined GHG emissions from hydromorphic soils and how this Q10 varies with GWL. We performed a greenhouse experiment in which three different (plant‐free) hydromorphic soils from a temperate spruce forest were exposed to two GWLs (an intermediate GWL of ?20 cm and a high GWL of ?5 cm). Net CO2, CH4 and N2O fluxes were measured continuously. Here, we discuss how these fluxes responded to synoptic temperature fluctuations. Across all soils and GWLs, CO2 emissions responded similarly to temperature and Q10 was close to 2. The Q10 of the CH4 and N2O fluxes also was similar across soil types. GWL, on the other hand, significantly affected the Q10 of both CH4 and N2O emissions. The Q10 of the net CH4 fluxes increased from about 1 at GWL = ?20 cm to 3 at GWL = ?5 cm. For the N2O emissions, Q10 varied around 2 for GWL = ?20 cm and around 4 for GWL = ?5 cm. This substantial GWL‐effect on the Q10 of CH4 and N2O emissions was, however, hardly reflected in the Q10 of the total GHG emissions (which varied around 2), because the contribution of these gases was relatively small compared to that of CO2.  相似文献   

15.
Climate change reduces the net sink of CH4 and N2O in a semiarid grassland   总被引:1,自引:0,他引:1  
Atmospheric concentrations of methane (CH4) and nitrous oxide (N2O) have increased over the last 150 years because of human activity. Soils are important sources and sinks of both potent greenhouse gases where their production and consumption are largely regulated by biological processes. Climate change could alter these processes thereby affecting both rate and direction of their exchange with the atmosphere. We examined how a rise in atmospheric CO2 and temperature affected CH4 and N2O fluxes in a well‐drained upland soil (volumetric water content ranging between 6% and 23%) in a semiarid grassland during five growing seasons. We hypothesized that responses of CH4 and N2O fluxes to elevated CO2 and warming would be driven primarily by treatment effects on soil moisture. Previously we showed that elevated CO2 increased and warming decreased soil moisture in this grassland. We therefore expected that elevated CO2 and warming would have opposing effects on CH4 and N2O fluxes. Methane was taken up throughout the growing season in all 5 years. A bell‐shaped relationship was observed with soil moisture with highest CH4 uptake at intermediate soil moisture. Both N2O emission and uptake occurred at our site with some years showing cumulative N2O emission and other years showing cumulative N2O uptake. Nitrous oxide exchange switched from net uptake to net emission with increasing soil moisture. In contrast to our hypothesis, both elevated CO2 and warming reduced the sink of CH4 and N2O expressed in CO2 equivalents (across 5 years by 7% and 11% for elevated CO2 and warming respectively) suggesting that soil moisture changes were not solely responsible for this reduction. We conclude that in a future climate this semiarid grassland may become a smaller sink for atmospheric CH4 and N2O expressed in CO2‐equivalents.  相似文献   

16.
To investigate the effects of multiple environmental conditions on greenhouse gas (CO2, N2O, CH4) fluxes, we transferred three soil monoliths from Masson pine forest (PF) or coniferous and broadleaved mixed forest (MF) at Jigongshan to corresponding forest type at Dinghushan. Greenhouse gas fluxes at the in situ (Jigongshan), transported and ambient (Dinghushan) soil monoliths were measured using static chambers. When the transported soil monoliths experienced the external environmental factors (temperature, precipitation and nitrogen deposition) at Dinghushan, its annual soil CO2 emissions were 54% in PF and 60% in MF higher than those from the respective in situ treatment. Annual soil N2O emissions were 45% in PF and 44% in MF higher than those from the respective in situ treatment. There were no significant differences in annual soil CO2 or N2O emissions between the transported and ambient treatments. However, annual CH4 uptake by the transported soil monoliths in PF or MF was not significantly different from that at the respective in situ treatment, and was significantly lower than that at the respective ambient treatment. Therefore, external environmental factors were the major drivers of soil CO2 and N2O emissions, while soil was the dominant controller of soil CH4 uptake. We further tested the results by developing simple empirical models using the observed fluxes of CO2 and N2O from the in situ treatment and found that the empirical models can explain about 90% for CO2 and 40% for N2O of the observed variations at the transported treatment. Results from this study suggest that the different responses of soil CO2, N2O, CH4 fluxes to changes in multiple environmental conditions need to be considered in global change study.  相似文献   

17.
Rapid, precise, and globally comparable methods for monitoring greenhouse gas (GHG) fluxes are required for accurate GHG inventories from different cropping systems and management practices. Manual gas sampling followed by gas chromatography (GC) is widely used for measuring GHG fluxes in agricultural fields, but is laborious and time‐consuming. The photo‐acoustic infrared gas monitoring system (PAS) with on‐line gas sampling is an attractive option, although it has not been evaluated for measuring GHG fluxes in cereals in general and rice in particular. We compared N2O, CO2, and CH4 fluxes measured by GC and PAS from agricultural fields under the rice–wheat and maize–wheat systems during the wheat (winter), and maize/rice (monsoon) seasons in Haryana, India. All the PAS readings were corrected for baseline drifts over time and PAS‐CH4 (PCH4) readings in flooded rice were corrected for water vapor interferences. The PCH4 readings in ambient air increased by 2.3 ppm for every 1000 mg cm?3 increase in water vapor. The daily CO2, N2O, and CH4 fluxes measured by GC and PAS from the same chamber were not different in 93–98% of all the measurements made but the PAS exhibited greater precision for estimates of CO2 and N2O fluxes in wheat and maize, and lower precision for CH4 flux in rice, than GC. The seasonal GC‐ and PAS‐N2O (PN2O) fluxes in wheat and maize were not different but the PAS‐CO2 (PCO2) flux in wheat was 14–39% higher than that of GC. In flooded rice, the seasonal PCH4 and PN2O fluxes across N levels were higher than those of GC‐CH4 and GC‐N2O fluxes by about 2‐ and 4fold, respectively. The PAS (i) proved to be a suitable alternative to GC for N2O and CO2 flux measurements in wheat, and (ii) showed potential for obtaining accurate measurements of CH4 fluxes in flooded rice after making correction for changes in humidity.  相似文献   

18.
S Hashimoto 《PloS one》2012,7(8):e41962
Soil greenhouse gas fluxes (particularly CO2, CH4, and N2O) play important roles in climate change. However, despite the importance of these soil greenhouse gases, the number of reports on global soil greenhouse gas fluxes is limited. Here, new estimates are presented for global soil CO2 emission (total soil respiration), CH4 uptake, and N2O emission fluxes, using a simple data-oriented model. The estimated global fluxes for CO2 emission, CH4 uptake, and N2O emission were 78 Pg C yr−1 (Monte Carlo 95% confidence interval, 64–95 Pg C yr−1), 18 Tg C yr−1 (11–23 Tg C yr−1), and 4.4 Tg N yr−1 (1.4–11.1 Tg N yr−1), respectively. Tropical regions were the largest contributor of all of the gases, particularly the CO2 and N2O fluxes. The soil CO2 and N2O fluxes had more pronounced seasonal patterns than the soil CH4 flux. The collected estimates, including both the previous and the present estimates, demonstrate that the means of the best estimates from each study were 79 Pg C yr−1 (291 Pg CO2 yr−1; coefficient of variation, CV = 13%, N = 6) for CO2, 21 Tg C yr−1 (29 Tg CH4 yr−1; CV = 24%, N = 24) for CH4, and 7.8 Tg N yr−1 (12.2 Tg N2O yr−1; CV = 38%, N = 11) for N2O. For N2O, the mean of the estimates that was calculated by excluding the earliest two estimates was 6.6 Tg N yr−1 (10.4 Tg N2O yr−1; CV = 22%, N = 9). The reported estimates vary and have large degrees of uncertainty but their overall magnitudes are in general agreement. To further minimize the uncertainty of soil greenhouse gas flux estimates, it is necessary to build global databases and identify key processes in describing global soil greenhouse gas fluxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号