首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Simulated raindrops, diameter c. 3 or 4 mm, fell 13 m down a raintower onto suspensions of Septoria nodorum pycnidiospores, depth 0.5 mm, or infected straw pieces. Splash droplets were collected on pieces of fixed photographic film. It was estimated that one drop generated c. 300 spore carrying splash droplets, containing c. 6000 spores, from a concentrated spore suspension (6.5 × 105 spores/ml) and c. 25 spore-carrying droplets, containing c. 30 spores, from infected straw pieces (11 × 106 spores/g dry wt). When the target was a spore suspension in water without surfactant, most spore-carrying droplets were in the 200—400 μm size category and most spores were carried in droplets with diameter >1000 μm. When surfactant was added to spore suspensions, most spore-carrying droplets were in the 0–200 μm category and most spores were carried in droplets with diameter 200–400 μm and none in droplets >1000 μm. Regression analyses showed a significant (p < 0.001) relationship between square root (number of spores per droplet) and droplet diameter; the slope of the regression line was greatest when surfactant was added to the spore suspensions. The distribution of splash droplets with distance travelled from the target was better fitted by an exponential model than by power law or Gaussian models. The distributions of spore-carrying droplets and spores with distance were fitted better by an exponential model than by a power law model. Thus regressions of log, (number collected) against distance were all significant (p < 0.01); the slopes of the regression lines were steepest when surfactant was added to the spore suspension. At a distance of 10 cm from target spore suspensions most splash droplets and spore-carrying droplets were collected at height 10–20 cm, with none above 40 cm; at a distance of 20 cm there were most at heights 0–10 cm and 40–50 cm.  相似文献   

2.
Simulated raindrops, 4 or 5 mm in diameter, fell 13 m onto target water films, with Pseudocercosporella herpotrichoides spores incorporated into either drops or targets. Resulting splash droplets were collected on fixed photographic film and numbers of droplets, spore-carrying droplets and spores determined.
The patterns of dispersal of splash droplets, spore-carrying droplets and spores with distance and droplet size were similar for 4 mm and 5 mm incident drops with spores incorporated into either targets or drops. Numbers of droplets, spore-carrying droplets and spores decreased with increasing distance from targets and none were collected at 1 m. However, more spores were dispersed by 5 mm than by 4 mm drops and with spores in targets than with spores in incident drops. Whereas most splash droplets were in the smallest size category (0–100 μm), most spore-carrying droplets were 200–400 μm and most spores were in droplets with diameter greater than 1000 μm. Regressions of square root (number of spores) on droplet diameter were significant (p < 0.001) in all cases. The slopes of regression lines were greater when spores were in targets than when they were in incident drops. Splash droplets were collected up to a height of 70 cm, with most between 15 and 20 cm. The dye experiment showed that most splash droplets contained liquid from both incident drop and target film.  相似文献   

3.
Simulated rain (mean drop diameter c. 1 or 3 mm) was allowed to fall for 10 – 15 min on to barley leaves or straw infected by Rhynchosporium secalis (leaf blotch). The leaves were supported on a mesh through which run-off water drained and the straw was supported on a rigid surface on which run-off water collected. The numbers of R. secalis conidia and spore-carrying splash droplets collected by horizontal samplers (microscope slides and pieces of photographic film) decreased rapidly with increasing distance from and increasing height above the sources, with half-distances of 2 – 10 cm. Less than 10% of the spores or droplets reached heights of more than 30 cm. Incident drops 3 mm in diameter produced more spore-carrying droplets and dispersed more conidia than did 1 mm drops. The size category of splash droplets with the greatest proportion of the spore-carrying droplets dispersed by 3 mm drops was 200 – 400 μm, whether the source was infected barley leaves or barley straw. For leaves or straw the greatest proportions of spores were carried in droplets > 1000 μm in diameter. The mean diameter of spore-carrying droplets (478 μm) dispersed from free-draining leaves was less than that of droplets from straw plus run-off water (563 μm). However, the leaf source had more spores cm-2 and the mean number of spores per droplet was greater (113 as opposed to 6·8) than for the straw source.  相似文献   

4.
The influence of host odour, windspeed, position of the sun, and temperature on flight behaviour of the cabbage seedpod weevil (Ceutorhynchus assimilis Paykull) were studied. This weevil showed a positive anemotaxis (upwind flight) inside the odour plume of a host crop (Brassica napus L.). Outside the odour plume the weevil showed a pronounced phototaxis at windspeeds below 1.5 m/s. At higher windspeeds, the seedpod weevils flew downwind. The cabbage seedpod weevil flies most readily at low windspeeds (less than 0.5 m/s) and at temperatures above 22 °C.  相似文献   

5.
The numbers of spores of Rhynchosporium secalis washed from samples of barley plants taken weekly, varied markedly. No consistent association with amount of previous rainfall or length of the preceding dry period was detected. On potted seedlings exposed within a crop most infection occurred during long rain periods or when rain fell late in the evening; fewest lesions usually developed on seedlings prevented from touching adjacent plants. Rotorod traps fitted with a 13 mm diameter disc at the apex of each arm were operated under 24 cm diameter covers. Spores were collected on circular cover slips fixed to each disc with glycerine jelly. At all stages of crop growth more spores were trapped at ground level than at other heights tested up to 1 m. The number of spores trapped was not related to the quantity of or duration of rainfall but was related to the mean rate of fall during brief showers only. Efficiency of droplet retention was assessed in a wind tunnel. It declined rapidly when more than c. 5 pl was presented to the disc surface and was less at a wind speed of 1.0 than 0.5 m s-l. Spore distribution on discs indicated that spores were washed from the surface during long rain periods.  相似文献   

6.
A laboratory technique is described for the production of drops of simulated rain in which fungal spores were suspended. When such drops containing conidia of Botrytis fabae impacted on a target leaf the secondary droplets produced infections on receptor broad bean leaves. The capacity of fungicides applied to the target leaf to redistribute in secondary splash droplets was examined in terms of the infectivity of the spores in the droplets. The extent to which a copper fungicide reduced infection on the receptor leaves was related to the level and tenacity of the fungicide deposit on the target leaf. The effect of wetting agents on the redistribution of this fungicide could probably be explained by their influence on the tenacity of the initial deposit. In general the capacity of different fungicides to inhibit infection by the secondary droplets was related to the inherent toxicity of the fungicides to B. fabae. Implications of the dispersal of spores and fungicides by rain splash are briefly considered with reference to field conditions.  相似文献   

7.
The rain tower/wind tunnel complex at Rothamsted consists of a rain tower (height 11 m, cross-section 1 m2) linked to the upwind end of a wind tunnel (length 12 m, cross-section 1 m2), which may be operated in either an open or a closed configuration. At the top of the rain tower, water drops with diameters of 2.5 to 5 mm are produced by a drop generator, which can be fitted with different nozzles. Simulated rain with a drop diameter of 1 to 3 mm is produced at a rate of 8 to 12 mm h-1 by a rain generator with an area of 52 × 67 cm. The rain tower may be operated in conjunction with the wind tunnel in an open configuration. The windspeed can be decreased from a maximum of 8 m s-1 by decreasing the speed of the fan. The wind tunnel has its own internal lighting. When the wind tunnel is in a closed configuration, temperature and humidity can be controlled in the range 12 oC (62–80% r.h.) to 35 oC (22–50% r.h.). Data presented illustrate the use of this rain tower/wind tunnel complex to study dispersal of plant pathogen spores by rain-splash or wind.  相似文献   

8.
Trajectory of aerosol droplets from a sprayed bacterial suspension.   总被引:2,自引:0,他引:2       下载免费PDF全文
Simulated droplet trajectories of a polydispersed microbial aerosol in a laminar air flow regimen were compared with observed dispersal patterns of aerosolized Bacillus subtilis subsp. niger spores in quasilaminar airflow. Simulated dispersal patterns could be explained in terms of initial droplet sizes and whether the droplets evaporated to residual aeroplanktonic size before settling to the ground. For droplets that evaporated prior to settling out, a vertical downwind size fractionation is predicted in which the microbial residue of the smallest droplets settles the least, and is found in the airstream at about sprayer height, and progressively larger droplet residues settle to progressively lower heights. Observations of spore particle size distributions downwind from a spray source support the simulation. Droplet and particle size distributions near the source had three size fractions: one containing large, presumably nonevaporated droplets of greater than or equal to 7 microns in diameter, and two smaller fractions, with diameters of 2 to 3 microns (probably the residue of droplets containing more than one spore) and 1 to 2 microns (probably the residue from single-spore droplets). As predicted by the simulation, the aerosol settled and progressed downwind, with the number of small droplets and particles increasing in proportion to the height and distance downwind.  相似文献   

9.
Trajectory of aerosol droplets from a sprayed bacterial suspension   总被引:2,自引:0,他引:2  
Simulated droplet trajectories of a polydispersed microbial aerosol in a laminar air flow regimen were compared with observed dispersal patterns of aerosolized Bacillus subtilis subsp. niger spores in quasilaminar airflow. Simulated dispersal patterns could be explained in terms of initial droplet sizes and whether the droplets evaporated to residual aeroplanktonic size before settling to the ground. For droplets that evaporated prior to settling out, a vertical downwind size fractionation is predicted in which the microbial residue of the smallest droplets settles the least, and is found in the airstream at about sprayer height, and progressively larger droplet residues settle to progressively lower heights. Observations of spore particle size distributions downwind from a spray source support the simulation. Droplet and particle size distributions near the source had three size fractions: one containing large, presumably nonevaporated droplets of greater than or equal to 7 microns in diameter, and two smaller fractions, with diameters of 2 to 3 microns (probably the residue of droplets containing more than one spore) and 1 to 2 microns (probably the residue from single-spore droplets). As predicted by the simulation, the aerosol settled and progressed downwind, with the number of small droplets and particles increasing in proportion to the height and distance downwind.  相似文献   

10.
Patterns of unobstructed splash dispersal   总被引:3,自引:0,他引:3  
Unobstructed splash dispersal patterns were measured in the absence of rain over mown grass using a fluorescent tracer, and a colorimetric method was used indoors in still air. When drops fell into a thin horizontal water film 0–1 mm deep, the volume of the incident drops dissipated as splash droplets was similar to the volume splashed from the film, irrespective of the distance of fall of the drops. Drop size, angle of inclination and distance of fall had significant effects on the volume of drops splashed from an inclined surface. The effects of rigidity, inclination and nature of surface were found to be significant when drops impacted onto surfaces with or without a wax covering and either rigidly or loosely supported. When splash- and dry-air-dispersed Lycopodium spores were simultaneously released, many more splashed spores were caught close to the source, but the dispersal gradient of splashed spores was steeper than that of dry-air-dispersed spores. Splash-dispersed spores were caught on slides, cylinders and rotorods but trap efficiency could not be evaluated.  相似文献   

11.
The lower leaf surface of Hevea brasiliensis was more susceptible to infection by Colletotrichum gloeosporioides than the upper. Few lesions were produced if spore drops on susceptible leaves were allowed to dry. Lesion development after 72 h was quickest at 21 oC, slower at 26.5 oC and was stopped at 32 oC, probably because of bacteria in the inoculation drop. On leaflets aged 7 days from bud-burst, the effective spore dose for 50% of leaflets infected (ED50) after 16 h incubation, was 260 spores and after 46 h, 120 spores/infection droplet; the minimum ED50 for the upper leaf surface was about 4 spores/mm2. Leaflets 15 days old, which are normally resistant, were rendered susceptible by abrading the surface with carborundum powder. Spores caught in a Hirst spore trap reached a daily maximum at 23 h, at rates of up to 440 spores/m3 air/h, but fell to low concentrations as the humidity dropped during the daytime, and also during rain. There was some correlation between disease severity and duration of 97–100% relative humidity, and moderate to severe defoliation of clone PB 86 occurred when this reached 13.5 h/day. Rainfall increases infection by prolonging the period of atmospheric saturation and leaf wetness.  相似文献   

12.
In experiments to study dispersal of spores in a crop of barley, a 4-m wide strip of the cultivar Zephyr (a mildew-susceptible variety) was a source of mildew (Eyrsiphe graminis) conidia. Small suction traps, previously calibrated in a wind tunnel, were used to measure spore concentration within and above the crop. Large concentrations of conidia were measured in the crop at the downwind edge of the Zephyr strip but these decreased rapidly with distance downwind. At 1 m concentrations were halved and by 4 m they were no greater than the background concentration measured in the crop upwind of the source. Next to the source, concentrations were much greater within than above the crop and net spore movement (flux) was upwards out of the crop; by 4 m downwind concentrations were greater above the crop and spore flux was reversed. Lycopodium clavatum spores were released in the same crop from a line of point sources. Concentrations also decreased rapidly downwind but, with no background of spores, numbers remained greater within than above the crop further from the source than for E. graminis. Even so by 7 m downwind concentrations in the crop had declined to less than those above. Deposition of L. clavatum spores onto horizontal glass slides in the crop agreed with that expected by settling. However, impaction onto vertical cylinders among plants was much greater than predicted. The reason is not known although turbulent air-flow around plants may, in some way, enhance impaction. Many E. graminis conidia near the source were deposited in clumps. This prevented any accurate prediction of deposition rates as fall speeds of clumps (necessary for prediction) were not known. Not surprisingly, deposition on horizontal slides often exceeded that expected from settling of single spores although it was not always greatest where clumps predominated. The proportion of spores deposited on vertical cylinders and horizontal slides located among plants ranged from 0–02 to 0–27 and from 0–019 to 0–127 of the area dose, respectively. Although these may seem to be small trapping efficiencies, the same deposition rates in a crop with many leaves and stems would rapidly filter most spores from air in the crop and can explain why concentrations were observed to decline so rapidly.  相似文献   

13.
The aim of this study was to determine the composition of the “spore rain” of ferns and lycopods in a cloud forest. We tested whether the canopy impedes spore dispersal to surrounding areas and how spore dispersal is affected by rainfall. The spores were captured with a modified Bush–Gosling trap placed at 30 cm above ground level in forested and non-forested sites from March 2009 to February 2010. We collected 2462 fern spores from 158 morphospecies of which 76 were identified to species level. Thirty-seven species were found exclusively in the spore rain, and 39 were found as sporophytes as well (local component). Mean daily spore density (spores m?2) was calculated to find the sporulation period for each species. Twenty species showed seasonal patterns of sporulation. The highest spore density was found at the forested site (70 morphospecies and 1856 spores), of which 39 morphospecies (1482 spores) corresponded to the local vegetation. Fifty-five taxa were shared between the forested and non-forested site. In the non-forested site, 605 spores were captured belonging to 64 species. The density of spore rain between sites was significantly different. The rainfall amount was the same at both sites, with a dry period in March, April, and July 2009, and February 2010. There was a negative effect of rainfall on spore rain. The main sporulation occurred in the dry season with strong winds. Although the canopy inhibits airborne dispersal of fern spores, a small amount of spores can disperse beyond the canopy and reach surrounding areas. The rainfall might wash spores to ground and favor the colonization and the establishment of new populations.  相似文献   

14.
Single sprays of paraquat, glyphosate or dinoseb-in-oil, were applied to barley stubble or volunteer plants and their effects on the number of spores of Rhynchosporium secalis were studied weekly. Spore concentrations were measured by washing samples of stubble or volunteer plants and counting spores using a haemocytometer. The number of spores recovered from stubbles was relatively small; both paraquat and glyphosate caused some reductions but the results were not consistent. Treatment with paraquat generally caused a transitory increase on volunteer plants; this effect was not found after glyphosate. Both herbicides caused persisting reductions from 4 wk after treatment. Volunteer plants treated with dinoseb-in-oil had fewer spores for 6 wk after treatment, but the plants were not killed and when new growth became infected, spore production recovered to equal that on untreated plants. The fungicide captafol caused some reductions in spore number on stubble but results were not consistent, applied after paraquat it had no effect. It was generally ineffective when applied to volunteer plants; applied after paraquat it tended to increase spore number, but the differences were seldom significant. Spores washed from volunteer plants treated with paraquat or glyphosate were inoculated to pot-grown barley seedlings; neither herbicide had any effect on spore viability. Viable spores were recovered in February from stubble or volunteer plants treated the previous autumn with paraquat or glyphosate respectively.  相似文献   

15.
Ann Cadman 《Grana》2013,52(1):181-183
The possibility of forecasting the occurrence of seasonal alleregens was investigated, using multiple stepwise regression analysis. Airspora data were collected with Burkard traps during 1987 and 1988. Grass pollen and fungal spores in the cities of Johannesburg and Pretoria were considered. Meteorological factors used were maximum and minimum temperatures, rainfall, relative humidity, sunhours, radiation, windspeed and pressure. In Johannesburg rain and sunhours were of primary importance for grass pollen, while windspeed at 14h00 and minimum temperature were the most significant parameters in Pretoria. For fungal spores, pressure and windspeed at 20h00 were most important in Johannesburg, with rain being the primary factor in Pretoria. This marked variability is probably attributable to climatic differences between the two cities. Although they are situated only seventy kilometres apart, Johannesburg lies within the grasslands of the Bankenveld, and Pretoria borders on the warmer savanna of the Bushveld.  相似文献   

16.
The effect of V8 juice concentration (5 to 40%, vol/vol), spore inoculum density (105 and 107 spores per ml), and liquid batch or fed-batch culture condition on mycelium and spore production by Colletotrichum gloeosporioides was evaluated. The amount of mycelium produced, the time required for initiation of sporulation following attainment of maximum mycelium, and the time for attainment of maximum spore concentration increased with increasing V8 juice concentration in batch culture. Cultures containing V8 juice at >10% achieved a similar spore density (apparent spore-carrying capacity) of about 0.8 mg of spores per ml (1 × 107 to 2 × 107 spores per ml) independent of inoculum density and V8 juice concentration. The relative spore yield decreased from a high of 64% of the total biomass for the low-inoculum 5% V8 culture, through 13% for the analogous 40% V8 culture, to a low of 2% for the high-inoculum 27% V8 culture. Fed-batch cultures were used to establish conditions of high spore density and low substrate availability but high substrate flux. The rate of addition of V8 juice was adjusted to approximate the rate of substrate utilization by the (increasing) biomass. The final spore concentration was about four times higher (3.0 mg of spores per ml) than the apparent spore-carrying capacity in batch culture. This high spore yield was obtained at the expense of greatly reduced mycelium, resulting in a high relative spore yield (62% of the total biomass). Microcycle conidiation occurred in the fed-batch but not batch systems. These data indicate that substrate-limited, fed-batch culture can be used to increase the amount and efficiency of spore production by C. gloeosporioides by maintaining microcycle conidiation conditions favoring allocation of nutrients to spore rather than mycelium production.  相似文献   

17.
A Hirst volumetric spore trap, at a height of 30 cm., was used to assess the diurnal distribution of Erysiphe conidia in the air in tobacco crops infected with E. cichoracearum in Rhodesia. Air temperature and humidity, and the length of time leaves were wet each day, were also recorded at the same height, amongst the plants. In four seasons, most conidia were caught between 13.00 and 15.00 hr. There were close positive correlations in 1962 between numbers of conidia per m.3 of air per hour and saturation deficit and air temperature during the same hours (10.00–18.00 hr.) Correlations of total Erysiphe conidia per day with temperature and humidity were very variable; temperature had no apparent effect during three seasons, but in one (1961)there was a highly significant positive correlation between numbers of conidia and the daily duration of temperatures > 25d? C. More conidia were also caught when the air was dry for long periods that season, though temperature probably had the greater effect. In 1962, more conidia were caught per day the longer the air was humid (s.D. 0–1 mb.) In 1961, the amount of rain per day had no apparent effect on numbers of conidia, but in 1962 more were caught the greater the daily rainfall. However, rain, which nearly always fell in the afternoon, also removed most conidia from the air that afternoon. Neither windspeed nor duration of leaf wetness appeared to affect spore dispersion.  相似文献   

18.
Hyalinocysta expilatoria n. sp. is described from a larva of Odagmia ornata collected in Sweden. Infection was restricted to the adipose tissue which was transformed into a syncytium. The earliest stage observed was diplokaryotic merozoites, which mature directly into diplokaryotic sporonts. Each sporont produces a sporophorous vesicle (pansporoblast), which persists, also enclosing mature spores. Usually nuclear divisions result in a plasmodium with 8 nuclei, which fragments into 8 sporoblasts, each of which develops into a spore without further division. Occasionally an aberrant number of spores (2, 4, 6) is formed. The spores are pyriform with a flattened area at the posterior pole. Spores in sporophorous vesicles with 8 spores are 4.0–6.0 μm long, in vesicles with 4 spores 4.0–5.0 μm, and in vesicles with 2 spores 7.0–8.0 μm. In some vesicles the spores develop asynchronously, and 2, 4, or 6 mature spores are found together with 6, 4, or 2 immature. There was also a small number of vesicles with supernumerary spores, less than 8 normally developed. The 325–350 nm thick spore wall is composed of three layers. The polar filament is anisofilar with 7 coils in a single layer. The anterior 5–6 coils are wide, the posterior 2-1 thin. The angle of tilt of the anterior filament coil is approximately 50°. The spore has a single nucleus. The sporophorous vesicle is delimited by a thin membrane, also visible in haematoxylin stained preparations. Vesicles with mature spores are void of metabolic inclusions.  相似文献   

19.
Evidence from spore samples collected amongst infected straw spread on fallow ground supported the conclusion that spores of Pseudocercosporella herpotrichoides are dispersed mostly by rainsplash. Most spores travelled a short distance in the larger ballistic splash droplets, although some may have travelled further in smaller airborne droplets. Weekly spore counts from microscope slides under rainshields, a funnel and an impinger, evaluated as samplers for spores of P. herpotrichoides, showed a similar seasonal pattern. The funnel, as the largest sampler, generally collected most spores, but the impinger collected more spores per unit area of sampling surface. Slides sometimes collected spores when none was recovered from other samplers. Young wheat plants, exposed with the samplers and changed weekly, subsequently developed eyespot symptoms for most of the season.  相似文献   

20.
A hitherto undescribed microsporidan has been found in the Australian freshwater copepod, Boeckella triarticulata, collected from Lake Burley Griffin, Canberra. We name this protozoan Tuzetia boeckella n. sp. and describe it in this paper. Large numbers of spores were found in the muscle of both sexes and all stages of the animals. The pyriform spores measured 5.1 × 2.7 μm with the extruded polar filament measuring 102 μm. Ultrastructural studies revealed the presence of a pansporoblastic membrane around each spore. The polar filament was arranged in a single row of 13–14 turns and decreased in diameter toward the posterior end. Few details of the life cycle were elucidated; however, evidence is presented for each sporont forming eight spores. Differentiating characters to distinguish this species from the six other known members of the genus are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号