首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
厌氧氨氧化菌脱氮机理及其在污水处理中的应用   总被引:6,自引:0,他引:6  
王惠  刘研萍  陶莹  刘新春 《生态学报》2011,31(7):2019-2028
厌氧氨氧化细菌(anammox)可以将亚硝酸盐和氨氮转化为氮气从而缩短氨氮转化的过程,它已经成为新型生物污水脱氮技术研究的热点之一。当前,有关厌氧氨氧化菌特有的生理结构特点、种群分类及其功能酶等方面的研究取得了一定突破,为实现其工业应用奠定了良好的理论基础;同时分子生物学技术在厌氧氨氧化细菌种群分布、群落多样性及其共生关系等方面的应用也大大促进了污水生物脱氮技术的革新和进步。总结了厌氧氨氧化菌主要的生理生化特点、细胞结构特点、脱氮机理、污水处理体系中的应用以及分子生物学方法对污水处理体系中厌氧氨氧化菌种群分析的研究现状,并指出未来anammox细菌在生物特性及在污水脱氮处理实际应用的研究中的热点问题。生物特性方面的主要研究热点有:(1)anammox细菌除厌氧氨氧化作用外,其它新陈代谢途径有待探索;(2)anammox细菌在不同环境中分布的倾向性问题;(3)新型anammox细菌的确定。污水处理的实际应用方面的主要研究热点有:(1)anammox污泥的快速高效富集问题;(2)设计高特异性引物;(3)anammox细菌和其他微生物的共生关系。  相似文献   

2.
厌氧氨氧化菌的中心代谢研究进展   总被引:2,自引:0,他引:2  
陆慧锋  丁爽  郑平 《微生物学报》2011,51(8):1014-1022
摘要: 厌氧氨氧化是以NH +4为电子供体,以NO-2为电子受体产生N2的生物反应。厌氧氨氧化菌是厌氧氨氧化过程的执行者,在废水生物脱氮和地球氮素循环中扮演着重要角色。研究厌氧氨氧化菌的代谢特性,将有助于理解厌氧氨氧化过程,开发厌氧氨氧化工艺。厌氧氨氧化菌是化能自养型细菌,以CO2或HCO-3为碳源,并通过偶联NH+4氧化和NO -2还原的生物反应获得能量。在NH+4/NO-2的生物氧化还原反应过程中,检出了中间产物N2H4,但未检出其他中间产物(如NH2OH、NO)。此外,由基因组信息推断,厌氧氨氧化菌  相似文献   

3.
Nitrogen removal with the anaerobic ammonium oxidation process   总被引:3,自引:0,他引:3  
Anaerobic ammonium-oxidizing (anammox) bacteria convert ammonium to N2 with nitrite as the terminal electron acceptor in the absence of O2. Nitritation–anammox bioreactors provide a cost-effective and environment-friendly alternative to conventional nitrification/denitrification nitrogen removal systems. Currently, this process is only applied for ammonium removal from wastewater with high ammonium load and temperature. Nevertheless, recent results obtained with laboratory-scale bioreactors suggest new possible routes of application of the Nitritation–anammox technology including (1) municipal wastewater treatment, removal of (2) methane in combination with nitrite-reducing methane-oxidizing bacteria, (3) nitrate coupled to organic acid oxidation and (4) nitrogen oxides. The current review summarizes the state-of-the-art of the application of Nitritation–anammox systems and discusses the possibilities of utilizing these recent results for wastewater treatment.  相似文献   

4.
自厌氧氨氧化反应发现以来,由于其具有低能耗、无需外加碳源等优点,已成为人们在污水生物脱氮研究与应用中的最新关注点。然而,由于极低的生长速率、极长的倍增时间以及严格的代谢条件等特点,限制了厌氧氨氧化菌的应用。综述了厌氧氨氧化菌富集培养过程中的影响因素,介绍了不同污泥来源的厌氧氨氧化优势菌属、分子鉴定方法,提供了部分用于厌氧氨氧化菌鉴定使用的引物序列和厌氧氨氧化菌最新发现的属与种。最后,对未来的研究方向提出一些建议思考,以期为厌氧氨氧化工艺在污水处理中的应用提供参考。  相似文献   

5.
Ecological characteristics of anaerobic ammonia oxidizing bacteria   总被引:3,自引:0,他引:3  
Anaerobic ammonium oxidation (anammox) is the microbial conversion of ammonium and nitrite to dinitrogen gas. The functional microbes of anammox reaction are anammox bacteria, which were discovered in a wastewater treatment system for nitrogen removal. Anammox bacteria are prevalent in anoxic ecosystems and play an important role in both biological nitrogen cycle and nitrogen pollution control. In this paper, we reviewed the investigation on ecological characteristics of anammox bacteria, and tried to figure out their complicated intraspecies and interspecies relationships. As for intraspecies relationship, we focused on the quorum sensing system, a cell density-dependent phenomenon. As for interspecies relationship, we focused on the synergism and competition of anammox bacteria with other microorganisms for substrate and space. Finally, we discussed the great influence of environmental factors (e.g., dissolved oxygen, organic matters) on the constitution, structure and function of anammox bacteria community.  相似文献   

6.
The most striking example of a complex prokaryotic intracytoplasmic organization can be found in the members of the phylum Planctomycetes. Among them are the anammox (anaerobic ammonium-oxidizing) bacteria, which possess a unique cell compartment with an unprecedented function in bacteria: the anammoxosome is a prokaryotic cell organelle evolved for energy metabolism. It is an independent entity, which is enclosed by a contiguous membrane. Several lines of evidence indicate its importance in the anammox reaction and the unusual subcellular organization may well be essential for the lifestyle of anammox bacteria. The present review summarizes our knowledge about the ultrastructure of anammox cells and the connection between the anammoxosome and the energy metabolism of the cell. In the future, much more research will be necessary to validate the current models and to answer questions on the functional cell biology of anammox bacteria.  相似文献   

7.
Nitrite-dependent anaerobic oxidation of methane (n-damo) and ammonium (anammox) are two recently discovered processes in the nitrogen cycle that are catalyzed by n-damo bacteria, including "Candidatus Methylomirabilis oxyfera," and anammox bacteria, respectively. The feasibility of coculturing anammox and n-damo bacteria is important for implementation in wastewater treatment systems that contain substantial amounts of both methane and ammonium. Here we tested this possible coexistence experimentally. To obtain such a coculture, ammonium was fed to a stable enrichment culture of n-damo bacteria that still contained some residual anammox bacteria. The ammonium supplied to the reactor was consumed rapidly and could be gradually increased from 1 to 20 mM/day. The enriched coculture was monitored by fluorescence in situ hybridization and 16S rRNA and pmoA gene clone libraries and activity measurements. After 161 days, a coculture with about equal amounts of n-damo and anammox bacteria was established that converted nitrite at a rate of 0.1 kg-N/m(3)/day (17.2 mmol day(-1)). This indicated that the application of such a coculture for nitrogen removal may be feasible in the near future.  相似文献   

8.
厌氧氨氧化颗粒污泥聚集机制研究进展   总被引:1,自引:1,他引:0  
厌氧氨氧化(anaerobic ammonium oxidation,anammox)工艺被认为是当前污水生物脱氮领域最经济的处理工艺,有利于实现污水处理厂的能源自给。厌氧氨氧化菌是该工艺的核心功能微生物。以厌氧氨氧化菌为主导微生物形成的厌氧氨氧化颗粒污泥具有沉速大、污泥持留能力强及对不利环境抵抗能力强等突出优势,是实现厌氧氨氧化工艺最有前景的污泥形态。本论文围绕厌氧氨氧化颗粒,介绍了厌氧氨氧化菌的特性、种类及代谢途径,综述了厌氧氨氧化颗粒污泥的形成假说及与厌氧氨氧化颗粒污泥聚集密切相关的胞外聚合物(extracellular polymeric substance,EPS)和群体感应研究现状,并对今后厌氧氨氧化颗粒的研究进行了展望,以期为后续厌氧氨氧化颗粒的研究及厌氧氨氧化颗粒工艺的优化提供参考。  相似文献   

9.
Anaerobic ammonium oxidation (anammox) is a recently discovered microbial pathway and a cost-effective way to remove ammonium from wastewater. Anammox bacteria have been described as obligate chemolithoautotrophs. However, many chemolithoautotrophs (i.e., nitrifiers) can use organic compounds as a supplementary carbon source. In this study, the effect of organic compounds on anammox bacteria was investigated. It was shown that alcohols inhibited anammox bacteria, while organic acids were converted by them. Methanol was the most potent inhibitor, leading to complete and irreversible loss of activity at concentrations as low as 0.5 mM. Of the organic acids acetate and propionate, propionate was consumed at a higher rate (0.8 nmol min(-1) mg of protein(-1)) by Percoll-purified anammox cells. Glucose, formate, and alanine had no effect on the anammox process. It was shown that propionate was oxidized mainly to CO(2), with nitrate and/or nitrite as the electron acceptor. The anammox bacteria carried out propionate oxidation simultaneously with anaerobic ammonium oxidation. In an anammox enrichment culture fed with propionate for 150 days, the relative amounts of anammox cells and denitrifiers did not change significantly over time, indicating that anammox bacteria could compete successfully with heterotrophic denitrifiers for propionate. In conclusion, this study shows that anammox bacteria have a more versatile metabolism than previously assumed.  相似文献   

10.
Anaerobic ammonium oxidation (anammox) is a recently discovered microbial pathway and a cost-effective way to remove ammonium from wastewater. Anammox bacteria have been described as obligate chemolithoautotrophs. However, many chemolithoautotrophs (i.e., nitrifiers) can use organic compounds as a supplementary carbon source. In this study, the effect of organic compounds on anammox bacteria was investigated. It was shown that alcohols inhibited anammox bacteria, while organic acids were converted by them. Methanol was the most potent inhibitor, leading to complete and irreversible loss of activity at concentrations as low as 0.5 mM. Of the organic acids acetate and propionate, propionate was consumed at a higher rate (0.8 nmol min−1 mg of protein−1) by Percoll-purified anammox cells. Glucose, formate, and alanine had no effect on the anammox process. It was shown that propionate was oxidized mainly to CO2, with nitrate and/or nitrite as the electron acceptor. The anammox bacteria carried out propionate oxidation simultaneously with anaerobic ammonium oxidation. In an anammox enrichment culture fed with propionate for 150 days, the relative amounts of anammox cells and denitrifiers did not change significantly over time, indicating that anammox bacteria could compete successfully with heterotrophic denitrifiers for propionate. In conclusion, this study shows that anammox bacteria have a more versatile metabolism than previously assumed.  相似文献   

11.
Anammox bacteria present in wastewater treatment systems and marine environments are capable of anaerobically oxidizing ammonium to dinitrogen gas. This anammox metabolism takes place in the anammoxosome which membrane is composed of lipids with peculiar staircase-like 'ladderane' hydrocarbon chains that comprise three or four linearly concatenated cyclobutane structures. Here, we applied high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to elucidate the full identity of these ladderane lipids. This revealed a wide variety of ladderane lipid species with either a phosphocholine or phosphoethanolamine polar headgroup attached to the glycerol backbone. In addition, in silico analysis of genome data gained insight into the machinery for the biosynthesis of the phosphocholine and phosphoethanolamine phospholipids in anammox bacteria.  相似文献   

12.
Anammox bacteria obtain their energy for growth from the anaerobic oxidation of ammonium with nitrite to dinitrogen gas. This property has made anammox bacteria very valuable for industry where they are applied for the removal of nitrogen compounds from industrial and domestic wastewaters. Anammox bacteria are also important in nature where they contribute significantly to oceanic nitrogen loss. Further, anammox bacteria have similarities to both Archaea and Eukarya, making them extremely interesting from a cell biological perspective. The anammox cell does not conform to the typical prokaryotic cell plan: single bilayer membranes divide the anammox cell into three distinct cellular compartments that possibly also have distinct cellular functions. The innermost and largest compartment, the anammoxosome, is the location of the energy metabolism. The middle compartment, the riboplasm, contains the nucleoid and ribosomes and thus has a genetic, information processing function. Finally, the outermost compartment, the paryphoplasm, has an as yet unknown function. In addition, anammox bacteria are proposed to have an atypical cell wall devoid of both peptidoglycan and a typical outer membrane. Here, I review the current knowledge on the cell biology of this enigmatic group of bacteria.  相似文献   

13.
Anaerobic ammonium oxidizing (anammox) bacteria oxidize ammonium with nitrite to nitrogen gas in the absence of oxygen. These microorganisms form a significant sink for fixed nitrogen in the oceans and the anammox process is applied as a cost‐effective and environment‐friendly nitrogen removal system from wastewater. Anammox bacteria have a compartmentalized cell plan that consists of three separate compartments. Here we report the fractionation of the anammox bacterium Kuenenia stuttgartiensis in order to isolate and analyze the innermost cell compartment called the anammoxosome. The subcellular fractions were microscopically characterized and all membranes in the anammox cell were shown to contain ladderane lipids which are unique for anammox bacteria. Proteome analyses and activity assays with the isolated anammoxosomes showed that these organelles harbor the energy metabolism in anammox cells. Together the experimental data provide the first thorough characterization of a respiratory cell organelle from a bacterium and demonstrate the essential role of the anammoxosome in the production of a major portion of the nitrogen gas in our atmosphere.  相似文献   

14.
Anaerobic ammonium oxidation (anammox) is an ecologically and industrially important process and is performed by a clade of deeply branching Planctomycetes. Anammox bacteria possess an intracytoplasmic membrane-bounded organelle, the anammoxosome. In the present study, the ultrastructures of four different genera of anammox bacteria were compared with transmission electron microscopy and electron tomography. The four anammox genera shared a common cell plan and contained glycogen granules. Differences between the four genera included cell size (from 800 to 1,100 nm in diameter), presence or absence of cytoplasmic particles, and presence or absence of pilus-like appendages. Furthermore, cytochrome c proteins were detected exclusively inside the anammoxosome. This detection provides further support for the hypothesis that this organelle is the locus of anammox catabolism.  相似文献   

15.
With the unique cell compartmentalization and the ability to simultaneously oxidize ammonium and reduce nitrite into nitrogen gas, anaerobic ammonium-oxidizing (anammox) bacteria have challenged our recognitions of microorganism. The research conducted on these bacteria has been extended from bench-scale tryouts to full-scale reactor systems. This review addresses the recently discovered versatile properties of anammox bacteria and the applications and obstacles of implementing the anammox process in ammonia-rich wastewater treatment. We also discuss the merits and drawbacks of traditional and anammox-based processes for nitrogen removal and suggest areas for improvement.  相似文献   

16.
Anaerobic ammonium oxidizing (anammox) bacteria are detected in many natural ecosystems and wastewater treatment plants worldwide. This study describes the enrichment of anammox bacteria in the presence of acetate. The results obtained extend the concept that the anammox bacteria can be enriched to high densities in the presence of substrates for heterotrophic growth. Batch experiments showed that among the tested biomass, the biomass from the Candidatus 'Brocadia fulgida' enrichment culture oxidizes acetate at the highest rate. Continuous cultivation experiments showed that in the presence of acetate, ammonium, nitrite and nitrate, Candidatus 'Brocadia fulgida' out-competed other anammox bacteria. The results indicated that Candidatus 'Brocadia fulgida' did not incorporate acetate directly into their biomass. Candidatus 'Brocadia fulgida' exhibited the common characteristics of anammox bacteria: the presence of an anammoxosome and ladderane lipids and the production of hydrazine in the presence of hydroxylamine. Interestingly, the biofilm aggregates of this species showed strong autofluorescence. It is the only known anammox species exhibiting this feature. The autofluorescent extracellular polymeric substance had two excitation (352 and 442 nm) and two emission (464 and 521 nm) maxima.  相似文献   

17.
Anaerobic ammonium oxidation (anammox) is both a promising process in wastewater treatment and a long overlooked microbial physiology that can contribute significantly to biological nitrogen cycling in the world's oceans. Anammox is mediated by a monophyletic group of bacteria that branches deeply in the Planctomycetales. Here we describe a new genus and species of anaerobic ammonium oxidizing planctomycetes, discovered in a wastewater treatment plant (wwtp) treating landfill leachate in Pitsea, UK. The biomass from this wwtp showed high anammox activity (5.0 +/- 0.5 nmol/mg protein/min) and produced hydrazine from hydroxylamine, one of the unique features of anammox bacteria. Eight new planctomycete 16S rRNA gene sequences were present in the 16S rRNA gene clone library generated from the biomass. Four of these were affiliated to known anammox 16S rRNA gene sequences, but branched much closer to the root of the planctomycete line of descent. Fluorescence in situ hybridization (FISH) with oligonucleotide probes specific for these new sequences showed that two species (belonging to the same genus) together made up > 99% of the planctomycete population which constituted 20% of the total microbial community. The identification of these organisms as typical anammox bacteria was confirmed with electron microscopy and lipid analysis. The new species, provisionally named Candidatus "Scalindua brodae" and "Scalindua wagneri" considerably extend the biodiversity of the anammox lineage on the 16S rRNA gene level, but otherwise resemble known anammox bacteria. Simultaneously, another new species of the same genus, Candidatus "Scalindua sorokinii", was detected in the water column of the Black Sea, making this genus the most widespread of all anammox bacteria described so far.  相似文献   

18.
Adaptation of a freshwater anammox population to high salinity wastewater   总被引:18,自引:0,他引:18  
For the successful application of anaerobic ammonium oxidation (anammox) in wastewater practice it is important to know how to seed new anammox reactors with biomass from existing reactors. In this study, a new high salinity anammox reactor was inoculated with biomass from a freshwater system. The changes in activity and population shifts were monitored. It was shown that freshwater anammox bacteria could adapt to salt concentrations as high as 30 gl(-1) provided the salt concentration was gradually increased. Higher salt concentrations reversibly inhibited anammox bacteria. The nitrogen removal efficiency and maximum anammox activity of the salt adapted sludge was very similar to the reference freshwater sludge. Fluorescence in situ hybridization analysis revealed that the freshwater anammox species Candidatus "Kuenenia stuttgartiensis" was the dominant in both salt adapted sludge and freshwater sludge. These results show that gradual adaptation may be the key to successful seeding of anammox bioreactors.  相似文献   

19.
Anaerobic ammonium-oxidizing (anammox) bacteria play an important role in the biogeochemical cycling of nitrogen. They derive their energy for growth from the conversion of ammonium and nitrite into dinitrogen gas in the complete absence of oxygen. Several methods have been used to detect the presence and activity of anammox bacteria in the environment, including 16S rRNA gene-based approaches. The use of the 16S rRNA gene to study biodiversity has the disadvantage that it is not directly related to the physiology of the target organism and that current primers do not completely capture the anammox diversity. Here we report the development of PCR primer sets targeting a subunit of the hydrazine synthase (hzsA), which represents a unique phylogenetic marker for anammox bacteria. The tested primers were able to retrieve hzsA gene sequences from anammox enrichment cultures, full-scale anammox wastewater treatment systems, and a variety of freshwater and marine environmental samples, covering all known anammox genera.  相似文献   

20.
The cytoplasm of anaerobic ammonium oxidizing (anammox) bacteria consists of three compartments separated by membranes. It has been suggested that a proton motive force may be generated over the membrane of the innermost compartment, the “anammoxosome”. 31P nuclear magnetic resonance (NMR) spectroscopy was employed to investigate intracellular pH differences in the anammox bacterium Kuenenia stuttgartiensis. With in vivo NMR, spectra were recorded of active, highly concentrated suspensions of K. stuttgartiensis in a wide-bore NMR tube. At different external pH values, two stable and distinct phosphate peaks were apparent in the recorded spectra. These peaks were equivalent with pH values of 7.3 and 6.3 and suggested the presence of a proton motive force over an intracytoplasmic membrane in K. stuttgartiensis. This study provides for the second time—after discovery of acidocalcisome-like compartments in Agrobacterium tumefaciens—evidence for an intracytoplasmic pH gradient in a chemotrophic prokaryotic cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号