首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laboratory experiments were conducted to evaluate the behavior of Helicoverpa armigera (Hübner) and Spodoptera litura (Fabricius) larvae on meridic diet with different concentrations of Bt spray formulation Delfin or isolated Cry1Ac protein or the foliage and bolls from transgenic cotton, Bollgard hybrid RCH-317 Bt. Both insect species selectively fed on nontreated diet compared with the diet treated with Delfin. While H. armigera exhibited concentration response with Cry1Ac, this protein did not affect S. litura larvae. In general Helicoverpa selected diet with low concentrations (EC20 and EC50 levels) of Cry1Ac compared with higher concentrations of Cry1Ac. In order to develop appropriate management strategies, a thorough understanding of the behavioral mechanisms leading to the responses of insects to the proteins in transgenic varieties is required. Thus, based on results of the insects fed individually on the leaf discs or bolls from transgenic cotton plants alone or under choice situation with meridic diet revealed that H. armigera larvae preferred meridic diet to transgenic leaves or bolls expressing Cry1Ac protein. H. armigera larvae preferred meridic diet to plant material; more than 70% larvae were seen on the meridic diet, and average larval weight gain was in the range of 121.7–130.5 mg. However, in case of S. litura the larvae showed no significant discrimination between meridic diet and the leaf discs. In fact more than 60% larvae preferred leaf discs for feeding, though Cry1Ac expression in leaf discs was in the range of 0.9–2.18 μg/g. Thus differences in behavioral response could potentially impact the level of efficacy of crop cultivars that have been genetically engineered to produce these proteins.  相似文献   

2.
Transgenic sorghum plants expressing a synthetic cry1Ac gene from Bacillus thuringiensis (Bt) under the control of a wound-inducible promoter from the maize protease inhibitor gene (mpiC1) were produced via particle bombardment of shoot apices. Plants were regenerated from the transformed shoot apices via direct somatic embryogenesis with an intermittent three-step selection strategy using the herbicide Basta. Molecular characterisation based on polymerase chain reaction and Southern blot analysis revealed multiple insertions of the cry1Ac gene in five plants from three independent transformation events. Inheritance and expression of the Bt gene was confirmed in T1 plants. Enzyme-linked immunosorbant assay indicated that Cry1Ac protein accumulated at levels of 1–8 ng per gram of fresh tissue in leaves that were mechanically wounded. Transgenic sorghum plants were evaluated for resistance against the spotted stem borer (Chilo partellus Swinhoe) in insect bioassays, which indicated partial resistance to damage by the neonate larvae of the spotted stem borer. Reduction in leaf damage 5 days after infestation was up to 60%; larval mortality was 40%, with the surviving larvae showing a 36% reduction in weight over those fed on control plants. Despite the low levels of expression of Bt -endotoxin under the control of the wound-inducible promoter, the transgenic plants showed partial tolerance against first instar larvae of the spotted stem borer.  相似文献   

3.
4.
Expression of the Cry2Aa2 protein was targeted specifically to the green tissues of transgenic tobacco Nicotiana tabacum cv. Xanthi plants. This deployment was achieved by using the promoter region of the gene encoding the Solanum tuberosum leaf and stem specific (ST-LS1) protein. The accumulated levels of toxin in the leaves were found to be effective in achieving 100 mortality of Heliothis virescens larvae. The levels of Cry2Aa2 expression in the leaves of these transgenic plants were up to 0.21 of the total soluble proteins. Bioassays with R1 transgenic plants indicated the inheritance of cry2Aa2 in the progeny plants. Tissue-specific expression of the Bt toxin in transgenic plants may help in controlling the potential occurrence of insect resistance by limiting the amount of toxin to only predated tissues. The results reported here validate the use of the ST-LS1 gene promoter for a targeted expression of Bt toxins in green tissues of plants.  相似文献   

5.
Transgenic cotton lines were developed for high-level expression of a synthetic cry1EC gene from a wound inducible promoter. The tobacco pathogenesis related promoter PR-1a was modified by placing CaMV35S promoter on its upstream in reverse orientation. The resultant chimeric promoter CaMV35S(r)PR-1a expressed constitutively and was further up-regulated at the site of feeding by insects. It was induced more rapidly by treatment with salicylic acid (SA). The CaMV35S(r)PR-1a cry1EC expressing transgenic lines of cotton showed 100% mortality of Spodoptera litura larvae. The tightly regulated low-level expression of PR-1a was modified to a highly expressing constitutive expression by CaMV35S placed in reverse orientation. Salicylic acid treatment and wounding enhanced the expression further by the chimeric promoter. The leaves expressed more δ-endotoxin around the sites of insect bites. The levels of expression and induction varied among different transgenic lines, suggesting position effect. Some of the transgenic lines that expressed Cry1EC from the chimeric promoter at a low level also showed 100% mortality when induced with salicylic acid. A highly expressing insect bite and wound inducible promoter is desirable for developing insect resistant transgenic plants.  相似文献   

6.
Cry toxins produced by Bacillus thuringiensis bacteria are insecticidal proteins used worldwide in the control of different insect pests. Alterations in toxin-receptor interaction represent the most common mechanism to induce resistance to Cry toxins in lepidopteran insects. Cry toxins bind with high affinity to the cadherin protein present in the midgut cells and this interaction facilitates the proteolytic removal of helix ??-1 and pre-pore oligomer formation. Resistance to Cry toxins has been linked with mutations in the cadherin gene. One strategy effective to overcome larval resistance to Cry1A toxins is the production of Cry1AMod toxins that lack helix ??-1. Cry1AMod are able to form oligomeric structures without binding to cadherin receptor and were shown to be toxic to cadherin-silenced Manduca sexta larvae and Pectinophora gossypiella strain with resistance linked to mutations in a cadherin gene.We developed Cry1AbMod tobacco transgenic plants to analyze if Cry1AMod toxins can be expressed in transgenic crops, do not affect plant development and are able to control insect pests. Our results show that production of the Cry1AbMod toxin in transgenic plants does not affect plant development, since these plants exhibited healthy growth, produced abundant seeds, and were virtually undistinguishable from control plants. Most importantly, Cry1AbMod protein produced in tobacco plants retains its functional toxic activity against susceptible and tolerant M. sexta larvae due to the silencing of cadherin receptor by RNAi. These results suggest that CryMod toxins could potentially be expressed in other transgenic crops to protect them against both toxin-susceptible and resistant lepidopteran larvae affected in cadherin gene.  相似文献   

7.

Background

Insects have developed resistance against Bt-transgenic plants. A multi-barrier defense system to weaken their resistance development is now necessary. One such approach is to use fusion protein genes to increase resistance in plants by introducing more Bt genes in combination. The locating the target protein at the point of insect attack will be more effective. It will not mean that the non-green parts of the plants are free of toxic proteins, but it will inflict more damage on the insects because they are at maximum activity in the green parts of plants.

Results

Successful cloning was achieved by the amplification of Cry2A, Cry1Ac, and a transit peptide. The appropriate polymerase chain reaction amplification and digested products confirmed that Cry1Ac and Cry2A were successfully cloned in the correct orientation. The appearance of a blue color in sections of infiltrated leaves after 72 hours confirmed the successful expression of the construct in the plant expression system. The overall transformation efficiency was calculated to be 0.7%. The amplification of Cry1Ac-Cry2A and Tp2 showed the successful integration of target genes into the genome of cotton plants. A maximum of 0.673 μg/g tissue of Cry1Ac and 0.568 μg/g tissue of Cry2A was observed in transgenic plants. We obtained 100% mortality in the target insect after 72 hours of feeding the 2nd instar larvae with transgenic plants. The appearance of a yellow color in transgenic cross sections, while absent in the control, through phase contrast microscopy indicated chloroplast localization of the target protein.

Conclusion

Locating the target protein at the point of insect attack increases insect mortality when compared with that of other transgenic plants. The results of this study will also be of great value from a biosafety point of view.  相似文献   

8.
Many crops transformed with insecticidal genes isolated from Bacillus thuringiensis (Bt) show resistance to targeted insect pests. The concentration of Bt endotoxin proteins in plants is very important in transgenic crop efficacy and risk assessment. In the present study, changes in levels of Cry1Ac protein in the leaves of transgenic Bt oilseed rape (Brassica napus) carrying a Bt cry1Ac gene under the control of the cauliflower mosaic virus 35S promoter were quantified during vegetative growth by enzyme‐linked immunosorbent assay. Plants were grown in a glasshouse, sampled at 2, 4, 5 and 6 weeks, and the concentration of Cry1Ac was quantified in basal, top and previous top leaves. The mean concentration differed between sowing dates when Cry1Ac concentration was expressed as ng g?1 fresh leaf weight but not when expressed as ng mg?1 total soluble protein. It was demonstrated that Cry1Ac concentration increased significantly as the leaf aged, while the total soluble plant protein decreased significantly. Levels of Cry1Ac were therefore higher in leaves at the base of the plants than in leaves close to the growing point. However, even young leaves with very low Cry1Ac concentrations caused high mortality in the larvae of a Cry1Ac‐susceptible laboratory strain of the diamondback moth. The feeding area of leaves consumed by larvae in vivo and in situ was similar. Leaf damage caused by sampling (i.e. artificially) or by feeding of larvae did not affect the levels of Cry1Ac in the leaves under the experimental conditions in this study.  相似文献   

9.
A concern with the widespread use of insecticidal transgenic crops is their potential to adversely affect non-target organisms, including biological control agents such as larvae of the green lacewing, Chrysoperla carnea (Neuroptera: Chrysopidae). Since the insecticidal proteins expressed by the current transgenic plants are active only after ingestion, dietary bioassays are required to test direct effects on non-target organisms. After showing that C. carnea larvae utilize carbohydrate foods, we exposed them to insecticidal proteins dissolved in a sucrose solution. Feeding on snowdrop lectin (Galanthus nivalis agglutinin, GNA) as a model compound, the larvae were negatively affected in a number of life-table parameters. Interestingly, GNA caused a prolongation in first instar development, but had no effect on subsequent utilization of prey resulting in an increased weight of second instars. Comparable studies with avidin, a biotin-binding protein, revealed strong effects on C. carnea survival at the concentration tested. Despite the fact that the proteolytic digestion of C. carnea larvae is reported to be dominated by serine proteases, ingestion of soybean trypsin inhibitor (SBTI) did not cause any detrimental effects. Similarly, two Cry proteins derived from Bacillus thuringiensis (Cry1Ac and Cry1Ab) did not cause negative effects on C. carnea, what is consistent with earlier studies. The here presented bioassay provides a valuable tool to assess direct impacts of insecticidal proteins to C. carnea larvae and other predators that are known to feed on carbohydrate solutions.  相似文献   

10.
In an effort to develop a chemically inducible system for insect management, we studied production of Cry1Ab Bacillus thuringiensis (Bt) protein and control of the diamondback moth (DBM), Plutella xylostella L., in inducer-treated and untreated tissues of a broccoli line transformed with a PR-1a/cry1Ab expression cassette. Spraying leaves of these plants with the inducer acibenzolar-S-methyl (= 1,2,3 benzothiadiazole-7-thiocarboxylic acid-S-methyl-ester) (ASM) triggered expression of the cry1Ab gene and produced a high level of Cry1Ab protein within 2–3 days. Cry1Ab protein persisted in leaves for at least 8 weeks, providing prolonged protection from P. xylostella attack. Signals generated in inducer-treated leaves were transferred to untreated newly emerged leaves or heads, as seen by production of Cry1Ab protein and/or protection from insect damage in these plant parts. Signal transduction proceeded in an attenuated manner up to the sixth newly emerged leaf. No Cry1Ab protein was detectable by ELISA in uninduced young leaves, but small amounts of the protein were present in uninduced leaves older than 3 weeks and caused some insect mortality. Such basal expression of Bt genes without induction may favor the evolution of resistant insect populations and therefore limits the application of the PR-1a/cry1Ab system for insect management. However, the rapid production and steady maintenance of a high level of transgenic protein upon induction, the signal transduction observed, and the fact that the chemical inducer can be used in field conditions make the PR-1a promoter attractive for chemical regulation of other agriculturally or pharmaceutically important genes for which low expression in the absence of induction is not a concern.  相似文献   

11.
The expression of a synthetic Bacillus thuringiensis ( Bt ) cry1Ac gene in oilseed rape (OSR, Brassica napus ) was monitored under field conditions in China, and performance against Helicoverpa armigera larvae was compared in intraspecific hybrids with a Chinese OSR variety. Leaf samples from transgenic OSR were collected at various developmental stages in two separate field experiments. The Bt Cry1Ac concentrations in the third uppermost leaves increased before pod formation stage and either increased or decreased after pod formation stage whereas the total soluble protein increased before and decreased after pod-fill in the later growing season. Spontaneously formed intraspecific hybrids between transgenic OSR and a Chinese conventional OSR were obtained in the field and transgenic status was confirmed by a green fluorescent protein (GFP) phenotype and polymerase chain reaction. A bioassay on the neonate larvae of a susceptible strain of H.   armigera was performed to test the efficacy of Bt Cry1Ac toxin in hybrid OSR plants. Both the original transgenic OSR and hybrid plants had a negative effect on body-weight gain of insect larvae. It was assumed that Bt Cry1Ac toxin concentration was similar in hybrids compared to the original transgenic OSR at the investigated developmental stages. The frequency of hybrid production and volunteerism could potentially enhance the evolution of insect pest tolerance in the field.  相似文献   

12.
We produced 49 broccoli plants (Brassica oleracea L. ssp. italica) containing a Bacillus thuringiensis cry1Ab gene under control of the chemically inducible PR-1a promoter from tobacco. Most of them showed substantial or complete control of neonate diamondback moth larvae, regardless of whether the transgene was induced or not. Ten plants were selected for detailed study via northern and western analysis and insect bioassays. They expressed the cry1Ab gene and gave complete insect control when treated with the chemical inducers INA (2,6-dichloroiso-nicotinic acid) or BTH (1,2,3-benzothiadiazole-7-carbothioic acid S-methyl ester); however, leaves treated with water alone were also partially or completely protected from insect damage. Transgenic progeny plants showed greater inducibility than primary transformants at the molecular level. Two progeny lines produced cry1Ab mRNA and Cry1Ab protein and gave insect control only after induction, both when detached leaves and intact plants were tested. The relevance of these results to resistance management strategies is discussed.  相似文献   

13.
Enzyme-linked immunosorbent assays (ELISA) and bioassays were used to estimate levels of Cry1Ab protein in four species of phytophagous insects after feeding on transgenic Bt-corn plants expressing Cry1Ab protein or artificial diets containing Cry1Ab protein. The level of Cry1Ab in insects feeding on sources containing the Cry1Ab protein was uniformly low but varied with insect species as well as food source. For the corn leaf aphid, Rhopalosiphum maidis (Fitch), feeding on diet solutions containing Cry1Ab protein, the level of the protein in the aphid was 250–500 times less than the original levels in the diet, whereas no Cry1Ab was detected by ELISA in aphids feeding on transgenic Bt-Corn plants. For the lepidopteran insects, Ostrinia nubilalis (Hübner), Helicoverpa zea (Boddie), and Agrotis ipsilon (Hufnagel), levels of Cry1Ab in larvae varied significantly with feeding treatment. When feeding for 24 h on artificial diets containing 20 and 100 ppm of Cry1Ab, the level of Cry1Ab in the larvae was about 57 and 142 times lower, respectively, than the original protein level in the diet for O. nubilalis, 20 and 34 times lower for H. zea, and 10 to 14 times lower for A. ipsilon. Diet incorporation bioassays with a susceptible insect (first instar O. nubilalis) showed significant Cry1Ab bioactivity present within whole body tissues of R. maidis and O. nubilalis that had fed on diet containing a minimum of 20 ppm or higher concentrations (100 or 200 ppm) of Cry1Ab, but no significant bioactivity within the tissues of these insects after feeding on transgenic Bt-corn plants. The relevance of these findings to secondary exposure risk assessment for transgenic Bt crops is discussed.  相似文献   

14.
Summary To determine the degree of insect resistance in transgenic plants, different bioassays are used which typically use either whole plant or small pieces of leaves or stems of transgenic plants, following culture under greenhouse conditions. An in vitro insect-feeding bioassay is presented which permits the infestation of transgenic plantlets with newly hatched larvae from the striped stem borer. The bioassay consists of the germination of rice seeds in vitro using Murashige and Skoog medium in test tubes, and then infestation of each 3–4 cm long seedling with one neonate larva obtained from surfacesterilized eggs of Chilo suppressalis. The infested in vitro plantlets are kept in culture rooms at 25°C for several days and then the seedling damage and the growth of the larvae are analyzed. Senia (japonica variety) homozygous transgenic rice plants were used for these experiments. The plants were transformed with either the cry1B or the maize proteinase inhibitor (mpi) genes. Both genes confer resistance to Chilo suppressalis. With non-transformed plants the larvae grew and developed normally, feeding on the small rice plantlets. In contrast, with cry1B plants, the neonate larvae died during the first days of the infestation. These plantlets recovered completely and developed similarly to the non-infested control plants. With transgenic plants transformed with the mpi gene, the neonate larvae did not die but grew more slowly compared with the controls. Thus, this in vitro insect-feeding bioassay is a rapid and easy method to detect the resistance of cry and mpi transgenic plants to stem borers such as Chilo suppressalis.  相似文献   

15.
Aim: To select a toxin combination for the management of maize stem borer (Chilo partellus) and to understand possible mechanism of synergism among Bacillus thuringiensis Cry1A toxins tested. Methods and Results: Three Cry1A toxins were over expressed in Escherichia coli strain JM105 and used for diet overlay insect bioassay against C. partellus neonate larvae, both alone and in combinations. Probit analysis revealed that the three Cry1A toxins tested have synergistic effect against C. partellus larvae. In vitro binding analysis of fluorescein isothiocyanate (FITC)‐labelled Cry1A toxins to midgut brush border membrane vesicle (BBMV) shows that increase in toxicity is directly correlated to an increase in binding of toxin mix. Conclusions: A high Cry1Ac to Cry1Ab ratio leads to an increase in efficacy of these toxins towards C. partellus larvae and this increase in toxicity comes from an increase in toxin binding. Significance and Impact of the Study: Use of Cry1Ab and Cry1Ac combination could be an effective approach to control C. partellus. Furthermore, we show it first time that possible reason behind increase in toxicity of synergistic Cry1A proteins is an increase in toxin binding.  相似文献   

16.
The tobacco cutworm (Spodoptera litura) is a polyphagous foliage insect and a major pest on peanut (Arachis hypogaea L.). S. litura is susceptible to the chimeric delta-endotoxin Cry1EC reported earlier. De-embryonated cotyledon explants of peanut were transformed using Agrobacterium tumefaciens strain EHA101 harboring a synthetic cry1EC gene driven by the CaMV 35S promoter. Transgenic plants of peanut with a single copy insertion of cry1EC were selected in the T(0) generation by Southern blot hybridization. Real-time PCR, Western blot and ELISA analysis indicated that expression of the cry1EC gene was higher in single copy T(1) plants. Immunoassay showed expression of Cry1EC up to 0.13% of total soluble protein in T(1) plants. Leaf feeding bioassay on highly expressing transgenic lines showed 100% killing of larvae at the 2(nd) instar stage of S. litura. This is the first report of transgenic peanut plants with resistance to S. litura.  相似文献   

17.
18.
Nucleotide sequence encoding the truncated insecticidal Cry1Ca1 protein from Bacillus thuringiensis was extensively modified based on the codon usage of rice genes. The overall G + C contents of the synthetic cry1Ca1 coding sequence were raised to 65% with an additional bias of enriching for G and C ending codons as preferred by monocots. The synthetic gene was introduced into the Chinese japonica variety, Xiushui 11, by Agrobacterium-mediated transformation. Transgenic rice plants harboring this gene were highly resistant to Chilo suppressalis and Spodoptera litura larvae as revealed by insect bioassays. High levels of Cry1Ca1 protein were obtained in the leaves of transgenic rice, which were effective in achieving 100% mortality of S. litura and C. suppressalis larvae. The levels of Cry1Ca1 expression in the leaves of these transgenic plants were up to 0.34% of the total soluble proteins. The larvae of C. suppressalis and S. litura could consume a maximum of 1.89  and 4.89 mm2 of transgenic leaf area whereas the consumption of non-transgenic leaves by these larvae was significantly higher; 58.33 and 61.22 mm2, respectively. Analysis of R1 transgenic plants indicated that the cry1Ca1 was inherited by the progeny plants and provided complete protection against C. suppressalis and S. litura larvae.  相似文献   

19.
Bacillus thuringiensis (Bt) Cry1Ac protein is a toxin against different leaf‐eating lepidopteran insects that attack poplar trees. In the present study, the mode of migration of the Bt‐Cry1Ac protein within poplar grafts was investigated. Grafting was done using Pb29 (transgenic poplar 741 with cry1Ac genes), CC71 (transgenic poplar 741 with cry3A genes), non‐transgenic poplar 741 and non‐transgenic Populus tomentosa, either as scion or as rootstock. In order to detect migration of Bt‐Cry1Ac protein from one portion of the graft union to different tissues in the grafted plant, ELISA analysis was employed to assess the content of Bt‐Cry1Ac protein in the phloem, xylem, pith and leaves of the grafted poplar. To further verify migration of Bt‐Cry1Ac protein, Clostera anachoreta larvae, which are susceptible to Bt‐Cry1Ac protein, were fed leaves from the control graft (i.e., graft portion that originally did not contain Bt‐Cry1Ac protein). The results showed that Bt‐Cry1Ac protein was transported between rootstock and scion mainly through the phloem. Migration of Bt‐Cry1Ac protein in the grafted union was also evidenced in that the leaves of the control graft did have a lethal effect on C. anachoreta larvae in laboratory feeding experiments.  相似文献   

20.
The performance of Helicoverpa armigera (Hübner) on 15-wk-old cotton plants was compared for a susceptible strain, a near-isogenic laboratory-selected strain, and F1 progeny of the two strains. Glasshouse experiments were conducted to test the three insect types on conventional plants and transgenic plants that produced the Bacillus thuringiensis (Bt) toxin Cry1Ac. At the time of testing (15 wk), the Cry1Ac concentration in cotton leaves was 75% lower than at 4 wk. On these plants, < 10% of susceptible larvae reached the fifth instar, and none survived to pupation. In contrast, survival to adulthood on Cry1Ac cotton was 62% for resistant larvae and 39% for F1 larvae. These results show that inheritance of resistance to 15-wk-old Cry1Ac cotton is partially dominant, in contrast to results previously obtained on 4-wk-old Cry1Ac cotton. Growth and survival of resistant insects were similar on Cry1Ac cotton and on non-Bt cotton, but F1 insects developed more slowly on Cry1Ac cotton than on non-Bt cotton. Survival was lower and development was slower for resistant larvae than for susceptible and F1 larvae on non-Bt cotton. These results show recessive fitness costs are associated with resistance to Cry1Ac.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号