首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 154 毫秒
1.
张玲  何建波 《遗传》2018,40(1):22-32
GATA6 (GATA binding protein 6)是GATA锌指转录因子家族成员之一,以其保守的结合基序(G/A)GATA(A/T) 而得名。GATA家族在脊椎动物细胞命运决定与分化、增殖和迁移以及内胚层和中胚层来源的器官发育中具有重要作用。GATA6作为谱系特化因子、染色质重塑因子、多能性因子和“先锋因子”,在内胚层肝脏谱系决定、肝脏特化、肝芽生长以及肝母细胞增殖分化等阶段发挥关键的调控作用。本文综述了GATA6在肝脏发育中的作用及其研究进展,以期为进一步研究 GATA6 等发育关键转录因子的功能及调控机制提供参考。  相似文献   

2.
肝细胞核因子(Hepatocyte nuclear factors,HNFs)是一类分布在肝、胰、肠、肾等多个组织器官,调节肝脏内基因特异性表达的一类转录因子。其主要亚型为HNF1、HNF3、HNF4和HNF6等,这些转录因子相互作用构成的复杂调控网络。2型糖尿病(Type2 diabetes mellitus,T2DM)的基本病理生理机制是胰岛素抵抗及胰岛β细胞损伤,最终导致高血糖。近年来的研究表明,HNFs在胰岛素抵抗及胰岛β细胞损伤中发挥关键的调控作用。本文对HNFs在T2DM发生中的胰岛素抵抗及胰岛β细胞损伤作用研究新进展作以回顾性综述,旨在为认识T2DM发病机制及提出防治策略提供理论基础。  相似文献   

3.
胚胎干细胞(ESC)在发育过程中分化为内胚层、中胚层和外胚层3个胚层.其中内胚层进一步向终末细胞的分化,是形成整个消化道和呼吸道,以及肝脏、胰腺等器官的基础.ESC形成内胚层主要经历以下几个分化阶段:外胚叶的分化、原条的形成、内胚层与中胚层的分离以及定型内胚层的形成.本文主要从信号通路、转录因子以及表观遗传调控等几个方面综述胚胎干细胞向内胚层分化的分子机制,并重点介绍其组学研究进展,以期为该领域研究者提供重要参考信息.  相似文献   

4.
肝细胞核因子4α(hepatic nuclear factor 4 alpha,HNF4α)属于细胞核受体超家族成员,它在肝脏的发育、肝细胞分化成熟过程中起重要调控作用。HNF4α有阻断肝纤维化、肝硬化、肝癌的疾病进程,改善肝脏功能的作用。另外,HNF4α在肝干细胞移植方面也发挥重要作用,提高肝细胞移植的成功率。本文就HNF4α在肝细胞中的表达、作用及其相关疾病的研究进展做一综述。  相似文献   

5.
肝细胞核因子(HNF,Hepatocyte nuclear factor)是调节肝脏基因特异性表达的一类转录因子,主要包括HNF1、HNF3、HNF4和HNF6等,这些转录因子相互作用构成复杂的调控网络。HNF在人体多个重要组织器官如肝、胰、肠、肾等都有不同程度的表达。研究发现,在多种疾病的患者体内,存在着编码这些因子基因的突变,提示HNF与维持及调节人体正常生理功能密不可分。本文旨在对HNF的研究进展作以系统性综述,为研究HNF相关疾病的发生机制并进行有效的干预提供新思路。  相似文献   

6.
<正>肝纤维化不但破坏肝脏结构,还能损害肝脏功能,和许多慢性肝疾病密切相关。肝细胞是维持肝内代谢平衡的关键,但是肝细胞在肝纤维化过程中的作用一直不甚清楚。在肝细胞行使功能的过程中,肝脏内广泛存在的转录因子HNF1α起着至关重要的作用。以往研究表明HNF1α对肝癌有显著的抑制作用,近期Cell Research发表的第二军医大学谢渭芬实验室的研究成果显示,HNF1α的表达能够显著抑制人和  相似文献   

7.
Nodal/Smad2信号通路在脊椎动物胚胎中内胚层诱导及其背腹分化中发挥着主导作用,但是在胚胎早期发育中,Nodal/Smad2信号调控哪些靶基因表达,这些靶基因如何在Nodal/Smad2信号下游发挥作用,人们仍然所知甚少。以国家自然科学基金委员会"细胞编程与重编程的表观遗传机制"重大研究计划为依托,王强实验室在全基因组水平上对斑马鱼胚胎原肠早期Nodal/Smad2信号通路的靶基因进行了系统鉴定,并通过分析Smad2结合区域的其他转录因子保守的结合序列的出现频率,鉴定了一批潜在的Smad2的协同转录因子。研究发现,Nodal/Smad2的靶基因主要由转录因子、发育相关基因及重要信号通路的调控因子组成,其中F-actin捆绑蛋白Fascin1a和鸟核苷酸交换因子Net1分别通过调控受体内吞与Smad2转录活性反馈调控Nodal信号转导和中内胚层形成,而BPTF做为Smad2协同转录因子,通过调节核小体滑动来调控wnt8a表达,在中枢神经系统后部化过程中发挥重要作用。相关研究工作构建了Nodal/Smad2信号在斑马鱼中内胚层诱导及体轴建立中的分子网络,为理解脊椎动物早期胚胎发育过程中的基因表达调控机制提供了有意义的线索。  相似文献   

8.
肝脏是重要的代谢调控和药物解毒器官,执行体内多种生理功能。肝脏疾病已经越来越严重地影响着人体健康和生存质量。考虑到临床研究和转化医学的迫切需求,人们必须深入研究肝脏内各种细胞特别是肝实质细胞和胆管细胞的分化成熟过程及分子调控机制。该文概述了肝脏内起源于内胚层的肝实质细胞和胆管分化成熟的发育过程,总结了调控此过程的信号通路和转录因子,并简要介绍了最新技术对于肝脏发育研究的推动作用。这些结果对于人们在体外高效地诱导得到或建立更成熟、结构功能更完善的肝脏样细胞或肝脏类器官以及肝脏疾病的研究与治疗有重要意义。  相似文献   

9.
HNF1α对人FXR 启动子的调控作用   总被引:3,自引:0,他引:3  
为探讨肝细胞核因子1α(HNF1α)对人胆汁酸受体(FXR)转录激活的作用及机制,将含HNF1α的真核表达载体(pcDNA3.1(+)HNF1α)和含有FXR启动子的荧光素酶报告基因载体共转染人肝癌细胞系HepG2,检测转染细胞中荧光素酶活性并用半定量RT-PCR、免疫印迹法检测FXR的表达.QuikChange法对FXR启动子HNF1α可能结合位点进行突变,将包含突变点的重组荧光素酶报告质粒单独或与pcDNA3.1(+)共同转染HepG2细胞,检测各组荧光素酶活性.根据凝胶电泳迁移率变化,分析HNF1α与FXR启动子区域的结合.结果发现,转染pcDNA 3.1(+)HNF1α可以上调FXR在HepG2细胞中的表达,并增强FXR启动子活性且具有剂量依赖性;-65~-48区域的点突变,导致FXR启动子活性明显降低,共转染pcDNA3.1(+)HNF1α也不具有增强作用.结果提示,转录因子HNF1α能调控FXR基因表达,其机制为:HNF1α与FXR启动子区域-65~-48区域的反向半位点结合,发挥其反式激活作用.  相似文献   

10.
肝细胞核因子1A(hepatocyte nuclear factor1A,HNFlα)是肝脏富集转录因子家族成员之一,调控多种肝脏特异基因的表达,参与维系肝脏的正常表型与功能。HNFlα与多种蛋白质相互作用,以复合体的形式发挥转录调节功能。复合体组成的动态变化在调控基因组织特异性表达、维持内环境稳定、修复组织损伤以及药物代谢中发挥了重要的作用。HNFlα的突变型改变了其在体内的相互作用网络,致使靶基因转录失调,诱发青少年发病型成人糖尿病(MODY3)。  相似文献   

11.
During mouse gastrulation, endoderm cells of the dorsal foregut are recruited ahead of the ventral foregut and move to the anterior region of the embryo via different routes. Precursors of the anterior-most part of the foregut and those of the mid- and hind-gut are allocated to the endoderm of the mid-streak-stage embryo, whereas the precursors of the rest of the foregut are recruited at later stages of gastrulation. Loss of Mixl1 function results in reduced recruitment of the definitive endoderm, and causes cells in the endoderm to remain stationary during gastrulation. The observation that the endoderm cells are inherently unable to move despite the expansion of the mesoderm in the Mixl1-null mutant suggests that the movement of the endoderm and the mesoderm is driven independently of one another.  相似文献   

12.
13.
14.
15.
Patterning of the ventral head has been attributed to various cell populations, including endoderm, mesoderm, and neural crest. Here, we provide evidence that head and heart development may be influenced by a ventral midline endodermal cell population. We show that the ventral midline endoderm of the foregut is generated directly from the extreme rostral portion of Hensen's node, the avian equivalent of the Spemann organizer. The endodermal cells extend caudally in the ventral midline from the prechordal plate during development of the foregut pocket. Thus, the prechordal plate appears as a mesendodermal pivot between the notochord and the ventral foregut midline. The elongating ventral midline endoderm delimits the right and left sides of the ventral foregut endoderm. Cells derived from the midline endoderm are incorporated into the endocardium and myocardium during closure of the foregut pocket and fusion of the bilateral heart primordia. Bilateral ablation of the endoderm flanking the midline at the level of the anterior intestinal portal leads to randomization of heart looping, suggesting that this endoderm is partitioned into right and left domains by the midline endoderm, thus performing a function similar to that of the notochord in maintaining left-right asymmetry. Because of its derivation from the dorsal organizer, its extent from the forebrain through the midline of the developing face and pharynx, and its participation in formation of a single midline heart tube, we propose that the ventral midline endoderm is ideally situated to function as a ventral organizer of the head and heart.  相似文献   

16.
17.
The development of the anterior foregut of the mammalian embryo involves changes in the behavior of both the epithelial endoderm and the adjacent mesoderm. Morphogenetic processes that occur include the extrusion of midline notochord cells from the epithelial definitive endoderm, the folding of the endoderm into a foregut tube, and the subsequent separation of the foregut tube into trachea and esophagus. Defects in foregut morphogenesis underlie the constellation of human birth defects known as esophageal atresia (EA) and tracheoesophageal fistula (TEF). Here, we review what is known about the cellular events in foregut morphogenesis and the gene mutations associated with EA and TEF in mice and humans. We present new evidence that about 70% of mouse embryos homozygous null for Nog, the gene encoding noggin, a bone morphogenetic protein (Bmp) antagonist, have EA/TEF as well as defects in lung branching. This phenotype appears to correlate with abnormal morphogenesis of the notochord and defects in its separation from the definitive endoderm. The abnormalities in foregut and lung morphogenesis of Nog null mutant can be rescued by reducing the gene dose of Bmp4 by 50%. This suggests that normal foregut morphogenesis requires that the level of Bmp4 activity is carefully controlled by means of antagonists such as noggin. Several mechanisms are suggested for how Bmps normally function, including by regulating the intercellular adhesion and behavior of notochord and foregut endoderm cells. Future research must determine how Noggin/Bmp antagonism fits into the network of other factors known to regulate tracheal and esophagus development, both in mouse or humans.  相似文献   

18.
In vertebrates (deuterostomes), brain patterning depends on signals from adjacent tissues. For example, holoprosencephaly, the most common brain anomaly in humans, results from defects in signaling between the embryonic prechordal plate (consisting of the dorsal foregut endoderm and mesoderm) and the brain. I have examined whether a similar mechanism of brain development occurs in the protostome Drosophila, and find that the foregut and mesoderm act to pattern the fly embryonic brain. When the foregut and mesoderm of Drosophila are ablated, brain patterning is disrupted. The loss of Hedgehog expressed in the foregut appears to mediate this effect, as it does in vertebrates. One mechanism whereby these defects occur is a disruption of normal apoptosis in the brain. These data argue that the last common ancestor of protostomes and deuterostomes had a prototype of the brains present in modern animals, and also suggest that the foregut and mesoderm contributed to the patterning of this 'proto-brain'. They also argue that the foreguts of protostomes and deuterostomes, which have traditionally been assigned to different germ layers, are actually homologous.  相似文献   

19.
In this study, the initial specification of foregut endoderm in the chick embryo was analyzed. A fate map constructed for the area pellucida endoderm at definitive streak-stage showed centrally-located presumptive cells of foregut-derived organs around Hensen’s node. Intracoelomic cultivation of the area pellucida endoderm at this stage combined with somatic mesoderm resulted in the differentiation predominantly into intestinal epithelium, suggesting that this endoderm may not yet be regionally specified. In vitro cultivation of this endoderm for 1–1.5 day combined with Hensen’s node or its derivatives but not with other embryonic structures/tissues elicited endodermal expression of cSox2 but not of cHoxb9, which is characteristic of specified foregut endoderm. When the anteriormost or posteriormost part of the area pellucida endoderm at this stage, whose fate is extraembryonic, was combined with Hensen’s node or its derivatives for 1 day, then enwrapped with somatic mesoderm and cultivated for a long period intracoelomically, differentiation of various foregut organ epithelia was observed. Such epithelia never appeared in the endoderm associated with other embryonic structures/tissues and cultured similarly. Thus, Hensen’s node and its derivatives that lie centrally in the presumptive endodermal area of the foregut are likely to play an important role in the initial specification of the foregut. Chordin-expressing COS cells or noggin-producing CHO cells transplanted into the anteriormost area pellucida of the definitve streak-stage embryo could induce endodermal expression of cSox2 but not of cHoxb9, suggesting that chordin and noggin that emanate from Hensen’s node and its derivatives, may be involved in this process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号