首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrous oxide (N2O) is a potent greenhouse gas with a high contribution from agricultural soils and emissions that depend on soil type, climate, crops and management practices. The N2O emissions therefore need to be included as an integral part of environmental assessments of agricultural production systems. An algorithm for N2O production and emission from agricultural soils was developed and included in the FASSET whole-farm model. The model simulated carbon and nitrogen (N) turnover on a daily basis. Both nitrification and denitrification was included in the model as sources for N2O production, and the N2O emissions depended on soil microbial and physical conditions. The model was tested on experimental data of N2O emissions from grasslands in UK, Finland and Denmark, differing in climatic conditions, soil properties and management. The model simulated the general time course of N2O emissions and captured the observed effects of fertiliser and manure management on emissions. Scenario analyses for grazed and cut grasslands were conducted to evaluate the effects of soil texture, climatic conditions, grassland management and N fertilisation on N2O emissions. The soils varied from coarse sand to sandy loam and the climatic variation was taken to represent the climatic variation within Denmark. N fertiliser rates were varied from 0 to 500 kg N ha−1. The simulated N2O emissions showed a non-linear response to increasing N rates with increasing emission factors at higher N rates. The simulated emissions increased with increasing soil clay contents. N2O emissions were slightly increased at higher temperatures, whereas increasing annual rainfall generally lead to decreasing emissions. Emissions were slightly higher from grazed grasslands compared with cut grasslands at similar rates of total N input (fertiliser and animal excreta). The results indicate higher emission factors and thus higher potentials for reducing N2O emissions for intensively grazed grasslands on fine textured soils than for extensive cut-based grasslands on sandy soils.  相似文献   

2.
Restored forested wetlands reduce N loads in surface discharge through plant uptake and denitrification. While removal of reactive N reduces impact on receiving waters, it is unclear whether enhanced denitrification also enhances emissions of the greenhouse gas N2O, thus compromising the water-quality benefits of restoration. This study compares denitrification rates and N2O:N2 emission ratios from Sharkey clay soil in a mature bottomland forest to those from an adjacent cultivated site in the Lower Mississippi Alluvial Valley. Potential denitrification of forested soil was 2.4 times of cultivated soil. Using intact soil cores, denitrification rates of forested soil were 5.2, 6.6 and 2.0 times those of cultivated soil at 70, 85 and 100% water-filled pore space (WFPS), respectively. When NO3 was added, N2O emissions from forested soil were 2.2 times those of cultivated soil at 70% WFPS. At 85 and 100% WFPS, N2O emissions were not significantly different despite much greater denitrification rates in the forested soil because N2O:N2 emission ratios declined more rapidly in forested soil as WFPS increased. These findings suggest that restoration of forested wetlands to reduce NO3 in surface discharge will not contribute significantly to the atmospheric burden of N2O.  相似文献   

3.
Estavillo  JM  Merino  P  Pinto  M  Yamulki  S  Gebauer  G  Sapek  A  Corré  W 《Plant and Soil》2002,239(2):253-265
Soils are an important source of N2O, which can be produced both in the nitrification and the denitrification processes. Grassland soils in particular have a high potential for mineralization and subsequent nitrification and denitrification. When ploughing long term grassland soils, the resulting high supply of mineral N may provide a high potential for N2O losses. In this work, the short-term effect of ploughing a permanent grassland soil on gaseous N production was studied at different soil depths. Fertiliser and irrigation were applied in order to observe the effect of ploughing under a range of conditions. The relative proportions of N2O produced from nitrification and denitrification and the proportion of N2 gas produced from denitrification were determined using the methyl fluoride and acetylene specific inhibitors. Irrespectively to ploughing, fertiliser application increased the rates of N2O production, N2O production from nitrification, N2O production from denitrification and total denitrification (N2O + N2). Application of fertiliser also increased the denitrification N2O/N2 ratio both in the denitrification potential and in the gaseous N productions by denitrification. Ploughing promoted soil organic N mineralization which led to an increase in the rates of N2O production, N2O production from nitrification, N2O production from denitrification and total denitrification (N2O + N2). In both the ploughed and unploughed treatments the 0–10 cm soil layer was the major contributing layer to gaseous N production by all the above processes. However, the contribution of this layer decreased by ploughing, gaseous N productions from the 10 to 30 cm layer being significantly increased with respect to the unploughed treatment. Ploughing promoted both nitrification and denitrification derived N2O production, although a higher proportion of N2O lost by denitrification was observed as WFPS increased. Recently ploughed plots showed lower denitrification derived N2O percentages than those ploughed before as a result of the lower soil water content in the former plots. Similarly, a lower mean nitrification derived N2O percentage was found in the 10–30 cm layer compared with the 0–10 cm.  相似文献   

4.
Spatial patterns of ecosystem processes constitute significant sources of uncertainty in greenhouse gas flux estimations partly because the patterns are temporally dynamic. The aim of this study was to describe temporal variability in the spatial patterns of grassland CO2 and N2O flux under varying environmental conditions and to assess effects of the grassland management (grazing and mowing) on flux patterns. We made spatially explicit measurements of variables including soil respiration, aboveground biomass, N2O flux, soil water content, and soil temperature during a 4-year study in the vegetation periods at grazed and mowed grasslands. Sampling was conducted in 80 × 60 m grids of 10 m resolution with 78 sampling points in both study plots. Soil respiration was monitored nine times, and N2O flux was monitored twice during the study period. Altitude, soil organic carbon, and total soil nitrogen were used as background factors at each sampling position, while aboveground biomass, soil water content, and soil temperature were considered as covariates in the spatial analysis. Data were analyzed using variography and kriging. Altitude was autocorrelated over distances of 40–50 m in both plots and influenced spatial patterns of soil organic carbon, total soil nitrogen, and the covariates. Altitude was inversely related to soil water content and aboveground biomass and positively related to soil temperature. Autocorrelation lengths for soil respiration were similar on both plots (about 30 m), whereas autocorrelation lengths of N2O flux differed between plots (39 m in the grazed plot vs. 18 m in the mowed plot). Grazing appeared to increase heterogeneity and linkage of the spatial patterns, whereas mowing had a homogenizing effect. Spatial patterns of soil water content, soil respiration, and aboveground biomass were temporally variable especially in the first 2 years of the experiment, whereas spatial patterns were more persistent (mostly significant correlation at p < 0.05 between location ranks) in the second 2 years, following a wet year. Increased persistence of spatial patterns after a wet year indicated the recovery potential of grasslands following drought and suggested that adequate water supply could have a homogenizing effect on CO2 and N2O fluxes.  相似文献   

5.
Wastewater treatment plants are known to be important point sources for nitrous oxide (N2O) in the anthropogenic N cycle. Biofilm based treatment systems have gained increasing popularity in the treatment of wastewater, but the mechanisms and controls of N2O formation are not fully understood. Here, we review functional groups of microorganism involved in nitrogen (N) transformations during wastewater treatment, with emphasis on potential mechanism of N2O production in biofilms. Biofilms used in wastewater treatment typically harbour aerobic and anaerobic zones, mediating close interactions between different groups of N transforming organisms. Current models of mass transfer and biomass interactions in biofilms are discussed to illustrate the complex regulation of N2O production. Ammonia oxidizing bacteria (AOB) are the prime source for N2O in aerobic zones, while heterotrophic denitrifiers dominate N2O production in anoxic zones. Nitrosative stress ensuing from accumulation of NO2 ? during partial nitrification or denitrification seems to be one of the most critical factors for enhanced N2O formation. In AOB, N2O production is coupled to nitrifier denitrification triggered by nitrosative stress, low O2 tension or low pH. Chemical N2O production from AOB intermediates (NH2OH, HNO, NO) released during high NH3 turnover seems to be limited to surface-near AOB clusters, since diffusive mass transport resistance for O2 slows down NH3 oxidation rates in deeper biofilm layers. The proportion of N2O among gaseous intermediates (NO, N2O, N2) in heterotrophic denitrification increases when NO or nitrous acid (HNO2) accumulates because of increasing NO2 ?, or when transient oxygen intrusion impairs complete denitrification. Limited electron donor availability due to mass transport limitation of organic substrates into anoxic biofilm zones is another important factor supporting high N2O/N2 ratios in heterotrophic denitrifiers. Biofilms accommodating Anammox bacteria release less N2O, because Anammox bacteria have no known N2O producing metabolism and reduce NO2 ? to N2, thereby lowering nitrosative stress to AOB and heterotrophs.  相似文献   

6.
真菌反硝化过程及其驱动的N2O产生机制研究进展   总被引:1,自引:0,他引:1  
真菌反硝化过程的发现打破了反硝化过程只发生在原核生物中的传统认识,是对全球微生物氮循环过程的重要补充。真菌参与的反硝化过程由于缺乏N_2O还原酶,其终产物为具有强辐射效应的温室气体N_2O。真菌在环境中分布广泛,生物量巨大,故真菌反硝化作用对全球N_2O释放通量的贡献是不容忽视的。近年来许多研究表明,真菌反硝化过程是自然环境中N_2O产生的重要途径。本文对反硝化真菌的发现、多样性及分布、产生N_2O的机制和活性测定方法等几个方面进行综述,并对未来的研究提出展望。  相似文献   

7.
The quantities and spatial distribution of nutrients in savanna ecosystems are affected by many factors, of which fire, herbivory and symbiotic N2-fixation are particularly important. We measured soil nitrogen (N) pools and the relative abundance of N and phosphorus (P) in herbaceous vegetation in five vegetation types in a humid savanna in Tanzania. We also performed a factorial fertilization experiment to investigate which nutrients most limit herbaceous production. N pools in the top 10 cm of soil were low at sites where fires were frequent, and higher in areas with woody legume encroachment, or high herbivore excretion. Biomass production was co-limited by N and P at sites that were frequently burnt or heavily grazed by native herbivores. In contrast, aboveground production was limited by N in areas receiving large amounts of excreta from livestock. N2-fixation by woody legumes did not lead to P-limitation, but did increase the availability of N relative to P. We conclude that the effects of fire, herbivory and N2-fixation upon soil N pools and N:P-stoichiometry in savanna ecosystems are, to a large extent, predictable. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Author Contributions  P.C., H.O.V. and P.E. designed the study and wrote the paper. P.C. and T.K. performed the research and analyzed the data.  相似文献   

8.
Forest clear-cutting followed by soil preparation means disturbance for soil microorganisms and disruption of N and C cycles. We measured fluxes of N2O and dissolved organic carbon (DOC) in upland soil (podzol) and adjacent peat within a clear-cut forest catchment. Both soil types behaved in a similar way, showing net uptake of N2O in the first year after the clear-cutting, and turning to net release in the second. The N2O flux dynamics were similar to those of N content in logging residues, as reported from a nearby site. As organic matter is used in the food web of the decomposers, we attempted to explain the dynamics of N2O uptake and release by measuring the concurrent dynamics of the low molecular weight (LMW) fraction and the aromaticity of DOC in a soil solution. The labile and most readily available LMW fractions of DOC were nearly absent in the year following the clear-cutting, but rose after two years. The more refractory high molecular weight (HMW) fraction of DOC decreased two years after the clear-cutting. The first year’s net uptake of N2O could be accounted for by the growth of decomposer biomass in the logging residues and detritus from the degenerating ground vegetation, resulting in immobilization of nitrogen. Simultaneously, the labile, LMW fraction of DOC became almost completely exhausted. The low availability of the LMW fraction could retard the growth and cause the accumulated decomposer biomass to collapse. During the following winter and summer the fraction of LMW clearly increased, followed by increased N2O emissions. The presence of LMW DOC fractions, not the concentration of DOC, seems to be an important controller for N2O liberation after a major disturbance such as clear-cutting and site preparation. The complex connection between DOC characteristics, nitrification or denitrification merits further studies.  相似文献   

9.
Net productions of permanent soil atmosphere gases (N2, CO2, O2) and temporary gases (N2O, NO) were monitored in soil cores using a non-interfering, fully automated measuring technique allowing highly time resolved measurements over prolonged periods. The influence of changes in available organic carbon on CO2, N2O, NO and N2 production was studied by changing the soil carbon content through aerobic preincubations of different length, up to 21 days.The aerobic preincubation caused an increase in NO3 - concentration and a decrease in available carbon content. Available carbon content dominated both CO2 and total N gas (N2+N2O+NO) production during anaerobiosis. Both CO2 and total N gas production rates decreased with increasing length of the previous aerobic preincubation, this in spite of the higher initial NO3 - concentration.Total denitrification rates were closely related to the anaerobic CO2 production rates. No relation was found between water soluble carbon content and total denitrification. The N2O/N2 ratio could be explained by an interaction of carbon availability, NO3 - concentration and enzyme status. Net N2O consumption was monitored. The balance between cumulative total N gas production and NO3 - consumption varied according to the different treatments. Cumulative N2O production exceeded cumulative N2 production for 0 up to 5 days.  相似文献   

10.
Profiles of subsurface soil CO2 concentration, soil temperature, and soil moisture, and throughfall were measured continuously during the years 2005 and 2006 in 16 locations at the free air CO2 enrichment facility situated within a temperate loblolly pine (Pinus taeda L.) stand. Sampling at these locations followed a 4 by 4 replicated experimental design comprised of two atmospheric CO2 concentration levels (ambient [CO2]a, ambient + 200 ppmv, [CO2]e) and two soil nitrogen (N) deposition levels (ambient, ambient + fertilization at 11.2 gN m−2 year−1). The combination of these measurements permitted indirect estimation of belowground CO2 production and flux profiles in the mineral soil. Adjacent to the soil CO2 profiles, direct (chamber-based) measurements of CO2 fluxes from the soil–litter complex were simultaneously conducted using the automated carbon efflux system. Based on the measured soil CO2 profiles, neither [CO2]e nor N fertilization had a statistically significant effect on seasonal soil CO2, CO2 production, and effluxes from the mineral soil over the study period. Soil moisture and temperature had different effects on CO2 concentration depending on the depth. Variations in CO2 were mostly explained by soil temperature at deeper soil layers, while water content was an important driver at the surface (within the first 10 cm), where CO2 pulses were induced by rainfall events. The soil effluxes were equal to the CO2 production for most of the time, suggesting that the site reached near steady-state conditions. The fluxes estimated from the CO2 profiles were highly correlated to the direct measurements when the soil was neither very dry nor very wet. This suggests that a better parameterization of the soil CO2 diffusivity is required for these soil moisture extremes.  相似文献   

11.
Summary Total denitrification (N2O+N2) and nitrous oxide emission were measured on intact soil cores using the acetylene inhibition technique.Total denitrification from the depth 0–8 cm during the growth period from April to August was 7 kg N/ha from plots supplied with 30 kg N/ha and 19 kg N/ha from plots supplied with 120 kg N/ha. The amounts of precipitation, plant growth, and N application were found to affect the denitrification rate. These factors also affected the ratio (N2O+N2)/N2O, which varied from 1.0 to 7.2. Plant growth and precipitation increased the proportion of N2 produced, whereas a high nitrate content increased the proportion of N2O.  相似文献   

12.
Increasing demand for food and fibre by the growing human population is driving significant land use (LU) change from forest into intensively managed land systems in tropical areas. But empirical evidence on the extent to which such changes affect the soil-atmosphere exchange of trace gases is still scarce, especially in Africa. We investigated the effect of LU on soil trace gas production in the Mau Forest Complex region, Kenya. Intact soil cores were taken from natural forest, commercial and smallholder tea plantations, eucalyptus plantations and grazing lands, and were incubated in the lab under different soil moisture conditions. Soil fluxes of nitrous oxide (N2O), nitric oxide (NO) and carbon dioxide (CO2) were quantified, and we approximated annual estimates of soil N2O and NO fluxes using soil moisture values measured in situ. Forest and eucalyptus plantations yielded annual fluxes of 0.3–1.3 kg N2O–N ha?1 a?1 and 1.5–5.2 kg NO–N ha?1 a?1. Soils of commercial tea plantations, which are highly fertilized, showed higher fluxes (0.9 kg N2O–N ha?1 a?1 and 4.3 kg NO–N ha?1 a?1) than smallholder tea plantations (0.1 kg N2O–N ha?1 a?1 and 2.1 kg NO–N ha?1 a?1) or grazing land (0.1 kg N2O–N ha?1 a?1 and 1.1 kg NO–N ha?1 a?1). High soil NO fluxes were probably the consequence of long-term N fertilization and associated soil acidification, likely promoting chemodenitrification. Our experimental approach can be implemented in understudied regions, with the potential to increase the amount of information on production and consumption of trace gases from soils.  相似文献   

13.
Fungal activity is a major driver in the global nitrogen cycle, and mounting evidence suggests that fungal denitrification activity contributes significantly to soil emissions of the greenhouse gas nitrous oxide (N2O). The metabolic pathway and oxygen requirement for fungal denitrification are different from those for bacterial denitrification. We hypothesized that the soil N2O emission from fungi is formate and O2 dependent and that land use and landforms could influence the proportion of N2O coming from fungi. Using substrate-induced respiration inhibition under anaerobic and aerobic conditions in combination with 15N gas analysis, we found that formate and hypoxia (versus anaerobiosis) were essential for the fungal reduction of 15N-labeled nitrate to 15N2O. As much as 65% of soil-emitted N2O was attributable to fungi; however, this was found only in soils from water-accumulating landforms. From these results, we hypothesize that plant root exudates could affect N2O production from fungi via the proposed formate-dependent pathway.  相似文献   

14.
Nitrous oxide (N2O) is one of the three main biogenic greenhouse gases (GHGs) and agriculture represents close to 30 % of the total N2O net emissions. In agricultural soils, N2O is emitted by two main microbial processes, nitrification and denitrification, both of which can convert synthetic nitrogen fertilizer into N2O. Legume-rhizobia symbiosis could be an effective and environmental-friendly alternative to nitrogen fertilization and hence, to mitigate soil N2O emissions. However, legume crops also contribute to N2O emissions. A better understanding of the environmental factors involved in the emission of N2O from nodules would be instrumental for mitigating the release of this GHG gas. In this work, in vivo N2O emissions from nodulated soybean roots in response to nitrate (0, 1, 2 and 4 mM) and flooding have been measured. To investigate the contribution of rhizobial denitrification in N2O emission from nodules, plants were inoculated with B. japonicum USDA110 and napA and nosZ denitrification mutants. The results showed that nitrate was essential for N2O emissions and its concentration enhanced N2O fluxes showing a statistical linear correlation, being the highest N2O fluxes obtained with 4 mM nitrate. When inoculated plants grown with 4 mM nitrate were subjected to flooding, a 150- and 830-fold induction of N2O emission rates from USDA110 and nosZ nodulated roots, respectively, was observed compared to non-flooded plants, especially during long-term flooding. Under these conditions, N2O emissions from detached nodules produced by the napA mutant were significantly lower (p?<?0.05) than those produced by the wild-type strain (382 versus 1120 nmol N2O h?1 g?1 NFW, respectively). In contrast, nodules from plants inoculated with the nosZ mutant accumulated statistically higher levels of N2O compared to wild-type nodules (2522 versus nmol 1120 N2O h?1 g?1 NFW, p?<?0.05). These results demonstrate that flooding is an important environmental factor for N2O emissions from soybean nodules and that B. japonicum denitrification is involved in such emission.  相似文献   

15.
Urine patches are considered to be important sites for nitrous oxide (N2O) production through nitrification and denitrification due to their high concentration of nitrogen (N). The aim of the present study was to determine the microbial source and size of production of N2O in different zones of a urine patch on grassland on peat soil. Artificial urine was applied in elongated patches of 4.5 m. Four lateral zones were distinguished and sampled for four weeks using an intact soil core incubation method. Incubation of soil cores took place without any additions to the headspace to determine total N2O production, with acetylene addition to determine total denitrification (N2O+N2), and with methyl fluoride to determine the N2O produced through denitrification.Nitrous oxide production was largest in the centre and decreased towards the edge of the patch. Maximum N2O production was about 50 mg N m–2 d–1 and maximum denitrification activity was 70 mg N m–2 d–1. Nitrification was the main N2O producing process. Nitrous oxide production through denitrification was only of significance when denitrification activity was high. Total N loss through nitrification and denitrification over 31 days was 4.1 g N per patch which was 2.2% of the total applied urine-N.  相似文献   

16.
Gross rates of N mineralization and nitrification, and soil–atmosphere fluxes of N2O, NO and NO2 were measured at differently grazed and ungrazed steppe grassland sites in the Xilin river catchment, Inner Mongolia, P. R. China, during the 2004 and 2005 growing season. The experimental sites were a plot ungrazed since 1979 (UG79), a plot ungrazed since 1999 (UG99), a plot moderately grazed in winter (WG), and an overgrazed plot (OG), all in close vicinity to each other. Gross rates of N mineralization and nitrification determined at in situ soil moisture and soil temperature conditions were in a range of 0.5–4.1 mg N kg−1 soil dry weight day−1. In 2005, gross N turnover rates were significantly higher at the UG79 plot than at the UG99 plot, which in turn had significantly higher gross N turnover rates than the WG and OG plots. The WG and the OG plot were not significantly different in gross ammonification and in gross nitrification rates. Site differences in SOC content, bulk density and texture could explain only less than 15% of the observed site differences in gross N turnover rates. N2O and NO x flux rates were very low during both growing seasons. No significant differences in N trace gas fluxes were found between plots. Mean values of N2O fluxes varied between 0.39 and 1.60 μg N2O-N m−2 h−1, equivalent to 0.03–0.14 kg N2O-N ha−1 y−1, and were considerably lower than previously reported for the same region. NO x flux rates ranged between 0.16 and 0.48 μg NO x -N m−2 h−1, equivalent to 0.01–0.04 kg NO x -N ha−1 y−1, respectively. N2O fluxes were significantly correlated with soil temperature and soil moisture. The correlations, however, explained only less than 20% of the flux variance.  相似文献   

17.
Lanfang Yang  Zucong Cai 《Plant and Soil》2006,283(1-2):265-274
The effect of photosynthesis on N2O emission from soil was investigated by shading soybean (Gycline max. L) plant at flowering, pod-setting and grain-filling stages. The results showed that by stopping photosynthesis through shading the plants stimulated N2O emission significantly at flowering stage and pod-setting stage, and suppressed N2O emission dramatically at grain-filling stage. At flowering stage, soybean species seem to rely mainly on fertilizer N and shaded plants decreased the N uptake. Interaction between the relative increase in available N for N2O production by shading and the presence of root exudates promoted N transformation (nitrification/denitrification) and N2O emission. At pod-setting stage, the available soil nitrogen seems to be a critical limiting factor and without substantial release of symbiotically fixed N through plant roots, resulted in a weak effect of shading on N2O emission. At grain-filling stage, available N for N2O production was derived from symbiotically fixed N and was greatly affected by photosynthesis. These results indicated that the effect of soybean growth on N2O emission from soil varies with plant growth stages as available N for N2O production is mainly from fertilizer N and organic mineralization during the early growth of soybean plants, while N2O emission is controlled by the quantity and perhaps also the quality of root exudates, which is closely related with plant photosynthesis in the late season of soybean growth.  相似文献   

18.
Annual production of crop residues has reached nearly 4 billion metric tons globally. Retention of this large amount of residues on agricultural land can be beneficial to soil C sequestration. Such potential impacts, however, may be offset if residue retention substantially increases soil emissions of N2O, a potent greenhouse gas and ozone depletion substance. Residue effects on soil N2O emissions have gained considerable attention since early 1990s; yet, it is still a great challenge to predict the magnitude and direction of soil N2O emissions following residue amendment. Here, we used a meta‐analysis to assess residue impacts on soil N2O emissions in relation to soil and residue attributes, i.e., soil pH, soil texture, soil water content, residue C and N input, and residue C : N ratio. Residue effects were negatively associated with C : N ratios, but generally residue amendment could not reduce soil N2O emissions, even for C : N ratios well above ca. 30, the threshold for net N immobilization. Residue effects were also comparable to, if not greater than, those of synthetic N fertilizers. In addition, residue effects on soil N2O emissions were positively related to the amounts of residue C input as well as residue effects on soil CO2 respiration. Furthermore, most significant and stimulatory effects occurred at 60–90% soil water‐filled pore space and soil pH 7.1–7.8. Stimulatory effects were also present for all soil textures except sand or clay content ≤10%. However, inhibitory effects were found for soils with >90% water‐filled pore space. Altogether, our meta‐analysis suggests that crop residues played roles beyond N supply for N2O production. Perhaps, by stimulating microbial respiration, crop residues enhanced oxygen depletion and therefore promoted anaerobic conditions for denitrification and N2O production. Our meta‐analysis highlights the necessity to connect the quantity and quality of crop residues with soil properties for predicting soil N2O emissions.  相似文献   

19.
Nitrogen loss from grassland on peat soils through nitrous oxide production   总被引:2,自引:0,他引:2  
Koops  J.G.  van Beusichem  M.L.  Oenema  O. 《Plant and Soil》1997,188(1):119-130
Nitrous oxide (N2O) in soils is produced through nitrification and denitrification. The N2O produced is considered as a nitrogen (N) loss because it will most likely escape from the soil to the atmosphere as N2O or N2. Aim of the study was to quantify N2O production in grassland on peat soils in relation to N input and to determine the relative contribution of nitrification and denitrification to N2O production. Measurements were carried out on a weekly basis in 2 grasslands on peat soil (Peat I and Peat II) for 2 years (1993 and 1994) using intact soil core incubations. In additional experiments distinction between N2O from nitrification and denitrification was made by use of the gaseous nitrification inhibitor methyl fluoride (CH3F).Nitrous oxide production over the 2 year period was on average 34 kg N ha-1 yr-1 for mown treatments that received no N fertiliser and 44 kg N ha-1 yr-1 for mown and N fertilised treatments. Grazing by dairy cattle on Peat I caused additional N2O production to reach 81 kg N ha-1 yr-1. The sub soil (20–40 cm) contributed 25 to 40% of the total N2O production in the 0–40 cm layer. The N2O production:denitrification ratio was on average about 1 in the top soil and 2 in the sub soil indicating that N2O production through nitrification was important. Experiments showed that when ratios were larger than l, nitrification was the major source of N2O. In conclusion, N2O production is a significant N loss mechanism in grassland on peat soil with nitrification as an important N2O producing process.  相似文献   

20.
Litter inputs are expected to have a strong impact on soil N2O efflux. This study aimed to assess the effects of the litter decomposition process and nutrient efflux from litter to soil on soil N2O efflux in a tropical rainforest. A paired study with a control (L) treatment and a litter-removed (NL) treatment was followed for 2 years, continuously monitoring the effects of these treatments on soil N2O efflux, fresh litter input, decomposed litter carbon (LCI) and nitrogen (LNI), soil nitrate (NO3 ?–N), ammonium (NH4 +–N), dissolved organic carbon (DOC), and dissolved nitrogen (DN). Soil N2O flux was 0.48 and 0.32 kg N2O–N ha?1 year?1 for the L and NL treatments, respectively. Removing the litter caused a decrease in the annual soil N2O emission by 33%. The flux values from the litter layer were higher in the rainy season as compared to the dry season (2.10 ± 0.28 vs. 1.44 ± 0.35 μg N m?2 h?1). The N2O fluxes were significantly correlated with the soil NO3 ?–N contents (P < 0.05), indicating that the N2O emission was derived mainly from denitrification as well as other NO3 ? reduction processes. Suitable soil temperature and moisture sustained by rainfall were jointly attributed to the higher soil N2O fluxes of both treatments in the rainy season. The N2O fluxes from the L were mainly regulated by LCI, whereas those from the NL were dominated jointly by soil NO3 ? content and temperature. The effects of LCI and LNI on the soil N2O fluxes were the greatest in the 2 months after litter decomposition. Our results show that litter may affect not only the variability in the quantity of N2O emitted, but also the mechanisms that govern N2O production. However, further studies are still required to elucidate the impacting mechanisms of litter decomposition on N2O emission from tropical forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号