首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Nonribosomal peptide synthetases (NRPS) and type I polyketide synthases (PKS-I) are biosynthetic systems involved in the synthesis of a large number of important biologically active compounds produced by microorganisms, among others by actinomycetes. In order to assess the occurrence of these biosynthetic systems in this metabolically active bacterial group, we designed new PCR primers targeted to specifically amplify NRPS and PKS-I gene sequences from actinomycetes. The sequence analysis of amplified products cloned from two model systems and used to validate these molecular tools has shown the extreme richness of NRPS or PKS-I-like sequences in the actinomycete genome. When these PCR primers were tested on a large collection of 210 reference strains encompassing all major families and genera in actinomycetes, we observed that the wide distribution of these genes in the well-known productive Streptomyces species is also extended to other minor lineages where in some cases very few bioactive compounds have been identified to date.  相似文献   

2.
With the recent advances in DNA sequencing technologies, it is now feasible to sequence multiple actinomycete genomes rapidly and inexpensively. An important observation that emerged from early Streptomyces genome sequencing projects was that each strain contains genes that encode 20 or more potential secondary metabolites, only a fraction of which are expressed during fermentation. More recently, this observation has been extended to many other actinomycetes with large genomes. The discovery of a wealth of orphan or cryptic secondary metabolite biosynthetic gene clusters has suggested that sequencing large numbers of actinomycete genomes may provide the starting materials for a productive new approach to discover novel secondary metabolites. The key issue for this approach to be successful is to find ways to turn on or turn up the expression of cryptic or poorly expressed pathways to provide material for structure elucidation and biological testing. In this review, I discuss several genetic approaches that are potentially applicable to many actinomycetes for this application.  相似文献   

3.
盐孢菌属(Salinispora)作为首个被报道的专性海洋放线菌,主要分布于热带和亚热带海洋沉积环境中,在海绵、海鞘中也有发现。与其他大多数放线菌一样,盐孢菌属的菌株可以产生大量具有抗细菌、抗病毒、抗肿瘤细胞活性、结构新颖的次级代谢产物且表现出物种特异性。全基因组序列分析显示,盐孢菌属菌株基因组中超过10%的基因序列与次级代谢产物合成相关,但绝大多数生物合成基因簇编码的产物未被发现,表明盐孢菌属还存在巨大的生物合成潜能,有待深入发掘。目前新的培养方法、测序技术及生物信息学、基因组发掘技术、合成生物学技术的发展对提升盐孢菌属菌株新型药物的生产潜力发挥重要作用。本文对盐孢菌属的物种多样性、系统分类与化合物发现等方面的研究进行了系统综述。  相似文献   

4.
The Biodiversity of Actinomycetes in Lake Baikal   总被引:1,自引:0,他引:1  
Terkina  I. A.  Drukker  V. V.  Parfenova  V. V.  Kostornova  T. Ya. 《Microbiology》2002,71(3):346-349
The taxonomic analysis of 107 actinomycete strains isolated from the bottom sediments and water of Lake Baikal showed that most of the water isolates belong to the genus Streptomyces and most of the sediment isolates belong to the genus Micromonospora. In the sediments, the number of actinomycetes increased with depth (down to 200 m). Eight Streptomyces isolates were identified to a species level.  相似文献   

5.
The conserved nature of the genes that code for actinomycete secondary metabolite biosynthetic pathways suggests a common evolutionary ancestor and incidences of lateral gene transfer. Resistance genes associated with these biosynthetic pathways also display a high degree of similarity. Actinomycete aminoglycoside phosphotransferase antibiotic resistance enzymes (APH) are coded for by such genes and are therefore good targets for evaluating the bioactive potential of actinomycetes. A set of universal PCR primers for APH encoding genes was used to probe genomic DNA from three collections of actinomycetes to determine the utility of molecular screening. An additional monitoring of populations for the predominance of specific classes of enzymes to predict the potential of environmental sites for providing isolates with interesting metabolic profiles. Approximately one-fifth of all isolates screened gave a positive result by PCR. The PCR products obtained were sequenced and compared to existing APH family members. Sequence analysis resolved the family into nine groups of which six had recognizable phenotypes: 6′-phosphotransferase (APH(6)), 3′-phosphotransferase (APH(3)), hydroxyurea phosphotransferase (HUR), peptide phosphotransferase, hygromycin B phosphotransferase (APH(7″)) and oxidoreductase. The actinomycetes screened fell into seven groups, including three novel groups with unknown phenotypes. The strains clustered according to the environmental site from where they were obtained, providing evidence for the movement of these genes within populations. The value of this as a method for obtaining novel compounds and the significance to the ecology of antibiotic biosynthesis are discussed. Journal of Industrial Microbiology & Biotechnology (2002) 29, 60–69 doi:10.1038/sj.jim.7000260 Received 25 June 2001/ Accepted in revised form 26 March 2002  相似文献   

6.
分离西沙群岛海域放线菌并研究其抗菌活性。采用干燥、辐射、冷冻及加热处理等11种样品预处理方式和10种培养基对海洋放线菌进行分离,对代表性菌株进行鉴定,并考察分离放线菌生长的海水依赖性。进一步以金黄色葡萄球菌、大肠埃希菌、啤酒酵母和扩展青霉为指示菌考察分离放线菌的抗菌活性。从西沙群岛海域样品中分离获得放线菌383株,其中专性海洋放线菌23株。选定93株代表菌株进行鉴定,93株菌隶属于9个科,11个属。不同培养基对分离放线菌菌株的数量及种类影响显著。6株放线菌对4种指示菌均有抑菌活性,其中4株为专性海洋放线菌,表明海洋环境具有丰富的放线菌资源,这些放线菌特别是专性海洋放线菌有望为新型抗菌物质的发现与开发提供菌种来源。  相似文献   

7.
Here we report associations between secondary metabolite production and phylogenetically distinct but closely related marine actinomycete species belonging to the genus Salinispora. The pattern emerged in a study that included global collection sites, and it indicates that secondary metabolite production can be a species-specific, phenotypic trait associated with broadly distributed bacterial populations. Associations between actinomycete phylotype and chemotype revealed an effective, diversity-based approach to natural product discovery that contradicts the conventional wisdom that secondary metabolite production is strain specific. The structural diversity of the metabolites observed, coupled with gene probing and phylogenetic analyses, implicates lateral gene transfer as a source of the biosynthetic genes responsible for compound production. These results conform to a model of selection-driven pathway fixation occurring subsequent to gene acquisition and provide a rare example in which demonstrable physiological traits have been correlated to the fine-scale phylogenetic architecture of an environmental bacterial community.  相似文献   

8.
Here we report associations between secondary metabolite production and phylogenetically distinct but closely related marine actinomycete species belonging to the genus Salinispora. The pattern emerged in a study that included global collection sites, and it indicates that secondary metabolite production can be a species-specific, phenotypic trait associated with broadly distributed bacterial populations. Associations between actinomycete phylotype and chemotype revealed an effective, diversity-based approach to natural product discovery that contradicts the conventional wisdom that secondary metabolite production is strain specific. The structural diversity of the metabolites observed, coupled with gene probing and phylogenetic analyses, implicates lateral gene transfer as a source of the biosynthetic genes responsible for compound production. These results conform to a model of selection-driven pathway fixation occurring subsequent to gene acquisition and provide a rare example in which demonstrable physiological traits have been correlated to the fine-scale phylogenetic architecture of an environmental bacterial community.  相似文献   

9.
Bioactive compounds from marine actinomycetes   总被引:1,自引:0,他引:1  
Actinomycetes are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Among its various genera, Streptomyces, Saccharopolyspora, Amycolatopsis, Micromonospora and Actinoplanes are the major producers of commercially important biomolecules. Several species have been isolated and screened from the soil in the past decades. Consequently the chance of isolating a novel actinomycete strain from a terrestrial habitat, which would produce new biologically active metabolites, has reduced. The most relevant reason for discovering novel secondary metabolites is to circumvent the problem of resistant pathogens, which are no longer susceptible to the currently used drugs. Existence of actinomycetes has been reported in the hitherto untapped marine ecosystem. Marine actinomycetes are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, insecticidal and enzyme inhibition. Bioactive compounds from marine actinomycetes possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens.  相似文献   

10.
In July of 2006 and January of 2008, a total of 671 marine sediment samples were collected at depths from 5 to 2012?m throughout the Fijian islands and selectively processed for the cultivation of marine actinomycetes belonging to the genus Salinispora. The primary objectives were to assess the diversity, distribution and phylogeny of 'S. pacifica', the least well studied of the three species in the genus. Employing a sequential screening method based on antibiotic sensitivity, RFLP patterns, and 16S rRNA and ITS sequence analyses, 42 of 750 isolates with Salinispora-like features were identified as 'S. pacifica'. These strains represent the first report of 'S. pacifica' from Fiji and include 15 representatives of 4 new 'S. pacifica' 16S rRNA sequence types. Among the 'S. pacifica' strains isolated, little evidence for geographical isolation emerged based on 16S, ITS or secondary metabolite biosynthetic gene fingerprinting. The inclusion of isolates from additional collection sites and other Salinispora spp. revealed a high degree of dispersal among 'S. pacifica' populations and phylogenetic support for the delineation of this lineage as a third species.  相似文献   

11.
The polyene antibiotics, a category that includes nystatin, pimaricin, amphotericin, and candicidin, comprise a family of very promising antifungal polyketide compounds and are typically produced by soil actinomycetes. The biosynthetic gene clusters for these polyenes have been previously investigated, revealing the presence of highly similar cytochrome P450 hydroxylase (CYP) genes. Using polyene CYP-specific PCR screening with several actinomycete genomic DNAs, Pseudonocardia autotrophica was determined to contain a unique polyene-specific CYP gene. Genomic DNA library screening using the polyene-specific CYP gene probe identified a positive cosmid clone, which contained a DNA fragment of approximately 34.5 kb. The complete sequencing of this DNA fragment revealed a total of seven complete and two incomplete open reading frames, which were found to be highly similar, but still unique, when compared to previously known polyene biosynthetic genes. These results suggest that the polyene-specific screening approach may constitute an efficient method for the isolation of potentially valuable cryptic polyene biosynthetic gene clusters from various rare actinomycetes.  相似文献   

12.
ABSTRACT: BACKGROUND: Hypersaline solar salterns are extreme environments in many tropical and subtropical regions throughout the world. In India, there are several coastal solar salterns along with the coastal line of the Bay of Bengal and Arabian Sea and inland solar salterns around Sambhar saltlake, from which sodium chloride is obtained for human consumption and industrial needs. Studies on characterization of such coastal and inland solar salterns are scarce and both the bacterial and archaeal diversity of these extreme saline environment remains poorly understood. Moreover, there are no reports on exclusive diversity of actinomycetes inhabiting Indian solar salterns. RESULTS: Soil sediments were collected from both concentrator and crystallizer ponds of solar salterns and subjected to detailed physico-chemical analysis. Actinomycetes were selectively isolated by employing selective processing methods and agar media. A total of 12 representatives were selected from the 69 actinomycete isolates obtained from the saltern soil samples, using Amplified Ribosomal DNA Restriction Analysis. Sequencing and analysis of 16S rDNA from chosen representative isolates displayed the presence of members affiliated to actinobacterial genera: Streptomyces, Micromonospora, Nocardia, Nocardiopsis, Saccharopolyspora and Nonomuraea. The genus Streptomyces was found to be the dominant among the isolates. Furthermore, rare actinomycete genus Nonomuraea was isolated for the first time from Indian solar salterns. CONCLUSIONS: To the best of our knowledge, this study constitutes the first characterization of actinomycete diversity centred on solar salterns located in the eastern coastal region of India. Furthermore, this is the very first report of isolation of Nonomuraea species from solar salterns and also from India. As actinomycetes encompass recurrently foremost sources of biotechnologically important member of the microbial communities, the actinomycetes retrieved from the Indian saltern soil samples laid the platform to search for novel biotechnologically significant bioactive substances.  相似文献   

13.
Heterologous gene expression is one of the main strategies used to access the full biosynthetic potential of actinomycetes, as well as to study the metabolic pathways of natural product biosynthesis and to create unnatural pathways. Streptomyces coelicolor A3(2) is the most studied member of the actinomycetes, bacteria renowned for their prolific capacity to synthesize a wide range of biologically active specialized metabolites. We review here the use of strains of this species for the heterologous production of structurally diverse actinomycete natural products.  相似文献   

14.
A chitinolytic actinomycete complex in chernozem soil has a specific taxonomic composition, which differs from that of the actinomycete complex typically isolated on standard nutrient media containing sugars and organic acids as carbon sources. The actinomycete complex that was isolated by using nutrient media with chitin as the source of carbon and nitrogen was dominated by representatives of the genus Streptosporangium, and the actinomycete complex that was isolated by using nutrient media with sugars and organic acids as the carbon sources was dominated by representatives of the genus Streptomyces. The confirmation of the ability of actinomycetes to utilize chitin as a sole source of carbon and nitrogen came from the augmented length and biomass of the mycelium, the increased number and biomass of the actinomycete spores, the production of carbon dioxide, and the accumulation of NH4 + ions in the culture liquid of the actinomycetes grown in the nutrient media with chitin.  相似文献   

15.
Members of the marine actinomycete genus Salinispora constitutively produce a characteristic orange pigment during vegetative growth. Contrary to the understanding of widespread carotenoid biosynthesis pathways in bacteria, Salinispora carotenoid biosynthesis genes are not confined to a single cluster. Instead, bioinformatic and genetic investigations confirm that four regions of the Salinispora tropica CNB‐440 genome, consisting of two gene clusters and two independent genes, contribute to the in vivo production of a single carotenoid. This compound, namely (2′S)‐1′‐(β‐D‐glucopyranosyloxy)‐3′,4′‐didehydro‐1′,2′‐dihydro‐φ,ψ‐caroten‐2′‐ol, is novel and has been given the trivial name ‘sioxanthin’. Sioxanthin is a C40‐carotenoid, glycosylated on one end of the molecule and containing an aryl moiety on the opposite end. Glycosylation is unusual among actinomycete carotenoids, and sioxanthin joins a rare group of carotenoids with polar and non‐polar head groups. Gene sequence homology predicts that the sioxanthin biosynthetic pathway is present in all of the Salinispora as well as other members of the family Micromonosporaceae. Additionally, this study's investigations of clustering of carotenoid biosynthetic genes in heterotrophic bacteria show that a non‐clustered genome arrangement is more common than previously suggested, with nearly half of the investigated genomes showing a non‐clustered architecture.  相似文献   

16.
【背景】珊瑚礁生态系统是海洋中一类极其重要的生态系统,健康珊瑚礁中丰富的共附生放线菌群体是珊瑚抵御各种致病菌的重要防线,因此,这类放线菌是寻找抗菌活性分子的重要资源,其药用潜力巨大。【目的】从西沙石珊瑚样品中分离共附生放线菌,并从中筛选具有良好抗菌活性的菌株。【方法】通过稀释涂布法分离珊瑚共附生放线菌,并根据16S rRNA基因序列构建系统发育树进行菌种鉴定;通过平板对峙法对放线菌进行抗菌活性筛选并确定目标菌株;将目标菌株涂布于不同氯化钠浓度的ISP2固体培养基上培养,测试其盐度耐受能力;通过平板对峙法对该菌株发酵产物的热稳定性和光稳定性进行测试;采用NanoPore和Illumina方法完成目标活性放线菌全基因组测序,并通过antiSMASH在线分析预测其次级代谢产物生物合成基因簇及其结构类型。【结果】从6份西沙石珊瑚样品中分离得到104株可培养放线菌,根据菌落形态和分离来源去重后对其中27株放线菌进行16S rRNA基因序列测序,通过序列比对和系统发育树分析将菌株初步鉴定为盐孢菌属(Salinispora)(25株)、链霉菌属(Streptomyces)(1株)和戈登菌属(Gord...  相似文献   

17.
A major taxon of obligate marine bacteria within the order Actinomycetales has been discovered from ocean sediments. Populations of these bacteria (designated MAR 1) are persistent and widespread, spanning at least three distinct ocean systems. In this study, 212 actinomycete isolates possessing MAR 1 morphologies were examined and all but two displayed an obligate requirement of seawater for growth. Forty-five of these isolates, representing all observed seawater-requiring morphotypes, were partially sequenced and found to share characteristic small-subunit rRNA signature nucleotides between positions 207 and 468 (Escherichia coli numbering). Phylogenetic characterization of seven representative isolates based on almost complete sequences of genes encoding 16S rRNA (16S ribosomal DNA) yielded a monophyletic clade within the family Micromonosporaceae and suggests novelty at the genus level. This is the first evidence for the existence of widespread populations of obligate marine actinomycetes. Organic extracts from cultured members of this new group exhibit remarkable biological activity, suggesting that they represent a prolific resource for biotechnological applications.  相似文献   

18.
An antiproliferative agent, streptochlorin, was isolated from the fermentation broth of a marine actinomycete isolated from marine sediment. Phylogenetic analysis of the 16S rRNA gene sequence indicated that the strain belongs to the genus Streptomyces. Bioactivity guided fractionation of the culture extract by solvent partitioning, ODS open flash chromatography, and reversed-phase HPLC gave a pure compound, streptochlorin. Its structure was elucidated by extensive 2D NMR and mass spectral analyses. Streptochlorin exhibited significant antiproliferative activity against human cultured cell lines.  相似文献   

19.
The marine sponge Amphimedon sp., collected from Hurghada (Egypt) was investigated for its sponge-derived actinomycetes diversity. Nineteen actinomycetes were cultivated and phylogenetically identified using 16S rDNA gene sequencing were carried out. The strains belong to genera Kocuria, Dietzia, Micrococcus, Microbacterium and Streptomyces. Many silent biosynthetic genes clusters were investigated using genome sequencing of actinomycete strains and has revealed in particular the genus Streptomyces that has indicated their exceptional capacity for the secondary metabolites production that not observed under classical cultivation conditions. In this study, the effect of N-acetylglucosamine on the metabolome of Streptomyces sp. RM66 was investigated using three actinomycetes media (ISP2, M1 and MA). In total, twelve extracts were produced using solid and liquid fermentation approaches. Liquid chromatography-high resolution tandem mass spectrometry (LC-HRMS/MS) data were analysed using metabolomics tools to compare natural product production across all crude extracts. Our study highlighted the elicitation effect of N-acetylglucosamine on the secondary metabolite profiles of Streptomyces sp. RM66. These results highlight the of N-acetylglucosamine application as an elicitor to induce the cryptic metabolites and for increasing the chemical diversity. All the twelve extracts were tested for their antibacterial activity was tested against Staphylococcus aureus NCTC 8325, antifungal activity against Candida albicans 5314 (ATCC 90028) and anti-trypanosomal activity against Trypanosoma brucei brucei. Extract St1 showed the most potent one with activities 2.3, 3.2 and 4.7 ug/ml as antibacterial, antifungal and anti-trypanosomal, respectively.  相似文献   

20.
A major taxon of obligate marine bacteria within the order Actinomycetales has been discovered from ocean sediments. Populations of these bacteria (designated MAR 1) are persistent and widespread, spanning at least three distinct ocean systems. In this study, 212 actinomycete isolates possessing MAR 1 morphologies were examined and all but two displayed an obligate requirement of seawater for growth. Forty-five of these isolates, representing all observed seawater-requiring morphotypes, were partially sequenced and found to share characteristic small-subunit rRNA signature nucleotides between positions 207 and 468 (Escherichia coli numbering). Phylogenetic characterization of seven representative isolates based on almost complete sequences of genes encoding 16S rRNA (16S ribosomal DNA) yielded a monophyletic clade within the family Micromonosporaceae and suggests novelty at the genus level. This is the first evidence for the existence of widespread populations of obligate marine actinomycetes. Organic extracts from cultured members of this new group exhibit remarkable biological activity, suggesting that they represent a prolific resource for biotechnological applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号