首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied phenolic metabolism and plant growth in birch seedlings at the beginning of their development by inhibiting phenylalanine ammonia lyase (PAL), which is the first committed step in phenylpropanoid metabolism. Betula pubescens (Ehrh.) seeds were germinated in inhibitor-free media and the seedlings were transferred to hydroponic culture at the cotyledon stage. They were 6 days old at the start of the experiment, which lasted for 3 weeks. PAL activity was inhibited by three different concentrations of 2-aminoindane-2-phosphonic acid monohydrate (AIP) in the growing media. At the end of 3 weeks, phenolics in all plant parts (roots, stem, cotyledons, first, second and third true leaves) were determined. AIP inhibited strongly the accumulation of phenolic acids, salidroside, rhododendrins, ellagitannins and their precursors, flavan-3-ols, and soluble condensed tannins. The accumulation of lignin and flavonol glycoside derivatives was moderately inhibited. The accumulation of flavonol glycosides, such as quercetin glycosides and kaempferol glycosides, was not generally inhibited, even in leaves that emerged during the experiment, while the accumulation of insoluble condensed tannins was inhibited only slightly and not in all plant parts. This suggests that flavonol glycosides, which may have a UV-B protective role, and insoluble condensed tannins, which may have structural functions, are prioritized in seedling development. Inhibition of PAL with AIP decreased seedling growth and possible reasons for this are discussed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Summary Papilio glaucus subspecies, hybrids and backcrosses exhibit greatly different abilities to use quaking aspen (Populus tremuloides) and other members of the Salicaceae as host plants. This study was conducted to test the hypotheses that phenolic glycosides account for the differences in larval performance, and that differential performance is correlated with differential larval esterase activities. To test the hypotheses we conducted first instar survival trials and fourth (penultimate) instar feeding trials with tremulacin, a phenolic glycoside. We also conducted assays of -glucosidase, esterase, and glutathione transferase activities, using midgut enzyme preparations from fifth instars. First instar survival on the tremulacin treated diet generally improved with a higher proportion of Papilio glaucus canadensis genes in the genotype, although survival in one backcross treatment was surprisingly low. Penultimate instars of P.g. glaucus and P.g. australis fed tremulacin treated black cherry leaves experienced a severe reduction in growth rate relative to larvae fed control leaves. This seriously suppressed growth was partially due to reduced consumption rates and reduced conversion efficiencies, however, approximate digestibility was not affected. In contrast, P. g. canadensis and hybrids showed no differences in growth rates between tremulacin treated and control leaves. Reciprocal backcrosses of hybrids with P. g. glaucus resulted in slightly suppressed growth on treated versus control leaves. The results suggest that after a certain threshold, increased proportions of P. g. glaucus genes resulted in poorer growth performance with tremulacin in the diet. Soluble esterase activities generally increased with the proportion of Papilio glaucus canadensis genes in the genotype, and paralleled overall trends in larval survival and feeding performance. We conclude that phenolic glycosides such as tremulacin are responsible for differential performance of Papilio glaucus subspecies, hybrids and backcrosses fed plants in the Salicaceae, and that detoxification of phenolic glycosides by midgut esterase explains why some Papilio glaucus genotypes can effectively utilize these plants.  相似文献   

3.
Summary Larvae of the aspen blotch miner, Phyllonorycter salicifoliella Chambers (Lepidoptera: Gracillariidae), feed within leaves of three host-tree species in north-central Minnesota, USA. Far more individuals occur on Populus tremuloides than on P. balsamifera or P. grandidentata. We tested whether this pattern of host use reflected variable performance among alternative hosts by examining survivorship, sources of mortality, pupal mass, feeding efficiency, and development time of miners on each tree species. We also determined foliar water, nitrogen, condensed tannin, and phenolic glycoside content of host trees to test if host-tree chemical attributes were responsible for differences in performance. There was no significant difference in egg-to-adult survival among miners on different hosts, although dominant sources of mortality did vary. Miners on P. grandidentata suffered less parasitism and more predation than those on the other hosts, even though most parasitoid species attacked miners on all hosts. The other performance parameters varied among host species, but not in a consistent pattern. Pupal mass was greatest on P. tremuloides and P. balsamifera, the hosts with comparatively high foliar nitrogen and low phenolic glycoside concentrations. However, feeding efficiency was greatest and development time shortest for miners on P. grandidentata. Thus, pupal mass was the only index of performance maximized on P. tremuloides, the most commonly used host. Infrequent occurrence of Phyllonorycter salicifoliella on P. grandidentata results in part from phenological differences between this and the other host species. Low oviposition rates on P. balsamifera are correlated with low abundance of this host at the study site and a phenolic glycoside profile different from that of the other host species.  相似文献   

4.
Biosynthesis of phenolic compounds and its regulation in apple   总被引:6,自引:0,他引:6  
This paper summarises the information on the occurrence of phenolic compounds in apple Malus domestica leaves and fruits with special reference to their developmental changes and regulation of biosynthesis. Besides the ontogenetic variation in biosynthesis and accumulation, the stress-induced and pathogenesis-related changes are emphasised. Aspects of commercial importance are addressed, ranging from fruit colouration, through disease resistance, to the direct use of apple tissues, as raw material for the extraction of bioactive phenolic compounds.  相似文献   

5.
Summary We investigated the effects of nitrogen fertilization upon the concentrations of nitrogen, condensed tannin and phenolic glycosides of young quaking aspen (Populus tremuloides) leaves and the quality of these leaves as food for larvae of the large aspen tortrix (Choristoneura conflictana), a Lepidopteran that periodically defoliates quaking aspen growing in North America. Nitrogen fertilization resulted in decreased concentrations of condensed tannin and phenolic glycosides in aspen leaves and an increase in their nitrogen concentration and value as food for the large aspen tortrix. These results indicate that plant carbon/nutrient balance influences the quality of aspen leaves as food for the large aspen tortrix in two ways, by increasing the concentrations of positive factors (e.g. nitrogen) and decreasing the concentrations of negative factors (eg. carbon-based secondary metabolites) in leaves. Addition of purified aspen leaf condensed tannin and a methanol extract of young aspen leaves that contained condensed tannin and phenolic glycosides to artificial diets at high and low levels of dietary nitrogen supported this hypothesis. Increasing dietary nitrogen increased larval growth whereas increasing the concentrations of condensed tannin and phenolic glycosides decreased growth. Additionally, the methanol extract prevented pupation. These results indicate that future studies of woody plant/insect defoliator interactions must consider plant carbon/nutrient balance as a potentially important control over the nutritional value of foliage for insect herbivores.  相似文献   

6.
Biere A  Marak HB  van Damme JM 《Oecologia》2004,140(3):430-441
Plants are often attacked by multiple enemies, including pathogens and herbivores. While many plant secondary metabolites show specific effects toward either pathogens or herbivores, some can affect the performance of both these groups of natural enemies and are considered to be generalized defense compounds. We tested whether aucubin and catalpol, two iridoid glycosides present in ribwort plantain (Plantago lanceolata), confer in vivo resistance to both the generalist insect herbivore Spodoptera exigua and the biotrophic fungal pathogen Diaporthe adunca using plants from P. lanceolata lines that had been selected for high- and low-leaf iridoid glycoside concentrations for four generations. The lines differed approximately three-fold in the levels of these compounds. Plants from the high-selection line showed enhanced resistance to both S. exigua and D. adunca, as evidenced by a smaller lesion size and a lower fungal growth rate and spore production, and a lower larval growth rate and herbivory under both choice and no-choice conditions. Gravimetric analysis revealed that the iridoid glycosides acted as feeding deterrents to S. exigua, thereby reducing its food intake rate, rather than having post-ingestive toxic effects as predicted from in vitro effects of hydrolysis products. We suggest that the bitter taste of iridoid glycosides deters feeding by S. exigua, whereas the hydrolysis products formed after tissue damage following fungal infection mediate pathogen resistance. We conclude that iridoid glycosides in P. lanceolata can serve as broad-spectrum defenses and that selection for pathogen resistance could potentially result in increased resistance to generalist insect herbivores and vice versa, resulting in diffuse rather than pairwise coevolution.  相似文献   

7.
To examine genetic variation in defensive chemistry within and between natural populations of Plantago lanceolata, we performed a greenhouse experiment using clonal replicates of 15 genotypes from each of two populations, from a mowed lawn and an abandoned hayfield. Replicates of each genotype were harvested for determinations of aboveground biomass and leaf chemical content either at the beginning of the experiment (initial controls), after exposure to herbivory by larvae of Junonia coenia, a specialist on P. lanceolata (herbivory treatment), or at the end of the experiment without exposure to herbivory (final controls). Allocation to the iridoid glycosides aucubin and catalpol and the phenylpropanoid glycoside verbascoside displayed significant genetic variation within and between populations, and differed with leaf age. Significant genotypextreatment interactions indicated genetic variation in response of leaf chemistry to the treatments. There was no evidence for a cost of allocation to chemical defense: genetic correlations within and between chemical pathways and between defensive chemicals and aboveground growth were positive or nonsignificant. Although iridoid glycosides are known to be qualitative feeding stimulants for J. coenia, multiple regression of larval survivorship on leaf chemical content and shoot biomass indicated that larvae had lower survivorship on P. lanceolata ge-notypes with higher concentrations of aucubin in the leaves. Larval survivorship was unaffected by levels of catalpol and verbascoside. Thus, although specialist herbivores may respond to defensive chemicals as qualitative feeding stimulants, they do not necessarily have higher fitness on plant genotypes containing higher concentrations of these chemicals.  相似文献   

8.
Summary The relationship between the food selection of four leaf beetle species (Phratora vitellinae, Plagiodera versicolora, Lochmaea capreae, Galerucella lineola) and the phenolic glycosides of willow (Salix spp.) leaves was tested in laboratory food choice experiments. Four willow species native to the study area (Eastern Finland) and four introduced, cultivated willows were tested.The willow species exhibited profound differences in their phenolic glycoside composition and total concentration. The food selection patterns of the leaf beetles followed closely the phenolic glycoside spectra of the willow species. Both the total amount and the composition of phenolic glycosides affected the feeding by the beetles. Phenolic glycosides apparently have both stimulatory and inhibitory influences on leaf beetle feeding depending on the degree of adaptation of a particular insect. Very rare glycosides or exceptional combination of several glycoside types seem to provide certain willow species with high level of resistance against most herbivorous insects. Analogously the average absolute amount of leaf beetle feeding was lower on the introduced willows than on the native species to which the local herbivores have a good opportunity to become adapted.  相似文献   

9.
Preparation of di-and tri-valent cluster glycosides containingN-acetyl-d-galactosamine (GalNAc) is described. Oligopeptides that contain a protected amino group and two or three free carboxyl groups are activated by methyl chloroformate and then coupled to 6-aminohexyl 2-acetamido-2-deoxy--d-galactopyranoside. The concentrations of the divalent GalNAc glycosides needed to produce 50% inhibition of the binding of asialoorosomucoid to the isolated, purified rat liver receptor specific for galactose and GalNAc and to the receptor on the hepatocyte surface were of the order of 10–8 M and 10–9 M, respectively. The binding affinity of the trivalent glycoside was 10-to 20-fold stronger than the divalent glycosides towards both the soluble receptor and intact hepatocyte.Abbreviations Z benzyloxycarbonyl - EDAC 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride - AH 6-aminohexyl - ASOR aslaloorosomucoid - DMF N-dimethylformamide - DMSO dimethylsulfoxide - Lac lactosyl  相似文献   

10.
R. L. Lindroth 《Oecologia》1989,81(2):219-224
Summary Phenolic glycosides, commonly occurring allelochemicals in the plant family Salicaceae, are differentially toxic to subspecies of the eastern tiger swallowtail and responsible for striking differences in the abilities of Papilio glaucus canadensis and P.g. glaucus to utilize the Salicaceae as food plants. This research was designed to test the hypothesis that particularly high esterase activity confers resistance to phenolic glycosides in P.g. canadensis. I conducted larval survival trials in which the phenolic glycosides salicortin and tremulacin were administered with and without inhibitors of the major detoxication enzymes. Results for P.g. canadensis showed that when esterases were inhibited, toxicity of the phenolic glycosides increased greatly. None of the inhibitors significantly increased toxicity of the compounds to P.g. glaucus. I also conducted in vitro assays of the major detoxication enzymes (polysubstrate monooxygenases, esterases, and glutathione transferases) in larval midguts. Soluble esterase activity was 3-fold higher in P.g. canadensis than in P.g. glaucus. Moreover, esterase activity was inducible by prior consumption of phenolic glycosides in P.g. canadensis but not in P.g. glaucus. Glutathione transferases may also be involved in the terminal metabolism of phenolic glycosides. This is the first verified case of detoxication of an allelochemical by esterase enzymes in herbivores. The biochemical adaptation has played an important role in the evolution of food plant preferences in P. glaucus subspecies.  相似文献   

11.
The phenolic glycosides salicin and salicortin were found to influence larval growth and development rates and adult feeding preference of Phratora vulgatissima in laboratory feeding studies. Salicortin was more toxic to larvae than salicin, and none of the third instar larvae fed on Salix viminalis leaves amended with 1.52% (fresh mass) salicortin pupated. Condensed tannins (proanthocyanadins) did not affect larval performance. It was concluded that Salix burjatica resistance to willow beetle is due to the high levels of salicortin which occur in leaves of this species.  相似文献   

12.
The relationships between the concentrations of zinc, cadmium and lead in aquatic plants and the concentrations of these metals in the ambient water have been compared for three algae (Lemanea fluviatilis, Cladophora glomerata, Stigeoclonium tenue), one liverwort (Scapania undulata) and three mosses (Amblystegium riparium, Fontinalis antipyretica, Rhynchostegium riparioides). The data to establish these relationships are all based on our own studies, some published already, some here for the first time. They come from a wide range of streams and rivers in Belgium, France, Germany, Ireland, Italy and the U.K. There were significant bivariate positive relationships between concentrations of Zn, Cd and Pb in water and plant for all species except Cd and Pb in Stigeoclonium tenue. When relationships were compared using datasets with total or filtrable metals in water, most differences were slight. However there were marked differences both between species and between metals. Comparison for the seven species of Zn in the plant when aqueous Zn is 0.01 mg l–1, a concentration at which all seven were found, shows that the four bryophytes had the highest concentrations; however the two green algae had steeper slopes (representing change in concentration in plant in response to change in aqueous concentration). Lemanea fluviatilis had a slope closer to that of the bryophytes, but the concentration was about one order of magnitude lower. All seven species were found at a concentration of 0.01 mg l–1 Pb, and at this concentration there were almost two orders of magnitude difference between the species which accumulated the most (Scapania undulata) and the one which accumulated the least (Cladophora glomerata). The steepest slope was however shown by C. glomerata.When multiple stepwise regression was applied, the aqueous metal under consideration was the first variable extracted in only nine of the 21 regressions. However one of the other heavy metals (aqueous or accumulated) was extracted first in all but one of the other regressions, presumably because the occurrences of Zn, Cd and Pb were strongly cross-correlated. The principal non-heavy metal factor extracted for Zn and Cd, but not Pb, was aqueous Ca. The relevance of these results to the use of aquatic plants for monitoring heavy metals is discussed.  相似文献   

13.
Investigation of the aqueous alcoholic extract of Pyruscalleryana Decne. leaves led to the isolation of two new phenolic acids glycosides, namely protocatechuoylcalleryanin-3-O-β-glucopyranoside (1) and 3′-hydroxybenzyl-4-hydroxybenzoate-4′-O-β-glucopyranoside (2), together with nine known compounds among them lanceoloside A and methylgallate, which have been isolated for the first time from the genus Pyrus. Structures of the isolated compounds were established by spectroscopic analysis, including UV, IR, HRESI-MS, and 1D/2D NMR. The total extract and some isolated compounds were determined against DPPH (2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazinyl radical, for their free radical scavenging activity, the total alcoholic extract showed strong antioxidant activity while the two new compounds showed weak antioxidant activity.  相似文献   

14.
Further constituents from the bark of Tabebuia impetiginosa   总被引:4,自引:0,他引:4  
Further study on the constituents from the bark of Tabebuia impetiginosa (Mart. ex DC) Standley afforded twelve compounds, consisting of four iridoid glycosides, one phenylethanoid glycoside, five phenolic glycosides, and one lignan glycoside, along with seven known compounds. The structures of these compounds were determined based on the interpretation of their NMR and MS measurements and by chemical evidence.  相似文献   

15.
From the same adult 80-year-old tree of chestnut (Castanea sativa Mill.) 2 types of material have been taken and micropropagated. This resulted in in vitro easy-to-root microshoots (basal shoot origin - BS), and hard-to-root microshoots (crown shoot origin - CR). In these shoots, the phenolic contents were analysed at 0, 2, 5 and 8 days after in vitro rooting induction by 2 minute-dipping into an indole-3-butyric acid (IBA) solution (4.9 mM) and subsequent culture in a hormone-free rooting medium. The variation of the phenolic content along the adventitious rooting process differs between CR and BS microshoots for tannin, flavonol and elagic acid concentrations, which could be related to their differential rooting capacity.  相似文献   

16.
We examined relative effects of traits of leaf quality of ten willow species (Salix: Salicaceae) on growth rates of five species of insect herbivores found in interior Alaska (a willow sawfly, Nematus calais; the tiger swallowtail butterfly, Papilio canadensis; and three species of chrysomelid beetles, Gonioctena occidentalis, Calligrapha verrucosa, and Chrysomela falsa). Leaf traits examined were water content, toughness, total nitrogen contnet, pubescence, and presence or absence of phenolic glycosides. Of ten Salix species, four species contain phenolic glycosides in their leaves. We examined relative effects of water content, toughness, and nitrogen content of the Salix leaves on larval growth rates at three different levels, i.e., on a single host species, between different host species, and between herbivore species. The within-host analyses showed that effects of water content, toughness and/or nitrogen content on herbivore growth rates were generally significant in early-season herbivores but not in late-season herbivores. For each herbivore species, differences in growth rates between hosts were not explained by differences in water content, toughness, or nitrogen content. The between-herbivore analysis showed that the interspecific difference in larval growth rates were related to difference in water and nitrogen content of the hosts. Pubescence of Salix leaves had little effects on herbivore growth rates. Presence of phenolic glycosides had a positive effects on growth rates of a specialist, N. calais, but no effect on the other specialist, Ch. falsa. Presence of phenolic glycosides had, in general, negative effects on growth rates of nonspecialists, G. occidentalis, C. verrucosa, and P. canadensis.  相似文献   

17.
Phenolic acids are active antimicrobial compounds and root signaling molecules that play important roles in plant defense responses. They are generally present in plants as glycosides or esters. A range of soluble and bound phenolic acids were detected in roots and root nodules of Arachis hypogaea L., among which five were identified by high performance liquid chromatography (HPLC) coupled with UV–Vis diode array detector (DAD), viz., p-coumaric acid (p-com), p-hydroxybenzaldehyde (HBAld), p-hydroxybenzoic acid (HBA), caffeic acid (CA) and protocatechuic acid (PA). Para-coumaric acid was constitutively present in all fractions whereas HBA was present in the soluble form only in young nodules. CA and PA were mostly present in the wall bound fraction. The root nodules contain higher concentration of phenolic acids than non-nodulated roots and presence of peroxidase and polyphenol oxidase indicate the metabolism of phenolic acids in roots and root nodules. These results indicate that phenolic acids (p-com and CA) in bound-glycosidic or ester forms were major components in cell wall fortification which provide protection to the root nodule from pathogen attack.  相似文献   

18.
Two isolates of Metarhizium spp. were studied for propagule production, because of their pathogenic activity towards locusts and grasshoppers (Mf189 = M. flavoviride (or M. anisopliae var. acridum) strain IMI 330189, and Mf324 = M. flavoviride strain ARSEF324). Both isolates were grown in seven different liquid media, which have been developed for mass production of various Hyphomycetes, considered as candidates for microbial control of noxious insects. Shake-flask experiments were carried out at 28 °C in the dark. Production was quantified for 72 h and the effects of the tested media were evaluated on propagule concentration, morphology and pathogenicity. Based on preliminary experiments, all tested media were supplemented with 0.4% Tween 80 to avoid the formation of pellets and to produce unicellular propagules. Submerged propagule yields were higher withMf189 than with Mf324 in all seven media. While high concentrations of propagules (1.4 to 2.4 × 108 propagules ml-1 for MF189 and1.4 to 8.3 × 107 propagules ml-1 for Mf324) were produced in four media (Adamek, Catroux, Jackson, and Jenkins–Prior media), production of propagules was lower in the three other media (Goral, Kondryatiev, and Paris media). Both isolates produced oblong blastospore-like propagules, except in Kondryatiev medium in which they provided ovoid propagules. In this case, Mf189 submerged propagules looked like aerial conidia, but scanning observations did not demonstrate a typical conidiogenesis via phialides. In Kondryatiev medium, Mf324 submerged propagules were significantly smaller than aerial conidia. Infection potential of submerged propagules was assayed on Schistocerca gregaria. Second-instar larvae fed for 48 h on fresh wheat previously contaminated by a spraying suspension of each inoculum titrated at 107 propagules ml-1. All seven media produced submerged propagules that were highly infectious for S. gregaria larvae. Shake flask culture assays permitted us to select three low-costmedia, Adamek, Jenkins–Prior, and Catroux for improving scale-up of liquid fermentation focused on mass-production of Metarhizium propagules for mycoinsecticides devoted to locust control. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Osier TL  Lindroth RL 《Oecologia》2006,148(2):293-303
Although genetic variability and resource availability both influence plant chemical composition, little is known about how these factors interact to modulate costs of resistance, expressed as negative correlations between growth and defense. We evaluated genotype × environment effects on foliar chemistry and growth of quaking aspen (Populus tremuloides) by growing multiple aspen genotypes under variable conditions of light and soil nutrient availability in a common garden. Foliage was analyzed for levels of nitrogen, phenolic glycosides and condensed tannins. Bioassays of leaf quality were conducted with fourth-stadium gypsy moth (Lymantria dispar) larvae. Results revealed strong effects of plant genotype, light availability and nutrient availability; the importance of each factor depended upon compound type. For example, tannin concentrations differed little among genotypes and across nutrient regimes under low light conditions, but markedly so under high light conditions. Phenolic glycoside concentrations, in contrast, were largely determined by genotype. Variation in phenolic glycoside concentrations among genotypes was the most important factor affecting gypsy moth performance. Gypsy moth biomass and development time were negatively and positively correlated, respectively, with phenolic glycoside levels. Allocation to phenolic glycosides appeared to be costly in terms of growth, but only under resource-limiting conditions. Context-dependent trade-offs help to explain why costs of allocation to resistance are often difficult to demonstrate.  相似文献   

20.
Many Cola plant species are endemic to West and Central Africa. Cola acuminata and Cola nitida are used as masticatory when fresh, while the dried nuts are used for beverages and pharmaceutical purposes in Europe and North America. Garcinia kola seeds, that serve as a substitute for the true kola nuts, are used in African traditional medicine for the treatment of various diseases, including colic, headache and liver cirrhosis. Seeds extracts of G. kola are also known for their anti-inflammatory, antimicrobial and antiviral properties. To gain information on the chemical properties of the kolas, we have isolated and analyzed cell wall polysaccharides, arabinogalactan-proteins and phenolic substances from the seeds of the three kola species. The sugar composition of cell wall material of C. acuminata, C. nitida and G. kola revealed that Gal (up to 30%), Ara, GalA and Glc as the predominant monosaccharides, representing approximately 90% by mol of the total hydrolysable sugar present in this material. In Ammonium oxalate cell wall fraction, GalA was found to be the major sugar present in all kola species. In the alkali-soluble fraction, there were significant differences in the level of Glc and Gal. The level of Glc was high in C. acuminata and C. nitida while the level of Gal and Xyl were high in C. nitida and G. cola. Isolation and quantification of arabinogalactan-proteins demonstrate that G. kola seeds contained four to eight times more of these proteoglycans than the seeds of the other two species. Finally, analysis of soluble phenolic substances shows that caffeine and catechin were largely represented in C. acumina and C. nitida seeds, with caffeine accounting for 50% of all soluble phenolics. These findings indicate that the three Kola seeds are highly enriched in pectins and proteoglycans and that C. acuminata and C. nitida can be used as a possible source of caffeine and catechin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号